
CSC: Criticality-Sensitive Coordination ∗

Pedro Szekely†, Marcel Becker‡, Stephen Fitzpatrick‡, Gergely Gati?,
David Hanak?, Jing Jin†, Gabor Karsai?, Rajiv T. Maheswaran†,

Bob Neches†, Craig M. Rogers†, Romeo Sanchez†, Chris van Buskirk?
† Information Sciences Institute, University of Southern California, 4676 Admiralty Way - Suite 1001, Marina Del Rey, CA 90292

‡ Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304
? Institute for Software Integrated Systems, Vanderbilt University, Box 1829, Station B, Nashville, TN 37235

1. Introduction

Our Criticality-Sensitive Coordination (CSC) agents are
designed to enhance the performance of a human-team
working together in uncertain and dynamic settings by mon-
itoring and adapting their plans as dictated by the evolu-
tion of the environment. Such situations model military sce-
narios such as a coordinated joint operations or enterprise
settings such as multiple-project management. Among the
many challenges in these situations are the large space of
possible states due to uncertainty, the distributed / partial
knowledge of current state and plan among the agents and
the need to react in a timely manner to events that may
not be in the original model. In fact, reaction alone is of-
ten insufficient as in environments where success depends
on completing sequences of coupled actions, one needs to
anticipate future difficulties and enable contingencies to al-
leviate potential hazards.

2. System Description

To deal with these challenges, the CSC agents are con-
structed with components that interact in a multi-tiered
manner with functionalities that operate in various time-
scales and reasoning domains. The system architecture is
depicted in Figure 1. The highest level of reasoning is per-
formed by three components: (1) the deliberative scheduler,
(2) the opportunistic scheduler, and (3) the downgrader. The
deliberative scheduler is triggered when it has been deter-
mined that a portion of the existing plan is anticipated to
fall below a certain likelihood of success. It then performs

∗ The work presented here is funded by the DARPA COORDINATORS
Program under contract FA8750-05-C-0032. The U.S.Government is
authorized to reproduce and distribute reports for Governmental pur-
poses notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of any of the above orga-
nizations or any person connected with them.

dynamic partial-centralization of the relevant agents and
nodes in the plan, extracts potential solutions and proposes
schedule modifications to remedy the problem. Due to the
complexity of this task and the nature of the anticipated fail-
ure, this process occurs over several decision epochs with
decision windows that begins slightly in the future. The
opportunistic scheduler performs schedule modifications in
the near-term. Using only local information, it is capable of
making decisions on a faster time-scale, and buffers the ex-
isting plan by utilizing free resources. This provides robust-
ness by increasing the probability of success and generating
opportunities to obtain higher quality outcomes. The down-
grader complements the previous two components by free-
ing resources both in the near-term and the future based on
the evolution of the system up to the present. The sched-
ule, estimates of system state and metrics of uncertainty
are kept in the state manager which communicates with the
state managers of other agents to distribute and collect lo-
cally visible and locally relevant information. The profiles
which capture both system state estimates, metrics of un-
certainty and potential solutions to problems are propagated
in a decentralized manner on the order of a single decision
epoch. Each agent has profiles and schedules both for itself,
for remote agents that affect it directly and for plan com-
ponents for which it is responsible. The local schedule in-
formation is sent to an execution controller which interacts
with the environment. This component is isolated such that
it can operate at a much faster time-scale than the decision
epoch intervals, such that the agent can continue to func-
tion even under high computational burdens in other com-
ponents of the system.

3. Demo Description

The capabilities of the system and the complexities of
the problem are illustrated in a scenario where two sub-
teams, represented by CSC agents Alpha and Bravo, partic-
ipate in a three-phase joint project/operation. Intiially, they



STATE MANAGER

OPPORTUNISTIC
SCHEDULER

DELIBERATIVE
SCHEDULERDOWNGRADER

EXECUTION CONTROLLER

LOCAL
PROFILES

REMOTE
PROFILES

LOCAL
SCHEDULE

REMOTE
SCHEDULE

ENVIRONMENT / SIMULATOR

Figure 1. CSC Agent Architecture

agree to engage in Plan A, which involve each agent’s sub-
team performing certain activities at each phase. However,
they can fall back to Plan B, which involves different activi-
ties at each phase, if needed. The activities are not indepen-
dent as one may need to perform a certain activity in an ear-
lier phase to have the option of performing an activity in a
later phase. Thus, the necessity of anticipation in the pres-
ence of uncertainty. A depiction of an evolution is shown
and discussed in Figure 2.

Without CSC, the initial plan can be undermined in many
ways. A delay of an activity in Phase 1 cascades the delay on
to Phase 2 implying a high chance of failure. While Phase 2
might succeed despite the failure of a single activity within
it, Phase 3 will be completely damaged due to dependen-
cies of activities across multiple phases. However, the var-
ious components of CSC interact to allow adverse circum-
stances to be ameliorated with ease. The state manager for
the agent will detect in Phase 1 itself that the probability of
success for activities in Phase 3 have fallen below critical
levels and will instantiate dynamic partial-centralization by
calling the deliberative scheduler. The deliberative sched-
uler will then consider alternatives, in this case Plan B, and
install new activities in the second phase and third phase.
The downgrader frees up the resources in Phase 2 that were
operating under the directives of Plan A, such that they are
available for Plan B to execute. Finally, the opportunistic
scheduler utilizes resources that were freed up in Phase 3
(by the downgrader) to add an activity that enhances the
quality of the solution.

4. Starfields

One of the unique and extremely beneficial aspects of
CSC is the vast suite of tools (referred to as starfields) avail-
able for visualizing various components and the evolution
of the system. These tools offer the ability to observe be-
havior at a macro-level. This helps a user quickly and ac-
curately gauge system behavior and also provides the abil-
ity to isolate individual components at particular instants
in time which is an invaluable aid in debugging. A snap-

Figure 2. Two-Agent Three-Phase Example

Figure 3. CSC Starfields

shot of selected starfields is displayed in Figure 3. A key
functionality of starfields is the ability to play back any evo-
lution in time to observe the system at chosen instants. This
allows a user to identify exactly when and how the sys-
tem identifies and resolves problems. Another key fea-
ture is the ability to search and cross-reference activities
and plan components, which offers the capability to iso-
late an activity in multiple starfields and see how it couples
with activities in other phases of the plan. The starfields fa-
cilitated rapid modification, development and debugging
in addition to aiding in the understanding of the underly-
ing problem which becomes difficult to grasp as the scale
becomes large. A movie of the demonstration can be down-
loaded from http://www.isi.edu/∼szekely/csc/aamas06/csc-
demo-v01.html.


