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Abstract. A strategy for designing divide-and-conquer algorithms that was originally presented
in a previous article is extended and applied to several new problems. The extension involves
techniques for modifying the original specification based on specific kinds of failures that can
occur during the design process. We derive several divide-and-conquer algorithms that are
substantially more efficient than previously known algorithms, This paper also emphasizes the
naturalness with which divide-and-conquer algorithms can be transformed into a parallet format.
One problem explored is to find the maximum sum over all rectangular subregions of a given
matrix of integers. For an n x n matrix there is a straightforward O(n®) enumeration algorithm.
We derive a O(n?) divide-and-conquer algorithm, then show that it can be executed in Oflog” n)
time in parallel and, furthermore, with pipelining of inputs it can be executed with O(1} time
between successive outputs.

1. Introduction

In this paper we extend and apply a strategy for designing divide-and-conquer
algorithms that was originally presented in [8]. The extension to the strategy involves
techniques for modifying the original specification based on specific kinds of failures
that can occur during the design process. The problem we deal with has one- and
two-dimensional versions, called 1D-MAXSUM and 2D-MAXSUM respectively or
MAXSUM generically, 1ID-MAXSUM involves finding the maximum over the sums
of all subarrays of a given array of integers. 2D-MAXSUM involves finding the
maximum over the sums of all rectangular subregions of a matrix of integers. We
derive two linear time divide-and-conquer algorithms for the ID-MAXSUM prob-
lem. One of these runs in O(log n) time on a parallel processor. With pipelining of
successive inputs, the time between the appearance of successive outputs is reduced
to a constant. Then we derive a O(n?) time divide-and-conquer algorithm for the
2D-MAXSUM problem. This algorithm can be executed in O(log® n) time on a
parallel mechanism. With pipelining of successive input matrices the time between
the appearance of successive solutions is again reduced to a constant. These
algorithms were previously unknown and the O(n?) algorithm for 2D-MAXSUM
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and all of the parallel algorithms are substantially faster than previously known
algorithms.

In Section 2 we present the extended design strategy and use it to derive a simple
but optimal divide-and-conquer algorithm for 1D-MAXSUM. In Sections 3 and 4
we derive ‘balanced’ divide-and-conquer algorithms for 1D-MAXSUM and 2D-
MAXSUM and discuss their transformation into parallel algorithms.

2. A strategy for designing divide-and-conquer algorithms

In this section we nt a strategy for designing divide-and-conquer algorithms
and illustrate it by eriving an algorithm for 1D-MAXSUM. The first step is to
obtain a formal specification of the problem that we desire to solve. A formal
specification for 1D-MAXSUM is

i

1D-MAXSUMI(A[ .. n])= best such that

k
l<n = best= max 3 Alp]
\=j<=k<sn p=j
which can be read as follows. The problem is named 1D-MAXSUMI1' and takes
as input an array A with domain 1..n and codomain integers. For simplicity of
notation we will omit typing information on variables—such information should be
clear from the context. The output is called best and is specified to be an integer
satisfying the input/output relation

tsjsksn

k
l=n = best= max y Alpl
p=j

The antecedent, 1= n, called the input condition, expresses any assumptions about
the inputs. Here we are assuming that the input array is nonempty. The consequent,

k

best= max 3y A[p]l,

lssjsk=np=j

called the output condition, expresses the conditions under which an element of the
output domain is a feasible solution to the problem posed by the input. Here, the
output best is required to be the maximum over the sums of all subarrays of A
between 1 and n. For example, if A[1..5]=(-1,3,-2,5, —3) then the maximum
sum subarray is A[2..4]=(3,-2,5). The maximum sum subarray of A[1..5]=
(~1,3, =2, -5, -3)is A[2..2]=(3).

! The following notational conventions will be used: specification names are fully capitalized and set
in Roman, operators are indicated by capitalizing their first letter, and program scheme operators are
further indicated by italics.
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Intuitively, divide-and-conquer algorithms behave as follows: If the input is
primitive, then a solution is obtained directly, by simple code. Otherwise a solution
is obtained by decomposing the input into parts, independently solving the parts,
then composing the results. Program termination is guaranteed by requiring that
the parts be smaller than the input with respect to a suitable well-founded ordering.
We restrict our attention to divide-and-conquer algorithms that have the following
general form:

DC(x,):=
if Primitive(x,)
then DC = Directly-Solve(x,)
else begin
(xy, X3)'= Decompose(x,);
2y, 2= G(x,), H(x,);
DC = Compose(z,, z,)
end

where at least one of G and H is DC. If one is not DC, then it typically can be
taken to be 1d, the identity function. We refer to Decompose as the decomposition
operator, G and H as the component operators, Compose as the composition
operator, Primitive as the control predicate, and Directly-Solve as the primitive
operator.

The following algorithm is an instance of this program scheme:

1d-Maxsum2(A[1..n])u=
ifn=1
then 1d-Maxsum2 = (A[1], A[1])
else begin
(best,, right,), u'=1d-Maxsum2(A[1..n— 11, A[n;
1d-Maxsum2 = (max(best,, right,+ u, u), max(right,+ u, u))
end

1d-Maxsum2 actually solves a slightly stronger form of the ID-MAXSUMI1 problem
and is the first algorithm we will derive. On input A[1..n] it produces a 2-tuple
of values (best, right) where best is the value satisfying the specification 1D-
MAXSUMI1. When A[1..n] has length 1, the solution is directly computed by
(A[1], A[1]). Otherwise A[1..n]is decomposed into A[1..n—1] and A[n] which
are then processed by a recursive call and the identity function respectively. The
resulting intermediate solutions are composed by (max(best,, right,+u, u),
max(right,+u, u)). Here and in later algorithms we omit an explicit call to a
decomposition operator when it is simpler to perform the decomposition implicitly
in the code.

The main difficulty in designing an instance of the divide-and-conquer scheme
for a particular problem lies in constructing decomposition, component, and compo-
sition operators that work together. The following strategy extends the strategy
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called DS! in [8]. Steps 2 and 3 contain extensions for handling failures that can
arise in applying this strategy. Both typically involve modifying the original
specification then retracing earlier steps using the modified specification.

Step 1. Choose a simple decomposition operator.

Step 2. Let the component operators be either of DC or Id depending on the
output types of the decomposition operator. If there is a mismatch between the
outputs of the decomposition operator and the inputs expected by the component
operators, then generalize the input domain and input/output relation of the com-
ponent operators to eliminate this mismatch. If the original specification is modified,
then return to Step 1.

Step 3. Derive the control predicate based on the conditions under which the
decomposition operator can be successfully applied.

Step 4. Solve for the input/output relation of the composition operator using a
constraint expressing the correctness of the divide-and-conquer scheme. If there is
amismatch between the inputs of the composition operator and the outputs generated
by the component operators, then generalize the output domain and input/output
relation of the component operators to eliminate this mismatch. If the original
specification is modified, then return to Step 1. Otherwise, use the derived input/out-
put relation to set up a specification for the composition operator and construct an
algorithm for it.

Step 5. Design an algorithm for the primitive operator.

A more formal treatment of this and other strategies may be found in [8, 9]. This
strategy seems to lead most frequently to useful algorithms because in the formal
structure of divide-and-conquer algorithms {7] there are more constraints on the
decomposition operator than on the component and composition operators. Con-
sequently it is easier to satisfy the decomposition constraints first.

‘Solving for’ the input/output relation of the composition operator is the most
challenging step and bears further explanation. Let Opcomposes Opc, Og, On, and
Ocompose denote the output conditions for Decompose, DC, G, H, and Compose
respectively. The following constraint relates the output conditions of the sub-
algorithms to the output condition of the whole divide-and-conquer algorithm:

O[)evompl)xe(x()’ X1, xZ) A OG(xl s zl)
A Oy (xy, 23) A ch‘umpuxe(zo, 21, 23) = Opc(x, 2o). (1)

The intuitive meaning of (1) is that if input x, decomposes into a 2-tuple {x;, x2),
and z, and z, are solutions to inputs x, and x, respectively, and furthermore solutions
z, and z, can be composed to form solution z,, then z, is guaranteed to be a solution
to input x,. This constraint is used like an equation in five unknowns; given Opc
from the original specification we supply expressions for Opecomposes O, and Oy,
then reason backwards from the consequent to an expression over the program
variables z,, z,, and z,. This derived expression is taken as the input/output
condition of Compose.
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Returning to the 1D-MAXSUMT1 problem, there are several ways to decompose
the input array A[1..n]. One way is to split A[1..n] into a subarray of length
n—1 and a single element, for example, into A[1..n~1] and A[n}. This choice
leads to an algorithm like 1d-Maxsum?2 and will be explored below. Another way
is to split A[1..n] into subarrays of roughly equal length, for example, into
A[1..n/2) and A[n/2+1..n). This choice will be explored in Section 3.

Let us call the target algorithm 1d-Maxsum1 and choose to decompose A[l..n]
into A[1..n—1] and A[n]. How can the decomposed inputs be treated by the
component operators? A[1..n—1] is an array segment so a recursive call seems
appropriate. The other subinput, A[n], is an integer, so we might treat it as an
instance of a distinct problem and use the identity operator in processing it. Thus
let G be 1d-Maxsum1 and H be Id. However to pass A[1..n—1] to 1d-Maxsum1
we must ensure that it satisfies the input condition, i.e., that 1 < n—1. This will be
so when 2 =< n. Consequently the decomposition operator should not be invoked on
inputs on inputs of length one and the control predicate is taken to be n=1.

At this point we have the partially instantiated scheme

1d-Maxsum2(A[1..n])u=
ifn=1
then 1d-Maxsum?2 = Directly-Solve(A(1.. n]);
else begin
best,, u=1d-Maxsum2(A[1..n—1]), Aln];
1d-Maxsum?2:= Compose{best,, u)
end

where Directly-Solve and Compose remain to be specified. In order to derive an
input/output relation for the composition operator the following instance of (1) is
set up:

Decompose(A[1..n])=(A[1..n~1], A[n])

k
Abest;= max Y A[p] A u=A[n] A Ocomposc{ besty, besty, u)

Isjsk=n—-1p=j

k

= besty= max ) A[p] (

t<jsksnp=j

8]

To set up (2) we used the following substitutions:

— 1d-Maxsum] replaces G,

the identity function replaces H,

All..n], A[1..n-1], A[n] replace x,, x,, x, respectively,

best,, best,, u replace zg, z,, z, respectively,

Decompose (A[1..n])=(A[1..n—1], A[n]) replaces Opecompose( X0, X1, X2,
— best, = MaX,<jek=n-1 Z;:_}. A[ p] replaces Og(x,, 7)),

u=A[n] replaces Oy (x,, 2,).

i

I

i

1

i




218 D. R. Smith

Intuitively, (2) is to be interpreted as follows: A[1.. n]is decomposed into subinputs
A[l..n~1] and A[n], and best,, the output of the recursive call, is the maximum
over the sums of all subarrays of A[l..n—-1] and u, the output of the other
component operator, is Id(A[n]), and best,, the output of the whole divide-and-
conquer algorithm, can be composed from best, and u according to the (unknown)
relation Ocompose( besty, best,, u), then best, is the maximum over the sums of all
subarrays of A[1..n]. We use this formula to reason backwards from the consequent
to input/output specification of the composition operator as follows:

k
besty= max 3} A[p]

tsjsksn p=j

=max< max iA[p], max nil A[p]+A[n],A[n]>

Isj=mk=n-1p=j I=jsn—1 p=j

n-1
=max(best,, max y, Alp]+uy, u>‘

Isjsn-1p=j

Here we are left with a way to compose best, from best,, u, and the additional term

n—1
max Y A[p] (3)
tsj=n=t ST

which denotes the maximum over all sums of subarrays of A[1..n—1] containing
A[n—1]. The difficulty is that in our program scheme the only inputs to Compose
are the outputs from the component operators, namely best, and u, thus Compose
does not have sufficient information to compute (3). Compose could be given an
additional argument, such as A[1..n—1], the input to the recursive call. However
having Compose compute (3) could be computationally expensive and would involve
a more elaborate program scheme. Another approach is to modify one of the
component operators so that it makes (3) available as an input to Compose. Since
only the recursive call has the requisite input (A[1.. n~1]) to compute (3), we add
a new output value to the specification 1D-MAXSUMI1 as follows:

1D-MAXSUM2(A[1.. n]) =(best, right) such that

k n
l<n = best= max Y A[p] r right=max ¥ A[p].

Vs=js=k=np=j I=sjsnp=j
Now we go back and redo the derivation using the same choice of decomposition
operator. Again setting up an instance of (1) we have
Decompose(A[1..n])=(A[l..n—1], A[n])

k n—1
Abesty= max Y A[p] A righty= max Y A[p]

Isjsks=n—1 p=j 1sj=n—1 p=j

Au=A[n] A Ocompose( besty, right,, best, , right;, u)

k . n
=> best,= max 3 A[p] A righty=max Y A[p].

Isjsk=np=j t=j=np=j
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This formula differs from (2) in that the substitutions for O and O, now reflect
1D-MAXSUM?2 (vice 1D-MAXSUM1). Notice also that the set of arguments to
Ocompose has been expanded to reflect the modified specification. The composition
operator now takes best,, right,, and u as inputs and produces best, and right, as
outputs. Carrying through a derivation analogous to the one above, we have

k
besto= max Y A[p]

I=jsk=sn p=j

=max< max iA[p], max an[p]%—A[n],A[n})

Isjsksn—1 p=j l=j=n-—-1p=j

= max(bestl, max nil Alpl+A[n], A[n])

t=j=n—1 p=j
=max(best,, right, + u, u)

and

right,= max )y A[p]

lsj=n p=j

=max< max ni‘ Al pl+ A[n], A[n]>

1=j=n—1 p=j
= max(right,+u, u).

This time we have been able to deduce a relation over the variables best,, right,.
best,, right,, and u which gives us the following input/output relation for composi-
tion operator:

besty = max(best,, right;+u, u) A righty= max(right,+ u, u).
From this relation it is easy to construct the composition operator
Compose(right,, u, best,):={max(best,, right, + u, u), max(right, + u, u)).

Since the decomposition operator can only be applied when the input array segment
has at least two elements, we terminate the recursion when n = 1. In this case we have

k 1
besty= max Z‘A[p]:A[l] and right,= max Y A[p]=A[l].

l=jsk=] p=j Psijul pe=)

so the primitive operator computes (A[1], A[1]). Instantiating the various operations
derived above into the divide-and-conquer program scheme we obtain the program
1d-Maxsum?2. This algorithm requires linear time and linear space. 1d-Maxsum?
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can be transformed into an equivalent iterative form which consumes only linear
time and constant space:

1d-Maxsum2-iter(A[1..n])u=
begin
best, right .= A[1], A[1];
fori=2to ndo
begin

right := max(right + A[i], A[i]);
best = max(best, right)
end;

1d-Maxsum?2-iter = best

end.

3. Deriving a balanced divide-and-conquer algorithm for 1D-MAXSUM

The divide-and-conquer idea is at its best when we can decompose problems into
roughly equal sized subproblems—a technique called balancing. When subproblems
have roughly equal size we can envision great speedups due to executing the
subproblems in parallel. The above derivation of 1d-Maxsum?2 suggests that we
might create a balanced divide-and-conquer algorithm by decomposing the input
Al1..n]into subproblems A[l.. mid] and A[mid +1..n] where mid = n/2. Since
each subproblem has the same type as the original problem we process both of
them recursively. Thus both G and H are DC. Intuitively, we will decompose the
input array in half, find the maximum sum subarray in each half, then use them to
compute the maximum sum subarray of the whole. As the reader may suspect, it
will turn out that more information will be needed in order to compute the solution
for the whole array than just the solutions to the two halves.

When we start to set up an instance of the Strong Problem Reduction Principle
we find a mismatch between the output of the decomposition operator and the input
required by one of the recursive calls. In particular the recursive call corresponding
to H in the scheme expects input A[1..n] where n may vary, whereas it receives
A[mid +1..n] from Decompose. This mismatch suggests that we modify the
specification 1D-MAXSUMI so that the lower bound on the range of the input
array may vary:

ID-MAXSUMB3(A[i..m]) = best such that

k
i=m = best= max Y A[p]

isj=ksmp=j

Now we are obliged to generalize the decomposition operator also, since the input
domain has changed. Let decompose(Ali..m])=(A[i.. mid], Almid+1..m})
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where mid = (i+m)/2. Again since the decomposed inputs have the same type as
the initial input let both of the component operators be recursive calls to
1d-Maxsum3. Setting up an instance of (1) we have

Decompose(A[i.. m]) =(A[i.. mid], A[mid +1 . . mlyamid = (i+m)/2

k k
Abesty= max Y A[p] a best,= max 2 Alp]

isjsk<smid p=j mid+1=sjsksm p=j
k
A Ocompose( besty, best,, best,) => besty= max ¥ Al p]. (4)
isjs=ksmp=j
Next we attempt to derive an input/output relation for the composition operator
by reasoning backwards from the consequent of (4) to a relation over the variables
best,, best,, and best,.

k
beaty= max Y A[p]

i<j=k=m p=j

=max( max iA[p], max iA[P],

isjsksmid p=j mid+l<jsk<smp=j
mid J
max ) A[p]+ max Y Alp]
isj=mid p=j mid+1sj<m m=mid+]

mid j
=max<best,,besiz, max ) A[p]+ max )3 A[p]).

ij=mid p=j mid+1=js=m m=mid+1
The resulting derived relation is expressed not only over best,, best,, and best,, but
also over the complex expressions

mid J
max ) A[p] and max Y Alpl
isj=smid p=j mid+1<jsm m=mid-+1

These sums compute the maximum sum over all subarrays starting at the left and

right ends of the input array respectively. Since the only information that Compaose

has available to it is the output of the recursive calls, namely best, and best,, this
suggests that we add new output variables to the specification 1D-MAXSUM23:

I1D-MAXSUMA4(A[i.. m]) =left, best, right) such that

j k

J
ism = left=max ) A[p] A best= max Y A[p]

isjsmp=i isjsk=mp=j
m
A right = max Y A[p].
isjsmp=j
Carrying out the derivation this time results in the following input/output relations
for the composition operator:

mid
Iefto:max<lef11, z A[p]+left2),
best,=max(best,, best,, right, + left,),

rightozmax<right2,right1+ Y A[p]).

m=mid-+1
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Alas, there is yet another complex expression in these derived relations which
computes the sum of all elements in an input array. Adding another output variable
to the 1D-MAXSUMA4 specification results in the strengthened specification:

1D-MAXSUMS(A[i.. m]) = (left, best, sum, right) such that

j K
i=m = left=max Y A[p] A best= max ) A[p]

isjsmp=i isjsksmp=j

A sum=Y A[p] A right= max } A[p]

p=i i=jsmp=j
Carrying out the derivation this time results in the following output relations for
the composition operator:
left, = max(left,, sum, + left,), best, = max(best,, best,, right, + left,),
SumMy = sum, + sum,, right, = max(right,, right, + sum,).

The control predicate and primitive operator are derived as in the previous example.
The resulting algorithm is
1d-Maxsum5(A[i..m]):=
ifi=m
then 1d-MaxsumS5:= (A[i], A[{], A[i], ALi]
else begin
{left,, best,, sum,, right,)'= 1d-Maxsum5(A[i.. (i+m)/2]);
(left,, besty, sum,, right,):= 1d-MaxsumS(A[((i+m)/2)+1..m]);
1d-Maxsum$ = (max(left,, sum, + left,),
max(best,, best,, right, + left,),
sum, + sum,, max(right,, right, + sum,))
end.
To use 1d-Maxsum5 to solve ID-MAXSUM we simply select the second component
of the tuple returned by 1d-MaxsumS5.
Since the decomposition and composition operators take constant time, the time
complexity of 1d-Maxsum5 can be described by the recurrence relation

o(1) ifn=1,
T(n)= .
2T(n/2)+0O(1) ifn>1,
which has solution T(n)= O(n). However since the recursive calls are independent
of each other, they can be computed concurrently. In parallel 1d-MaxsumS5 has time
complexity
O(1 ifn=
T(n)={ (1) ffn L
T(n/2)+0(1) ifn>1,
which is T(n) =O(log n).
Further speedups are possible for this algorithm. For a fixed input size applica-

tion a bottom-up version of 1d-MaxsumS5 could be implemented in hardware. The
recursion can be repeatedly unfolded resulting in a complete binary tree with the
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processing of individual array elements taking place at the leaf nodes and composi-
tion operations taking place at the internal nodes (Fig. 1(a)). Each leaf node receives
an element of the array and solves it according to the base case of the recursion
(Fig. 1(b)). Each internal node passes up to its parent the composition of the solutions
passed up from its two children (Fig. 1(c)). Notice that inputs are supplied to the
bottom of the tree and the solutions come out the top. There is no need to wait for
the solution to one input to come out before supplying another input to the leaf
nodes. If we should need to process a succession of input arrays then a processing
structure of this kind could be pipelined. Each level of the processing tree would
be working on one input array. The time between the appearance of the solutions
to successive inputs is just the time it takes to pass the computation up one level
of the tree. Since the internal processing nodes take constant time, the net time
between the appearance of successive solutions is a constant.

(a)

best

Al Al2) An)

left sum best right
] !

1 ] | I 1 1 T T
Ieﬂ1 sum, best, right, left,  sum, best, right,

Fig. 1(a). Bottom-up computation of 1d-MaxsumS5. (b) Primitive operator. (¢) Composition operator.
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4. Deriving a balanced divide-and-conquer algorithm for 2D-MAXSUM

The above derivations provide an approach to solving the two-dimensional version
of the MAXSUM problem. It is specified by

2D-MAXSUMI(M][1..n,1..n])= best such that

bood
l<sn = best= max 3 Y M(p,q).

Isasbsnp=ag=c
Issc=d=n

That is, given a nonempty matrix M, find the maximum sum over all rectangular
subregions of M. Since an nxn matrix has O(n*) rectangular subregions and
summing each subregion takes O(n®) time, there is a straightforward enumeration
algorithm which runs in O(n®) time. A better idea is to create a balanced divide-and-
conquer algorithm based on alternately dividing the matrix horizontally and verti-
cally into two submatrices as in Fig. 2. Another essentially equivalent approach is
to decompose an n X n matrix into four n/2x n/2 submatrices. The first choice of
decomposition operator soon leads us to generalize the specification to variable
upper and lower bounds along both dimensions of the input matrix:

2D-MAXSUM2(MT[i..j, k.. m]) = best such that

b d
isjaksm = best= max Y Y M(p,q).

isasbsj p=aq=c
k=scsd=sm

When the formal manipulations are carried out the need arises to introduce more
variables into the output of the problem. In addition to best, the cost of the least
cost rectangular subregion of the matrix, we need (see Fig. 3):

K m Kk m k B m

i ] i

Fig. 2. Decomposing a matrix.

g
? [

|
o

Fig. 3. The output of 2d-Maxsum3.

O




Applications of a strategy for designing divide-and-conquer algorithms 225

(1) matrices N, E, S, and W (North, South, East, and West respectively) where,
for example, N(c, d) is the least cost rectangular subregion extending between
columns ¢ and d, and from the top row downwards;

(2) matrices NE, SE, SW, and NW (NorthEast, etc.) where, for example,
NE(a, c) is the sum of the rectangular subregion ranging from the upper left corner
of the matrix down to row a and out to column c;

(3) matrices R and C (Row and Column respectively) which give the sums of
the horizontal and vertical bands of the matrix. For example, R(a, b) is the sum of
all the elements in rows a through b inclusive.

The resulting specification is

2D-MAXSUM3(MJi..j k.. m])
= (best, NE, N, NW, W, SW, S, SE, E, R, C)
such that isjak=<m

b d
= best= max Y Y M(p,q)

isasb=sj p=ag=c
k=csd=sm

b c
AVa blisasbsj = W(a,b)= max Y Y M(p, q)

k<csmp=ag=k

NE(a,b)= max 3 3 M(p,q)

k=cs=mp=ag=c

b m
AR(a, b)= 3% ¥ M(p q)]

p=a qg=k

a d
AVedlkscsdsm = N(¢d)=max ¥ Y M(pq)

isasjp=ig=c

1 d
AS(d)=max § T M(p,q)

isa<jp=aqg=c
j 4
AClod)=3% T M(pq)]
p=iq=c
AVa,clisasjrk<csm

a <

= NW(a,c)=Y ¥ M(pq)

p=ig=k

A NE(a, ¢) =i ‘2 M(p, q)

p=ig=c

ASE(a,c)= i § M(p, q)

p=ag=c

ASW(a,c)=i ZC: M(p, q)].

p=aq=k
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The composition operator for a horizontal split has the form (using subscript i to
denote the outputs produced by solving submatrix i of the initial matrix and letting
=i+j/2):

best, = max(best,, best,, max (S,(c,d)+ Ny(c,d))),

kscsd=m

Nole, d)=max(N,(c,d), C,(¢,d)+ Ny(¢,d)) Ve dikscsd=m,

E\(a,b) fisasb=a,
E()(a’ b) = maxkﬁ.c-\:m(SEl(aa C)+ NEZ(bs C)) lfls asa< b<.}a
Ey(a, b) ifatlsasbsj

(S, and W, are similar to N, and E, respectively),

R,(a, b) fisasb=<a,
RO(aa b): Rl(a, a)+R2(a+1, b) ifl$a$a<ij,
Ry(a, b) ifat+lsasbsj

(C, is similar to R,),

NE (a, ¢) ifisa<a,

NE =
ol@ ) {NEl(a, o)+ NEya,¢) ifa+i=a<j

(SE, SW, and NW are similar to NE).

The composition operator for a vertical split is analogous.

The complexity of the resulting algorithm, called 2d-Maxsum3, is figured as
follows. Let the original matrix be square and of size nx n. The computation of
best requires O(n>) time, Ny and S, require O(n?) time (each of n” elements requires
constant time, for a total of O(n?)), E; and W, require O(n’) time (some of the n’
elements require constant time and O(n?) elements require O(n) time, for a total
of O(n’) time), NE,, SE,, SW,, and NW, require O(n?) time (each of n’ elements
requires constant time, for a total of O(n?)), and R, and C, require O(n?®) time
(each of n? elements requires constant time, for a total of O(n”)). Thus the composi-
tion step requires O(n’) time. 2d-Maxsum3 decomposes its nx n input into two
subproblems each of size (n/2) x n. The decomposition takes constant time. So the
recurrence describing the complexity of 2d-Maxsum3 is

T(1, 1) =0O(1),

T(n, n)=2T(n/2, n)+0(n?),

T(n/2,n)=2T(n/2,n/2)+0(n%),
or simply

T(n, n)=4T(n/2,n/2)+0(n’)

which has solution T(n, n) = O(n’). Since any sequential algorithm requires O(n?)
time just to scan the input matrix, 2d-Maxsum3 may not be asymptotically optimal.
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However, to the author’s knowledge it is the fastest known sequential algorithm for
this problem.

A considerable speedup can be obtained by executing both the recursive calls
and the composition operation in parallel. Most of the elements in the output
matrices require constant time to compute, however there are several exceptions. A
computation such as

Eo(a, b)= max (SE(a, c)+ NE,(b, ¢))

can be computed in O(log n) time—in parallel compute each of the sums (SE,{a, ¢)+
NE,(b, ¢)) for k< c<m, then find the maximum sum in O(log n) time using a
tournament elimination structure. Another exception is best, which requires
maximizing over O(n?) sums. Using a structure similar to that for E,, best, can be
computed in O(log n*) = O(log n) time. One further factor which must be accounted
for is the cost of communicating data. Most of the inputs to the composition operator
are used only a constant number of times (thereby incurring constant communication
cost). Some however, such as R,(a, a) and NE(a, ¢), are used O(n) times thereby
incurring a O(log n) communication cost (each such datum is replicated via a
branching communication structure of height O(log n)). In sum, the cost of distribut-
ing the input data and computing output values for the composition operation can
be performed in O(log n) time. The recurrence for such a parallel implementation
is

_fom ifn=1,
T )‘{T(n/z)m(logn) if n>1

which is T(n) = O(log® n).

If we are interested in processing a sequence of matrices, as for example in
real-time image processing, then a bottom-up computation admits pipelining in a
manner analogous to the bottom-up computation of 1d-MaxsumS5 in Fig. 1. In order
to pipeline the composition operator care must be taken to add extra communication
structure so that all data flowing through the operator arrive synchronously at the
next level regardless of the kind of processing involved. With pipelining 2d-Maxsum3
can produce successive outputs at constant intervals.

Since the inputs and outputs of 2d-Maxsum3 are naturally 2-dimensional, one
possible way to realize this pipelined computation in hardware would be in terms
of a 3-dimensional structure. The input matrix would enter the ‘bottom’ plane and
the outputs would exit the ‘top’ plane. Fortunately the amount of data produced
and number of addition and maximization operations required are roughly the same
on each level of the tree-structured computation. In particular, at each level a total
of at most 11n> data are produced, and O(n’) addition and maximization operations
are performed. The need to perform O(n’) simultaneous additions at each level
would seem to be the main bottleneck in terms of the size of the planes. The third
dimension gives added flexibility to the routing of data communication lines at the
expense of a more difficult fabrication problem. While these requirements probably
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exceed our present technology, the speed and direction of research in fabrication
methods suggests that it may be feasible to construct special-purpose chips of this
kind in the near future.

5. Concluding remarks

One characteristic of our strategy for designing divide-and-conquer algorithms is
that each step can be precisely specified by a postcondition. This allows us to treat
certain kinds of failures to achieve the postcondition of a given step via contingency
rules associated with the strategy. We have presented and illustrated two such rules
in this paper. The two divide-and-conquer strategies which were implemented in
the CYPRESS system [9] included another example of a contingency rule. There
the failure to design a primitive operator (Step 5 in the strategy of Section 3) led
to the reformulation of the input condition of the initial specification. This rule was
used to automatically discover and supply missing input conditions.

The notion of modifying a specification based on difficulties which arise during
algorithm derivation has received prior attention. Manna and Waldinger [5] give
an example in the context of deriving a pattern-matching algorithm. Dershowitz [2]
provides a rule for strengthening a specification but does not provide conditions
under which it is useful to do so. Our technique of adding new output variables to
a specification is related to Paige’s finite differencing technique [6] and the notion
of strengthening the loop invariant during the derivation of while loops [4]. The
idea expressed in these references is to introduce a new variable, say C, whose value
is maintained equal to some complex expression e. This technique is primarily used
for optimizing a looping program. In contrast, our use of strengthening is intended
to facilitate design. Also, in the context of divide-and-conquer algorithms we are
able to specify more sharply the conditions under which strengthening is required
and how to go about doing it.

The MAXSUM problem originally emerged from an approach to pattern recogni-
tion devised by Grenander [3]. Bentley [1] presents a sequence of increasingly
efficient algorithms for the 1D-MAXSUM problem culminating in a iterative
algorithm similar to 1d-Maxsum?2-iter. Gries [4] formally derives a similar algorithm.
The sequence of derivations presented in this paper were undertaken in response
to Bentley’s challenge [ 1] to improve on the O(n®) time algorithm for 2D-MAXSUM.

One point of this paper is that we were able to use our formal design strategy to
derive algorithms which were previously unknown (1d-MaxsumS5 and 2d-Maxsum3)
and asymptotically faster than previously known algorithms (the parallel version
of 1d-MaxsumS5 and the sequential and parallel versions of 2d-Maxsum3). Another
point of this paper concerns the naturalness with which divide-and-conquer
algorithms can be transformed into a parallel format. Such transformations can
result in a tremendous reduction in time complexity. We showed how the linear
time 1d-Maxsum$ could be computed in logarithmic time in parallel and in constant
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time with pipelining, and how the O(n*) time 2d-Maxsum3 could be executed in
O(log® n) time in parallel and in constant time with pipelining.
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