

Formal Verification and

 Synthesis with Axe and APT Eric W. SmithKestrel Institute Kestrel Technology LLC

SRI - January 17, 2018

Speaker: Eric Smith

- Grew up in Texas
- Went to UT-Austin and got hooked on theorem proving
- Learned the ACL2 theorem prover
- Stanford Ph.D. in 2011

- Developed Axe toolkit for verifying crypto code
- Advised by David Dill
- Researcher at Kestrel Institute / Kestrel Technology since 2011
- Leading various DARPA projects
- Continuing to improve Axe
- Co-developing APT toolkit for software synthesis
- Current projects involve blockchain,
 assured autonomy, x86 analysis

Kestrel Institute (KI)

- Non-profit research institute in Palo Alto
- Founded in 1981
- 12 researchers
- Basic and applied research
- Mostly government funding (DARPA, Air Force Research Lab)
- Also have a grant from the Ethereum Foundation

Research focus:

- correct-by-construction software
- formal methods and proofs
- security and assurance

Palo Alto, CA www.kestrel.edu

Kestrel Technology (KT)

- Small business spun out of Kestrel Institute in 2000
- Mission: to make software safer through static analysis
- Emphasis on sound analysis
- Based on abstract interpretation
- 5 researchers

Palo Alto, CA

- CodeHawk static analyzer for C, Java, and x86 binaries.

Background

- Our DARPA MUSE project focused on highassurance re-use of code found in large online repositories.

1. Find code that seems to do what you want.
2. Verify that it is correct.

- This talk will focus on Step 2.
- Note: Kestrel's main focus remains software synthesis.

Talk Outline

- ACL2 theorem prover
- Formal JVM model in ACL2
- Axe toolkit
- Axe Rewriter
- Axe Lifter ("lifting" code into logic)
- Axe Equivalence Checker
- APT Toolkit and Software Synthesis
- Examples
- Formal x86 model and lifter

ACL2 Theorem Prover (github.com/acl2)

- Automated, industrial-strength theorem prover
- Similar to Coq, Isabelle, HOL
- Emphasis on scale (industry use) and efficiency
- Large community libraries (thousands of files of definitions, proofs)

Formal JVM Model (Java Virtual Machine)

- Goal is to verify Java / JVM code
- Compile Java code to JVM bytecode
- Or verify JVM found in the wild (possibly obfuscated)
- Could also handle Kotlin, Scala
- Bytecode verification means you don't have to trust the compiler
- We parse the .class file into an ACL2 constant
- Formal JVM model
- assigns semantics to JVM bytecode
- defined in ACL2
- can reason about the model
- can reason about code executing on the model
- (also can just run code)

```
    (:LOCAL-VARIABLE-TABLE (0 0 0 35 "args" (:ARRAY "java.lang.String"))
```

 (:MAX-LOCALS

. 2)

(:RETURN-TYPE : :VOID)
(:PARAMETER-TYPES (:ARRAY "java. lang.String"))
(:PROGRAM

(2 : AALOAD)
(3 : INVOKESTATIC "java. lang.Integer"
"parseInt" "(Ljava/lang/String;)I" 1)
(6 :ISTORE_1)
(7 : GETSTATIC "java.lang.System"
("out" . "java.io.PrintStream")
NIL)
(10 :NEW "java. lang.StringBuilder")
(13 : DUP)
(14 : INVOKESPECIAL "java.lang.StringBuilder" "<init>" "()V" 0)
(17 : LDC "Result: "
(19 : INVOKEVIRTUAL
"java. lang.StringBuilder" "append"
"(Ljava/lang/String;)Ljava/lang/StringBuilder;"
2 1)
(22 : ILOAD 1)
(23 : INVOKESTATIC "fact_iter_down"
"factorialIterative" "(I)I" 1)
(26 : INVOKEVIRTUAL
"java. lang.StringBuilder" "append" "(I)Ljava/lang/StringBuilder;" 1)
(29 : INVOKEVIRTUAL "java.lang.StringBuilder" "toString" "()Ljava/lang/String;" 0)
(32 : INVOKEVIRTUAL "java.io.PrintStream" "println" "(Ljava/lang/String;)V" 1)
(35 : RETURN))
(:STATIC-FLAG . T)
(:PUBLIC . T))
(("factorialIterative" . "(I)I")
(: LINE-NUMBER-TABLE (0 56)

$$
\left.\begin{array}{l}
\left(\begin{array}{ll}
2 & 57
\end{array}\right) \\
(8 \\
58
\end{array}\right)
$$

(18 59))
(:LOCAL-VARIABLE-TABLE (0 019 " $\mathrm{n} "$: INT) (1 219 "acc" :INT)
(2 417 "i" :INT))
(:MAX-LOCALS . 3)
(:RETURN-TYPE : INT)
(:PARAMETER-TYPES : INT)
(:PROGRAM (0 :ICONST_1)
(1 : ISTORE_1)
(2 : ILOAD $\overline{0}$)

Formal JVM Model

- Formalizes the JVM state:
- heap
- storage for static fields
- thread info, including call stacks
- call stack frame = \{program counter, local variables, operand stack, ...\}
- code for loaded classes
- monitor table (for synchronization)
- table of interned strings
- map from class names to java.lang.Class objects
- Formalizes each instruction
- Shows the effect of each instruction on the JVM state
- Models almost every JVM bytecode instruction (~200)

Example (IADD instruction)

```
(defun execute-IADD (th s)
    (modify th s
        :pc (+ 1 (pc (top-frame th s)))
        :stack (push (bvplus 32 (top (stack (top-frame th s))))
                            (top (pop (stack (top-frame th s))))
                            (pop (pop (stack (top-frame th s)))))))
```

- Similar models of loads, stores, stack operations (push, pop, swap, push constant), array ops, casts, conversions, comparisons, jumps, branches, calls, returns, exceptions, synchronization, etc.
- Some instructions much more complicated (e.g., INVOKEVIRTUAL).

Formal JVM Model

- Step function: Fetch next instruction and dispatch on the opcode (big case split)
- Run functions: Repeatedly step
- "run n steps"
- "run until return"
- "run until exit code region"
- Many details covered: class initialization, string interning, etc.
- Greatly extends the M5 model (in ACL2 community libraries)
- Does not yet fully support:
- native methods, class loading, Unicode, multi-threaded memory accesses, floating point, invokedynamic

Lifting Into Logic (aka Decompilation Into Logic) (aka Specification Extraction)

Lifting Into Logic

- Given the code and the model,
- Obtain a function in the ACL2 logic that represents the code
- Result should not mention the machine model
- Lifting puts the code into a clear, logical form we can manipulate.
- Related work:
- Magnus Myreen (implemented in HOL prover)
- CodeWalker (UT-Austin)
- Key issue is how to handle loops:
- Easy approach (when possible): unroll loops
- Harder approach (but more general): turn loops into recursive functions
- Approach: Use a rewriter to perform symbolic execution
- Standard approach in ACL2 community but Axe Rewriter is novel

Axe Rewriter

- Represents terms as DAGs (not trees). with structure sharing
- no two nodes represent the same term
- critical for crypto (tree representation blows up)

Tree:

Axe Rewriter

- Applies ACL2 theorems (equalities) as simplification rules
- High performance: ~600,000 rule attempts per second
- Supports:
- conditional rewriting
- free variable binding using assumptions
- syntactic control (like ACL2's syntaxp and bind-free features)
- rewrite objectives
- memoization
- inside-out rewriting and some support for outside-in-rewriting
- use of contextual information (tricky)
- phased rewriting

Lifting Code into Logic Easier Version: Unrollable Loops

- Use the Axe Rewriter to perform symbolic execution:

1. Start with a symbolic state
2. Add assumptions

- About the code and program counter
- About the inputs

3. Form a "run-until-return" expression
4. Apply rewrite rules and unfold definitions to repeatedly step and simplify the expression

- run becomes step followed by run
- expand step (dispatch based on current instruction)
- simplify aggressively using hundreds of rules
- Result is a symbolic representation of the final state as a function of the initial state
- return value
- final state of the heap
- final values of static variables
- Handle conditional branches

Example: AES Encryption (128-bit key)

```
(unroll-java-code *aes-128-encrypt-light*
    "AESEncryptLightDriver.driver([B[B[B)[B"
    :output (:array-local 2)
    :array-length-alist '((key . 16)
    (in . 16)
    (out . 16))
    ...)
```

- Result has only bit-vector and array operations
- All JVM details gone (states, steps, stacks, jumps, etc.)
- All loops have been unrolled (e.g., 10 rounds in main loop)
- All subroutines "inlined"
- Though Axe now supports compositional lifting
- Lifted result has 47,898,065,689,733,522 nodes !
- but only 3,646 unique nodes in DAG form

Verifying the lifted code

- Prove equivalent to a formal specification
- We have ACL2 specs for many ciphers, hash functions, etc.
- Use Axe Rewriter to unroll all recursion in spec and inline all non-built-in functions
- Then call the Axe Equivalence Checker
- Or prove equivalent to a golden implementation
- Unroll both
- Call Axe Equivalence Checker
- We prove functional (bit-for-bit) equivalence
- For all plaintexts and keys, the two versions produce the same ciphertext
- (You could never test this exhaustively)

Axe Equivalence Checker (my Ph.D. thesis)

- Performs a highly-automated comparison of two logical terms (DAGs)
- e.g., unrolled spec and unrolled code

1. Form the equality of the two DAGs
2. Call the Axe Rewriter to simplify/normalize

- Library of hundreds of general simplification rules
- Special-purpose rules to handle lookup tables, bit vector rotations
- Special handling of XOR nests
- Rules for bit-blasting (but first simplify at the word level)

3. Break down problem into smaller problems ("Sweeping and merging")
4. Run random tests
5. identify likely equivalent subexpressions
6. prove and merge them one by one, bottom up

- Uses SMT solver (STP) for bit vectors and arrays
- Heuristically cuts SMT goals for speed
- New tactic-based checker: pruning, case splitting, etc.

Verification with Axe

- Can automatically prove equivalence of crypto code and specs.

Crypto Implementations Verified (from bouncycastle, Sun, GNU, etc.)

Block ciphers:

- AES (128/192/256 bit keys, several levels of optimization)
- DES and Triple DES
- Blowfish (64-bit and 448-bit keys)
- Skipjack
- RC6 (128/192/256 bit keys)
- RC2 (64-bit key)
- TEA

Stream ciphers:

- RC4 stream cipher (2048-bit key, 4096-bit message)

Cryptographic hash functions:

- SHA-1 (32/512/4096-bit messages)
- SHA-224, SHA-256, SHA-384, SHA-512 (various message sizes)
- MD5 (32/512/4096-bit messages)
- RIPEMD-160 (32/256-bit messages)

Caveats: Assumed static data not tampered with, assumed hash functions are given all data at once

Lifting Code into Logic Harder Version: Non-unrollable Loops

- The Axe Loop Lifter can lift loops into ACL2 functions
- Basic idea: Symbolically execute the loop body and wrap it up into a tailrecursive function
- Repeatedly step and simplify the loop body.
- Use formal JVM model and Axe rewriter, as above
- Result is an if-then-else nest of states.
- Branches that exit the loop tell us the exit test.
- Branches that return to the loop top tell us the update function.
- Loop becomes a recursive function:

```
(defun loopXXX (params)
    (if (exit-test params)
            params
            (loopXXX (update params))))
```

- The params are the state components (scalars and arrays) touched by the loop: local variables, instance fields, static fields.
- Cannot yet lift loops that touch an unbounded amount of state

Simple Example (Sum of Squares)

```
((0 :ICONST_0)
    (1 :ISTORE_1)
    (2 :ILOAD_\overline{0}
    (3 :ISTORE_2)
    (4 :ILOAD_0)
    (5 :ILOAD_0)
    (6 :IMUL)
    (7 :ISTORE_3)
    (8 :ILOAD_2)
    (9 :IFLE 21)
    (12 :ILOAD_1)
    (13 :ILOAD_3)
    (14 :IADD)
    (15 :ISTORE_1)
    (16 :ILOAD_3)
    (17 :ICONST_1)
    (18 :ILOAD_2)
    (19 :ISUB)
    (20 :ILOAD_2)
    (21 :ISUB)
    (22 :IADD)
    (23 :ISTORE_3)
    (24 :IINC 2 -1 3)
    (27 :GOTO -19)
    (30 :ILOAD_1)
    (31 :IRETURN))
```

bytecode (in our parsed form)

Loop lifting

- May need to generate and check loop invariants:
- need to know the classes of objects on which methods are called
- need to show that exceptions do not occur
- Invariants:
- classes of objects
- facts about pointers not changing
- numeric invariants
- Axe's approach:

1. Guess invariants.
2. Lift the loop body, assuming the invariants.
3. Try to prove that the invariants still hold.
4. Discard any failed invariants and repeat.
5. (Nested loops handled inside-out.)

- Help from the user is often needed
- Invariants and loop properties to prove inductively
- Invariants found by static analysis can help.
- Termination: Can be proved or assumed.

Verifying the Lifted Code

- Use APT transformations to create a derivation that connects lifted code and spec
- APT = Automated Program Transformations
- APT is a major Kestrel project
- Or (older approach): Use Axe Equivalence Checker
- Contains transformations to synchronize loops (based on patterns observed in testing)
- Can prove loops equivalent by induction
- Has been used to verify RC4, MD5, SHA-1
- Requires user hints, can be very slow

Background: Software Synthesis by Stepwise Refinement

- Specification ("spec"):
- written in logic
- formalizes requirements
- does not constrain how to do it
- Each refinement:
- makes a single design choice (algorithm, optimization)
- narrows down space of possible implementations.
- may be carried out by an automated transformation.
- Each refinement step is proved.
- code is correct-by-construction
- Finally, generate code from the lowestlevel spec.

Alternate Derivations

- A spec has many implementations:
- different algorithms
- different data structures
- different optimizations
- different behaviors when underspecified
- Refinement tree
- (actually a DAG)
- A derivation is one path in the tree.

APT Toolkit

- APT = "Automated Program Transformations"
- Software synthesis system built on the ACL2 theorem prover
- Includes automated transformations that perform refinement steps
- Each synthesis step produces a proof checked by the prover

APT Transformations - All Proof-Producing

- make-tail-rec
- assoc
- monoid
- nats counting down
- bit vectors counting down
- list builder
- finite-difference
- remove-cdring
- expand-lets
- letify
- simplify-body
- simplify
- function
- second-order function
- quantified function
- rewrite-body
- drop-function-from-nest
- drop-irrelevant-params
- flatten-params
- homogenize-tail-rec
- flip-if
- rename-params
- reorder-params
- restructure-elseif
- make-do-while
- lift-condition
- weaken
- strengthen
- wrap-output
- wrap-input
- undo-finite-difference
- undo-make-tail-rec
- define-op
- copy-spec
- spec substitution
- decrease-and-conquer
- divide-and-conquer
- predicate narrowing
- isomorphic data transformation
- extract output
- restore multiple values
- expand data representation (in progress)

Proof-Producing Transformations

- Each transformation generates a compound ACL2 event
- New function or new spec
- Proof (equivalence, refinement / implication, etc.)
- Proof is very tightly controlled
- Split out lemmas and explicitly instantiate
- Explicit induction scheme
- Disable prover automation (generalize, destructor elim, other inductions)
- Turn off all extraneous rules

A tiny derivation: Sum of squares

; ; Specification (executable but inefficient) for
; ; unbounded integers:
(defun sum-squares (n)
(if ${ }_{0}(\mathrm{zp} \mathrm{n})$
(+ (* n n) (sum-squares (- n 1)))))
; ; Make the function tail-recursive:
(make-tail-rec sum-squares :domain natp)
;; Apply finite-differencing to incrementally
; ; compute the square:
(finite-difference sum-squares\$1 (* n n) *math-rules*)

Make-tail-rec Transformation

```
(defun sum-squares (n)
    (if (zp n)
        0
    (+ (* n n) (sum-squares (- n 1)))))
```

 (make-tail-rec sum-squares :domain natp)
 (DEFUN SUM-SQUARES\$1 (N ACC)
(IF (ZP N)
ACC
(SUM-SQUARES\$1 (-N 1) (+ ACC (* N N)))))
(DEFTHM SUM-SQUARES-BECOMES-SUM-SQUARES\$ 1
(EQUAL (SUM-SQUARES N)
(SUM-SQUARES\$1 N 0)))
(DEFTHM SUM-SQUARES-BECOMES-SUM-SQUARES\$1
(EQUAL (SUM-SQUARES N)
(SUM-SQUARES\$1 N 0)))

- APT generates:
- new function
- theorem
- ~120 lines of proof, 14 lemmas
- includes 2 critical inductive lemmas
- takes 0.01 seconds
- ACL2 checks:
- New function well-formed and equivalent to old
- takes 0.07 seconds

Finite-differencing Transformation

```
(DEFUN SUM-SQUARES$1 (N ACC)
    (IF (ZP N)
        ACC
    (SUM-SQUARES$1 (- N 1) (+ ACC (* N N)))))
```

(finite-difference sum-squares\$1 (* n n) *math-rules*)
(DEFUN SUM-SQUARES\$2 (N ACC NSQUARED)
(IF (ZP N)
ACC
(SUM-SQUARES\$2 (- N 1)
(+ ACC NSQUARED)
(+ NSQUARED (- N) (- N) 1))))
(DEFTHM SUM-SQUARES\$1-BECOMES-SUM-SQUARES\$2
(EQUAL (SUM-SQUARES\$1 N ACC)
(SUM-SQUARES\$2 N ACC (* N N)))

Simplification Transformation

- Apply simplification rules to a function.
- More precisely, apply the ACL2 simplifier to the body of a function, and generate an equivalent function with the resulting body.
- Support patterns to indicate that only certain parts of the body must be simplified.
- This transformation is useful to:
- Optimize functions.
- Carry out rewriting transformations via specific sets of rules, e.g. turn unbounded integer operations into two's complement integer operations, under suitable no-wrap-around conditions.
- Propagate refinements from callees to callers.
- Chain sequences of equivalence refinements.
- See the paper "A Versatile, Sound Tool for Simplifying Definitions" by A. Coglio, M. Kaufmann, and E. Smith in the upcoming ACL2-2017 Workshop. (Available at http://www.kestrel.edu/~coglio.)

Algorithm Schemes

- Formalize abstract algorithms
- Problem spec: Collection of functions with constraints
- Solver spec: Provably solve the abstract problem, using the constraints
- Later, instantiate to solve particular problem
- Map concrete problem to abstract problem
- Prove the concrete constraints
- Get the concrete solver (and proof) 'for free'.
- Example: Divide and Conquer
(spec divide-and-conquer-problem
(op problemp (x))
(op solutionp (solution problem))
(op directly-solvablep (problem))
(op solve-directly (problem))
(op divide (problem) :output (mv * *))
(op combine (solution1 solution2))
(axiom solve-directly-correct
(implies (and (problemp p)
(directly-solvablep p))
(solutionp (solve-directly p) p)))
(axiom combine-correct
(implies (and (problemp p)
(not (directly-solvablep p))
(solutionp solution0 (mv-nth '0 (divide p)))
(solutionp solution1 (mv-nth '1 (divide p))))
(solutionp (combine solution0 solution1) p)))
...)

Divide and Conquer

Abstract Scheme	MergeSort	QuickSort
directly-solvable?	len <2	len < 2
solve-directly	(do nothing)	(do nothing)
divide	split list	partition
combine	merge	append
measure	len	len

- Other Schemes:
- Decrease and conquer
- Global search
- Local search
- Dynamic Programming
- Fixpoint, ...

How Can We Use Synthesis Tools to

Verify Existing Code?

Reconstructing A Derivation

- Our hypothesis: If the code is correct, there exists a derivation from the spec to the code.
- even if the programmer did not use software synthesis tools!
- To fully understand the code, reconstruct its derivation

- Code will then be proved correct, because each refinement step is proved.
- How can we reconstruct a derivation?

Analysis-By-Synthesis:

Find a Derivation

- The derivation:
- connects existing code to a spec
- is a sequence of provably correct refinement steps
- contains top-down and bottom-up steps
- represents a synthesis process that could have been done from the spec to the code, exposing the implementation decisions

Anatomy of an Analysis-by-Synthesis Derivation

- Write / obtain spec
- Obtain likely implementation (e.g., from a Big Code corpus)
- Lift code into logic
- Boilerplate bottom-up steps:
- flatten params
- extract outputs of interest
- Top-down steps:
- apply algorithm theory (if spec is not executable)
- (data type refinements)
- make spec tail recursive (often)
- (partial evaluation)
- Derivation-specific steps:
- finite-difference, undo-finite-difference, restructure conditionals, handle optimizations, generalize, re-index loops, apply data isomorphisms, add necessary condition pre-filter, rename / reorder params
- Simplify (throughout)
- Convert bit-vector operations to integer (often) or vice versa
- Convert array operations to list operations (often) or vice versa

Example: The TEA Block Cipher

- Tiny Encryption Algorithm (TEA)
- Found an implementation (javabeanz)

- Lifted it into logic
- Created a derivation of proven steps linking the spec and the code
- 11 proof-producing steps
- shows that the code and spec have the same output bits, for all inputs

Example: Legacy MAVLink CRC Checksum (x.25)

Major steps (informed by the corpus code):

- Un-Distribute polynomial remainder over XOR rem(x, poly) xor rem(y, poly) \rightarrow rem(x xor y, poly)
- Thread through 16-bit CRC accumulator
- Calculate the update of the CRC
- Use 0-padding to simplify base case
- Distribute remainder over concatenate $\operatorname{rem}^{\prime}(\mathrm{x}$ concat $\mathrm{y}, \mathrm{crc})=\operatorname{rem}^{\prime}\left(\mathrm{y}, \mathrm{rem}^{\prime}(\mathrm{x}, \mathrm{crc})\right.$)
- Move complement (xor with FFFF) into initial CRC
- Unroll to process 8 bits at a time (and simplify!)
- Introduce bit vectors (isodata)
- Reverse the CRC to match the code (isodata)
- Normalize bit-vector operations

MICRO AIR VEHICLE COMMUNICATION PROTOCOL

Generate and verify 21 transformed
versions
(steps)

Example: Bresenham's Algorithm

Bitcoin Public-Key-ToAddress

- Goal: Obtain verified code that converts a bitcoin public key to an address
- Includes
- 3 calls to SHA-256
- 1 call to RIPEMD-160
- Base58 encoding
- We specified it
- Using specs for SHA-256, RIPEMD-160, and Base58 encoding
- We created an implementation using
- SHA-256 and RIPEMD-160 from bouncycastle
- Base58 encoding from bitcoinj
- We verified it
- Axe to verify the crypto by unrolling

Java/JVM Code That We Have Verified Using Axe and/or APT

- Bresenham's Algorithm
- MAVLink checksum
- MAVLink message creation
- MAVLink message parsing
- MAVLink-over-HTTP message creation
- MAVLink-over-HTTP message parsing
- Bitcoin Base58 encoding
- Bitcoin public-key-toaddress
- factorial
- Fibonacci
- sum of squares
- insertion sort
- membership
- find index
- max element
- negate bytes
- prime sieve
- reverse array
- lots of crypto code (previous slide)

Axe for $x 86$

- Can now apply Axe to lift and verify x86 code as we do for JVM code
- including code with loops
- x86 tools are less well-developed than JVM versions

Axe Code Query Tool

- Axe can answer questions like "Is there any input that causes this behavior?"
- Example: $\begin{aligned} & \text { class Fermat }\left\{\begin{array}{l}\text { / Fermat's equation when } n=3 \text {. Test whether } x^{\wedge} 3+y^{\wedge} 3=z^{\wedge} 3 \text {. } \\ \text { static boolean fermatEquation (int } x, \text { int } y, \text { int } z) \\ \text { return } x * x * x+y * y * y==z * z * z ;\end{array}\right. \\ & \} \quad\} \quad l\end{aligned}$
- Are there values of x, y, and z that cause this to return true (note that the math ops wrap around)?
- Axe finds: Satisfying assignment: ((X. 53605105) (Y. 64151086) (Z.71794969)).
- Vitalik noticed something similar for Javascript:

Did you know Fermat's Last Theorem has counterexamples in Javascript?

```
> 57055 ** 3 + 339590 ** 3 = 340126 ** 3
< true
```


Future Work

- Improve and apply Axe
- make loop lifting more automatic
- improve x86 support
- perhaps support additional machines (LLVM, EVM, eWASM, ARM, ...)
- look into emitting checkable ACL2 proofs
- Apply APT to bigger examples
- currently synthesizing runtime monitors for AI systems
- currently synthesizing a resolution theorem prover
- new transformations and algorithm schemes will be needed
- implement proof-emitting code generators
- implement more automated derivation finding
- Let me know if you see opportunities to collaborate.

Questions?

Extra Slides

Bresenham Specification

compute a discrete best-fit line from $(0,0)$ to $(X, Y) \in \mathbb{Z} \times \mathbb{Z}$, where $0<Y \leq X$

from the formal specification:

each i-th ordinate computed (where $0 \leq i \leq X$) is a rounding of the exact ordinate $i \cdot(Y / X)$

Bresenham Code

```
static void draw(int X, int Y, int[] ords) \{
    int \(x=0\);
    int \(y=0\);
    int \(d=2\) * Y - X ;
    while (x <= X) \{
            ords[x] = y;
        X++;
        if (d >= 0) \{
        y++;
        only integer operations
                            (Bresenham's algorithm!)
        \} else \{
            d += 2 * Y ;
        \}
    \}
    \}
"Consider Bresenham's line drawing algorithm .... For efficiency, the algorithm only uses linear updates, which are non-trivial to verify [107] or even understand (let alone discover from scratch)."*
```

*Srivastava, Saurabh. "Satisfiability-based program reasoning and program synthesis." (2010).

