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Abstract. The Proteus language is a wide-spectrum parallel program-
ming notation that supports the expression of both high-level architecture-
independent specifications and lower-level architecture-specific implementa-
tions. A methodology based on successive refinement and interactive experi-
mentation supports the development of parallel algorithms from specification
to various efficient architecture-dependent implementations. The Proteus sys-
tem combines the language and tools supporting this methodology. This paper
presents a brief overview of the Proteus system and describes its use in the
exploration and development of several non-trivial algorithms, including the
fast multipole algorithm for N-body computations.

1. Introduction

Practical implementations of parallel algorithms that access the performance
potential of current computers are difficult to develop, too often fail to deliver the
expected performance, and lack portability to other platforms. This state of affairs
may be explained by the proliferation of parallel architectures and the simultane-
ous lack of effective high-level architecture-independent programming languages.
Parallel applications are currently developed using low-level parallel programming
notations that reflect specific features of the target architecture (e.g., shared vs.
distributed memory, SIMD vs. MIMD, exposed vs. hidden interconnection net-
work). These notations lack portability across architectures and are too low-level
to support the exploration of complex designs. Higher-level notations, on the other
hand, trade reduced access to architecture-specific features for improved abstract
models of computation, but this trade is often not the right one: the whole point
of parallelism, for most applications, is performance.

The problem is a fundamental one: abstract models of parallel computation lead
to impractical implementations, whereas machine-specific models lead to intractable
analysis of even the simplest programs. The goal of our work is to provide tools
for exploring the design space of a parallel application by a process of prototyping
and successive refinement.

The Proteus system comprises:
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• a wide-spectrum parallel programming notation that allows high-level ex-
pression of specifications,

• a methodology for (semi-automatic) refinement of architecture-independent
specifications to lower-level programs optimized for specific architectures,
followed by translation to executable low-level parallel languages,

• an execution system consisting of an interpreter, a Module Interconnection
Facility (MIF) allowing integration of Proteus with other codes, and run-
time analysis tools, and

• a methodology for prototype performance evaluation integrating both
dynamic (experimental) and static (analytical) techniques with models
matched to the level of refinement.

We believe that, in the absence of both standard models for parallel computing
and adequate compilers, this approach gives the greatest hope of producing useful
applications for today’s parallel computers. It allows the programmer to balance
execution speed against portability and ease of development.

This paper gives a brief overview of the Proteus system and experiences with
its use. In the next section, we describe the Proteus programming language in
more detail. Section 3 then discusses the methodology and environment. Section 4
reviews some of our experiments with the system. Finally, we conclude in Section 5.

2. Proteus Programming Notation

Proteus is a small imperative language with first-class functions, aggregate data
types, and constructs for data and process-parallelism. The language is described
in detail in [15].

The sequential core of Proteus includes features of proven value in specifying
sequential programs. Experience with specification languages such as Z and VDM
and prototyping languages such as SETL and APL indicates that an expressive
set of predefined aggregate types are a key requirement for rapid, model-based
prototyping; Proteus includes two such types, sets and sequences. In addition,
the expression sub-language of Proteus is a strict higher-order functional language,
allowing many algorithms to be written without resorting to imperative constructs.
The sequential portion of the statement sub-language is standard.

This sequential core is extended with a few highly-expressive concurrency con-
structs, carefully chosen to support programming in most paradigms. We distin-
guish between two means of expressing concurrency: functional data-parallelism
and imperative process-parallelism. Data-parallelism refers to the repeated appli-
cation of a fixed operation to every element of a data aggregate, while process-

parallelism denotes the parallel composition of two or more distinct processes.

2.1. Data-Parallelism. To support data parallelism, a language must provide
aggregate values (such as sets or sequences) and the ability to apply functions
independently on every element. This sort of expressive capability is found in the
relative comprehension construct of set theory. For example {f(x) | x ∈ A} denotes
the set of values obtained by evaluating the function f on each element of set A.
The potential for concurrency arises from the fact that these evaluations of f are
independent.

In set theory, arbitrary functions are allowed in comprehensions, including set-
valued functions that may themselves allow data parallelism. Thus if A is the set
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{1, 2, 3} then {{(p, q) | (q ∈ A) ∧ (p ≥ q)} | {p ∈ A}} denotes the set

{{(1, 1)}, {(2, 1), (2, 2)}, {(3, 1), (3, 2), (3, 3)}}.

Parallel execution of such expressions is termed nested parallelism because for each
choice of p, there is a “nested” set of choices for q that may be evaluated in parallel.
Nested parallelism gives rise to a great potential for concurrent evaluation since the
number of independent sub-expressions can be very large.

The Proteus iterator construct captures the essence of comprehensions. For
example, if A and B are sequences of length n, then the iterator expression

[ i in [1..n]: A[i] + B[i] ]

specifies the sequence

[A[1]+B[1], A[2]+B[2], . . . , A[n]+B[n]].

Note that unlike comprehensions, the bound variable of an iterator is written first,
improving the readability of long expressions.

Nested parallelism is widely applicable, as we demonstrate here by writing a data-
parallel quicksort algorithm (adapted from [3]). Recall that given a sequence, quick-
sort works by choosing an arbitrary pivot element and partitioning the sequence
into subsequences (lesser, equal, greater) based on the pivot. The algorithm is
then applied recursively on the lesser and greater subsequences, terminating when
the sequences are singletons or empty. The final value is obtained by concatenating
the (sorted) lesser, equal and greater lists. In Proteus, this may be coded as:

function qsort(list)

return if #list <= 1

then list; — if empty or singleton

else let

greater = arb(list);

lesser = [el in list | el < pivot: el];

equal = [el in list | el == pivot: el];

greater = [el in list | el > pivot: el];

sorted = [s in [lesser, greater]: qsort(s)];

in

sorted[1] ++ equal ++ sorted[2];

While there clearly is data-parallelism in the evaluation of the lesser, equal and
greater, if that were all the parallelism that were available, then only the largest
sub-problems would have any substantial parallelism. The key to this algorithm
is that the recursive application of qsort is also expressed using an iterator. As
a consequence, all applications of qsort at a given depth in the recursion can be
evaluated simultaneously.

An important quality of nested sets and sequences (as opposed to arrays) is that
they allow irregular collections of values to be directly expressed. In qsort, for
example, lesser and greater will likely be of different lengths. Note that this
algorithm cannot be expressed conveniently in languages such as High Performance
FORTRAN, in which all aggregates must be rectangular and non-nested.

The utility of nested data-parallelism has long been established in high-level
languages like SETL and APL2. Blelloch [3] showed that nested and irregular
data-parallelism can be vectorized. We have developed a set of transformations
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that translate Proteus data-parallelism to the portable low-level vector model CVL
[24, 2].

2.2. Process-Parallelism. Proteus provides a minimal set of constructs for the
explicit parallel composition of processes which communicate through shared state.
More sophisticated concurrency abstractions, such as buffered communication chan-
nels and monitors, may be constructed from these.

2.2.1. Process Creation. Process parallelism may be specified in two ways. The
static parallel composition construct

statement1 || statement2 || . . . || statementn;

specifies the process-parallel execution of the n statements enumerated. The life-
time of the processes is statically determined; the construct terminates when all
component statements have completed. Static process-parallelismmay also be spec-
ified parametrically using the forall construct:

forall variable in aggregate-expression do statement ;

which may be freely intermixed with the enumerated form, as in the following
example.

{forall j in [1..n] do server(j);} || master(n);

Dynamic process parallelism, on the other hand, generates a process whose life-
time is not statically defined. The spawn construct:

|> statement

starts asynchronous execution of a child process to compute statement and imme-
diately continues.

2.2.2. Memory Model. In order to control interference from parallel access, we make
the provision that all variables outside the local scope of the parallel processes are
treated as private variables. When a process is created, it conceptually makes a
copy of each of the non-local variables visible in its scope; subsequent operations act
on the now local private variables. Static processes interact by merging their private
variables into the shared state at specified barrier synchronization points [19]. The
merge statement

merge v1 using f1, v2 using f2, . . . ;

specifies a synchronization point which must be reached by all other processes
created in the same forall or ||-statement. At this barrier, the values of updated
private variables (vi) are combined to update the value in the parent process and
this value is then copied back to all children. The default combining function is
arbitrary selection of changed values, although a user-defined function (fi) may be
specified as shown above. A merge implicitly occurs at static process termination.
In implementation, it is not necessary to make a complete copy of the shared state;
efficient implementations of this memory model are possible [13].
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2.2.3. Shared Objects. Communication and synchronization between dynamic pro-
cesses is more generally provided within the framework of object classes through
three simple techniques.

First, object references are the mechanism for sharing information: a process
may interact with another process if both have a reference to the same (shared)
object. Object values are always references; only method-invocation dereferences
such values. Under this scheme the private memory model and merge mechanism
will apply uniformly to variables, whether they hold object references or private
values.

Second, controlled access to shared state is provided through constraints on the
mutual exclusion of object methods. The class definition specifies how to resolve
concurrent requests for execution of methods of an object instance through the
schedule directive:

schedule method1 # method1, method1 # method2 , . . . ;

which specifies that, for each object which is an instance of that class, an invocation
of method1 must not execute concurrently with any other invocations of method1
or method2 (in other words they must not overlap). Intuitively, the construct #

denotes conflict, and is used to control competition for resources. For example, we
may define a class, parameterized by type t, which permits multiple readers and a
mutually exclusive writer as follows:

class shared reader (t) {
var read: void->t;

var write: t->void;

schedule read # write, write # write; — exclusive writes

};

Third, we provide a number of predefined shared object classes. The class sync
provides a simple way for one process wait for another to reach a given point or to
provide a result. Intuitively, a sync object x consists of a datum that in addition to
having a value is also tagged with an “empty/full” bit, initially empty. Any process
attempting to read an empty datum (through the method x.read) is suspended
until the value is filled, or “defined”, by another process (through the method
x.write). In addition, a process may inquire whether x is full or empty without
blocking (through the method x.test). Sync variables may be set only once; that
is, they possess a single-assignment property.

The sync class in conjunction with the |> construct can be used to wait for
and obtain the result of an asynchronously spawned function, much like a multilisp
future. The |> construct causes the spawned function to write a value of type sync
when it completes. For example, given a function f :int->int, then

{var x:sync(int); x |> f(y) ; . . . ; z := x.read; }

spawns f(y) and invokes x.write with the result. If x.read is attempted before f
has completed, the caller is suspended until the value is available.

The class shared(t) provides mutually excluded access to a value of type t.
Other predefined synchronization classes are being considered. For example, meth-
ods can be based on so-called linear operators investigated in [16]. Linear operators
(as methods in a linear class) generalize the sync methods to model shared data as
a consumable resource. In a linear object, the read method blocks until the object
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is defined, at which point the value is consumed and reset to empty; the write
method waits until the object is undefined and then produces, or sets, the value.
Linear operators succinctly model message-passing in a shared-memory framework,
and moreover can be used in user-defined classes to build higher-order abstractions
such as buffered channels.

Related work on concurrent languages which embody the notion of sync variables
includes Compositional C++ [7] and PCN [6]. We differ significantly from these
efforts in our use of explicit operators for synchronization and the casting into an
object framework. Our schedule construct bears resemblance to the “mutex” meth-
ods of COOL [5] (which however exclude only concurrent invocations of a single
method). Our linear operators attempt to achieve the goals of CML [26] in support-
ing the construction of composable high-level concurrency abstractions, but instead
of making closures of guarded commands we combine primitive operators similar
to those found in Id’s M-structures [1] with guarded blocking communication.

3. Program Development Methodology and Tools

Starting with an initial high-level specification, Proteus programs are developed
through program transformations which incrementally incorporate architectural de-
tail, yielding a form translatable to efficient lower-level parallel virtual machines.
We differentiate between elaborations, which alter the meaning of a specification,
and refinements, which preserve the meaning of the specification but narrow the
choices for execution. Elaboration allows development of new specifications from
existing ones. We also define translation to be the conversion of a program from
one language to another. The formal basis of our work is described in [10]; of other
work on program transformation, our approach is closest to the “step-by-step” re-
finement approach of [29]. The relation to software development issues unique to
high-performance computing is described in [18].

Refinement of Proteus programs includes standard compiler optimizations like
constant-propagation and common sub-expression elimination. It has been the re-
finement of constructs for expressing concurrency, however, that most interest us.
Such a refinement restricts a high-level design to use only constructs efficiently
supported on a specific architecture, presumably improving performance. Since the
refined program remains in the Proteus notation, the Proteus programming envi-
ronment can be used to assess the functionality and performance of the restricted
program.

Programs that are suitably refined in their use of the Proteus notation can be au-
tomatically translated to efficient parallel programs in low-level architecture-specific
notations. These programs can then be run directly on the targeted parallel ma-
chines. Changes in the specification or in the targeted architecture can be accom-
modated by making alterations in the high-level Proteus designs and “replaying”
the relevant refinement and translation steps.

The Proteus prototyping environment is designed to support this framework.
Many substantial software tools are needed to achieve this end. Of course, pro-
gram modification must be supported with transformation and compilation tools,
targeted to a number of intermediate virtual machines. However, to support ex-
perimentation, rapid feedback is necessary; thus we have implemented a highly
interactive language interpreter with performance measurement tools. To allow
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integration with existing codes we also provide a module interconnection facility.
Finally, a program repository is required for version control. The entire system is
depicted in Figure 1, and the key components are described next.
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Figure 1. The components of the Proteus System

3.1. Modification. The techniques used to compile programs for efficient parallel
execution are complex and evolving. Currently, elaboration is a manual process;
refinement is automated with respect to particular goals; and translation is fully au-
tomated. We use the KIDS system and related tools from the Kestrel Institute [28]
to translate subsets of Proteus language constructs.

The automated refinement strategies are defined to yield Proteus code that pre-
serves the meaning of the code, but in a form that is either more efficient (as a
result of high-level optimizations), has increased capabilities for parallelism (au-
tomatically extended code), or is more suitable for translation (certain subsets of
Proteus notation are more efficiently translatable than others).

Of all our efforts, the translation of data-parallel Proteus code to the parallel
virtual machine provided by CVL is the furthest along. The steps of the transla-
tion process are shown in Figure 2. First the Proteus program is parsed using a
translator built using a parser shared with the Proteus interpreter. The presence
and consistency of type declarations is checked and compliance with the subset
restrictions is checked. Then the Proteus program is translated to an intermediate
notation that can easily be manipulated by the Kestrel system. The program is
then vectorized using source-to-source transformations (iterator elimination). Fi-
nally the code is translated into C with nested sequence operations. This process
is described in detail in [24].

The C Vector Library (CVL) [2] implements operations on vectors of scalar val-
ues. CVL provides a consistent interface for vector computation on a variety of
parallel architectures, allowing Proteus code to be run today on workstations, the
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Figure 2. Translation of Proteus programs to parallel (vector) code

Connection Machines CM2 and CM5, the Cray Y-MP and C90 and the MasPar
MP1 and MP2. To simplify our transformations of Proteus code we have imple-
mented an intermediate abstract machine that supports nested sequences and the
operations necessary to manipulate them. This Data Parallel Library (DPL) [23]
is built using operations in CVL and, thus, is also highly portable.

We are investigating transformations for refining Proteus to other parallel virtual
machines, implementing asynchronous parallelism with shared or distributed mem-
ory. For multi-processor shared-memory computers, we intend to rely on POSIX
threads, whereas for heterogeneous message passing systems, we intend to rely on
PVM (Parallel Virtual Machine) [9] or MPI (Message Passing Interface) [20].

3.2. Execution. For rapid feedback during development, an interpreter for the
language is provided. The interpreter does not require variable and type decla-
rations, speeding code development time and encouraging experimentation. This
gives the developer some leeway during development, with subsequent refinement
steps adding declarations as necessary. The interpreter runs sequentially, simulat-
ing parallel execution, including the effects of private memory and unpredictable
ordering of execution.

3.3. Performance Analysis. A performance model provides a basis for predict-
ing the performance of a program. It is difficult to define an accurate model for
high-level code, but as code is refined, so is the performance model; increasingly
detailed models become necessary as program refinement progresses. In addition,
different models are appropriate for code segments following different paradigms,
such as data-parallelism and message-passing.

The Proteus interpreter provides a rudimentary per-process clock that measures
computational steps. This, in conjunction with explicit instrumentation of Proteus
code is used to develop rough resource requirement measures and to predict per-
formance at the higher design levels. However as the program is refined we would
like to be able to include more accurate measures of the effects of locality and
communication in our experimental and theoretical analyses.

Our methodology for performance prediction is to use, as program refinement
progresses, increasingly detailed parallel computational models. The accuracy and
confidence of assessment thus increases as the level of architectural detail incorpo-
rated into the program increases. Moreover, to support the assessment of multi-
paradigm programs we use different models for analysis of code segments following
different paradigms, such as the vram [3] for data-parallelism and LogP [8] for
message-passing, with suitable instrumentation to “attach” the model to the pro-
gram. Support for such multiple refined performance-prediction models is under
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development.

3.4. Module Interconnection Facility. A Module Interconnection Facility
(MIF) provides the ability to connect programs written in different languages, pos-
sibly running on different machines (Polylith [25] is one such system). The Proteus
programming system provides a limited MIF capability giving developers the power
to build upon, rather than ignore, previous coding efforts. It also provides an inter-
face for interpreted Proteus code to interact with the code produced by translation
of some portion of the prototype. The Proteus MIF provides the interpreter with
access to high-performance computers and a mechanism to gradually migrate codes
between execution models.

3.5. Repository. A natural consequence of prototyping and refinement is that
a derivation tree of programs is made explicit. A history of the transformation
activities that created this tree can be kept, not only for reference purposes, but as
a basis for re-deriving the program with the same transformation strategies when
an ancestral version is changed.

We have such a repository at two levels. First, we keep a version-controlled,
tree structured library of the various versions of the prototype. Second, within the
KIDS system, all transformations and intermediate results are recorded. From a
derivation history window any prior state can be restored by a mouse click, and
a new branch of a derivation started. Also there is a replay capability that can
replay steps on a modified program using some simple heuristics for maintaining
an association between the old program and its modification. This capability has
been useful more as a debugging aid and a system development tool than as a tool
to explore the design space for a target problem. The reason is that the KIDS
refinements are automatic and hence there are no derivation alternatives in this
phase of refinement to explore nor any use for replay on an modified program
(which can always be refined automatically). Nonetheless this has proved to be a
very useful tool on problems which require manual selection of refinements.

4. Examples

Several small demonstrations and larger driving problems have been used to
examine, assess and validate of our technical approach, including such aspects as the
prototyping process and methodology, the expressiveness of the Proteus language,
and the effectiveness of the Proteus tools. This section describes prototype solutions
for N -body calculations using the fast multipole algorithm and several solutions for
a geo-server, a problem proposed by the Navy to better understand the usefulness
of prototyping.

4.1. N-Body & FMA Calculations. A particularly interesting project is our
work prototyping the fast multipole algorithm (FMA), an O(N) solution to the
N -body problem [17, 22]. This is a problem of extreme practical importance and a
key component of several grand-challenge problems.

The foundation of the FMA prototype is the description of the algorithm by
Greengard [11], where solutions in two-dimensions using uniform and adaptive spa-
tial decomposition strategies are described, followed by a much more complex al-
gorithm for a uniformly decomposed three-dimensional solution. Greengard’s 3D
algorithm decomposes space in a hierarchical manner, using an oct-tree of smaller



10 GOLDBERG, MILLS, NYLAND, PRINS, REIF, AND RIELY

and smaller cubic regions to represent the simulation space. It has phases that
sweep sequentially up and then down the oct-tree, with independent work for all
the nodes at a given level.

Many others have developed parallel solutions for the FMA [14, 30, 27], but
none have explored adaptive parallelization for arbitrary non-uniform distributions
in 3D. The reason is extreme complexity of the mathematical, algorithmic, and data
decomposition issues. In our work, we developed several prototypes of the 3D FMA
using Proteus, to explore parallelism issues and spatial decomposition strategies.

4.1.1. Process-parallel FMA Prototypes. An initial process-parallel prototype was
written that reflected a uniform depth spatial decomposition. This prototype was
then further refined to accommodate the adaptive structure outlined by Greengard;
it consists of an adaptive oct-tree where decomposition of each sub-cube continues
until some threshold is reached (fewer than k bodies per cube).

Some definitions had to be extended for the adaptive 3D solution. In Green-
gard’s description of the 2D solution, square regions in the plane are categorized as
“adjacent” or “well-separated” with respect to one another. However, in 3-space
there are some regions that are neither adjacent nor well-separated, so the defini-
tions must be subtly extended. The extensions are not obvious, but Proteus made
it simpler to develop and verify them.

4.1.2. Data-parallel FMA Prototypes. Further prototyping led to a comparison of
work performed by data-parallel versions of the uniform and adaptive algorithms.
These versions not only allowed us to look at the differences between explicit and
implicit parallelism, but also allowed us to examine the expressiveness of the data-
parallel subset of Proteus slated for vector execution.

In the data-parallel implementations of the FMA, it was not only possible but
almost a requirement to specify the algorithm with nested sequence expressions. For
instance, each region at a particular level (of which there are 8level) must generate
a new expansion based on neighbor, child or parent expansions (depending on the
phase). In this setting, an expansion is a truncated polynomial (over two indices) of
complex coefficients. Nested iterators express the calculations on all of the regions
and all of the interacting expansions over all of the coefficients of the expansions
quite succinctly. The high-order functions in Proteus were of great benefit, allowing
the definition of a function for adding two expansions, and then using that function
as a reduction operation over a sequence of expansions (such as in the operation
where all of the lower-level expansions used to create a higher-level expansion).

The adaptive variant of the algorithm developed using Greengard’s description
seemed inadequate for achieving good parallelism and maintaining reasonably sized
data structures. The deeper levels of the spatial decomposition become sparse, and
it is difficult to have a data structure that supports both dense and sparse data.
In addition, much of the parallelism is gained by performing all of the calculations
for a given depth at once, so sparse levels in the decomposition tree lead to less
concurrency. Proteus has map data types (from any domain-type to range-type)
which were used for the sparse data structures in the prototypes, but refinement
of maps to data-parallel execution must be performed manually. An alternative
decomposition was sought to alleviate these problems.
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4.1.3. An alternative adaptive decomposition. If, instead of splitting the space in
half (or equal octants), the space is cut such that an equal number of bodies end
up in a region (a median-cut decomposition), then several characteristics change.
First, the depth of the decomposition is the same everywhere. Second, the number
of bodies in each region is the same (±1). Third, the decomposition data structure is
dense, allowing the use of sequences instead of maps. The data-dependent nature
of this variant yields non-cubic varying-sized regions (but still rectangular), and
calculating which regions interact in what manner requires re-examination. Once
again, the changes are subtle, but the high-level nature of Proteus allowed rapid
exploration and discovery to yield a running program in short amount of time. The
result was a a variant of the FMA that performed less work overall and provides
greater parallelism due to the regular depth of the decomposition.

Figure 3. A uniform, variable depth adaptive, and uniform depth

median cut decomposition in 2-space.

A pictorial representation of the different decompositions is shown in Figure 3 in
two dimensions. The uniform decomposition is regular, the simplest to parallelize,
and the least applicable to non-uniform distributions. The variable-depth adaptive
decomposition is generated such that there is a limited population in each region
(square in the figure, cubic in 3-space). It performs better with non-uniform dis-
tributions, but has unbalanced depth, making it difficult to parallelize (since there
is an order imposed by level). The third decomposition is called median-cut, since
it cuts the space in half (in each dimension) such that there are equal populations
on each side of the cut. The population of each region is the same, and so is the
depth of the decomposition. The sizes of the regions are not predictable, nor are
the interaction lists (distinguishing near regions from far regions). The lists must
therefore be calculated (rather than looked up from precalculation), but this is not
a major part of the 3D simulation.

4.1.4. Execution of FMA Prototype. All variants of the FMA were developed using
the interpreter running sequentially. The interpreter simulates process parallelism
with its own notion of threads, and data-parallel operations are executed sequen-
tially. The data-parallel variants were refined to use the subset of Proteus that
is automatically vectorized. The size of the data-parallel prototype (which imple-
ments all 3 decompositions) is 477 executable lines of Proteus. The most compact
C implementation with which we are familiar consists of just under 2000 executable
statements, and this only implements the uniform spatial decomposition [12].

Developing the mathematical code for the 3D variants is extremely complex.
Fortunately, at the intermediate steps in the development, it was simple to make
comparisons with the direct (O(N2)) force calculations. By using a high-level
language in an interpretive environment, it is possible, for instance, to select a
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set of multipole expansions, evaluate them, and sum their results to compare with
the direct calculation without having to write another program. Each time a new
variant was explored, this type of comparison took place many times to avoid coding
errors.

The number of calculations for any instance of the FMA is enormous, one step
of a 1000 body simulation using the Proteus interpreter takes 108 minutes on a Sun
workstation. Fortunately, there are several well-defined functions within the FMA
calculations that could be developed as external code in a more efficient language.
By developing C code using the Proteus code as a guideline, 7 external functions
were developed. With these and the Proteus MIF, the high-level decomposition
strategy that controls the execution and manages the data stays in Proteus, while
the computationally intense code is written in C for much higher efficiency. By
exploiting this capability, one step of a 1000 body simulation can be run in under a
minute, giving quite acceptable performance for interactive algorithm exploration.

4.1.5. Conclusions from prototyping the FMA. The most important conclusion to
be drawn from prototyping the FMA is that many variants could be explored at
a high-level where decomposition strategies could be easily manipulated. The ex-
pressiveness and compactness is a major benefit; for example, the code to calculate
the region interaction lists is 45 lines in Proteus compared with 160 lines of C.

A previously undescribed variant of the adaptive 3D FMA was developed that
performs less work overall with more parallel execution. This was validated by
running all variants of the FMA and recording significant operations performed
by each. It is the high-level notation of Proteus that enables such exploration;
low-level specifications of the same algorithms would be far too complex to quickly
modify. The FMA development demonstrates algorithm exploration, migration
from prototype to efficient implementation (using refinement and the MIF), and
translation to parallel code. The effort is documented in [22].

4.2. Geo-server Prototype. Our effort in developing the Proteus system is one
of several projects in the ARPA/ONR ProtoTech program. As a member of the
community, our group participated with others in a demonstration effort to show
the capabilities of prototyping in a realistic environment—that of code development
for Navy ships to be deployed in 2003. An initial experiment was coordinated by
the Naval Surface Warfare Center (NSWC) in Dahlgren, VA. Each group agreed
that no more than 40 man-hours would be spent over a 2 week period, and each
group would submit their results at the end of that period. The NSWC challenge
problem, the geo-server, was quite naturally expressed in Proteus and developed
using the interpreter, and is documented in [21].

4.2.1. The geo-server problem. A high-level description of this problem can be
stated as follows: Given a list of regions and a changing (over time) list of radar re-
turns, compute and report the intersections of regions and radar returns. Not all of
the regions are fixed on the surface of the Earth, some are based upon the location
of a radar datum (the region around an aircraft carrier or airplane, for instance).
Each radar datum is a tuple consisting of an identifier, a location, a velocity vector
and altitude. The regions, or doctrines, have an identifier, a location, and a shape
(composed of a wide choice of shapes, such as arcs, circles, polygons). A pictorial
example is shown in Figure 4.
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Figure 4. An example of regions and radar data for the geo-
server prototype

The imagined environment for the geo-server is that it calculates the intersection
information, making it available to a strategic planning system (no judgment is
made about the importance of each intersection). This, of course, simplifies the
task, making it one component of a larger system.

There is a possibility that the amount of data for this problem may be large, on
the order of hundreds of regions and thousands of radar returns, thus the solution
should be applicable in such regimes. An algorithm that examines all pairs of
regions and radar returns may require too much time to execute in the short period
available.

4.2.2. Proteus solutions. Within the time limit of the exercise we were able to
explore three solutions:

• A straightforward sequential solution. It loops repeatedly, gathering in-
formation, performing intersection calculations, and posting results. This
allowed us to develop support routines for use in further prototypes without
regard to concurrency.

• A process-parallel version representing a pipelined calculation. The first
process gathers the data from the sensing devices, the second process re-
ceives that data and calculates the intersections, and the last process is a
display process, showing the results of the calculations.

• A data-parallel rewrite of the intersection calculation using a spatial decom-
position. Examining all pairs of radar data and regions is not a scalable
activity. Instead, we developed a spatial decomposition, assigning radar
data and regions appropriately, and then performing the intersection cal-
culation on the smaller problems. This solution is scalable, the execution
time goes up linearly with the total number of regions and radar data.

In the process-parallel implementations, the processes are running asyn-
chronously, reading and writing data to shared data structures, simulating a dis-
tributed database environment. Each process runs at a different speed, so a ‘clock’
process was introduced that distributes a ‘time’ value, allowing new data to be
posted at appropriate times. It simply scaled down the rate of the per-process
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clock; the amount of scaling was determined experimentally. We wanted to make
sure that each process had enough time to perform its calculation prior to the next
set of data becoming available. If the clock ran too fast, the data-gathering process
outran the intersection process, causing some data to be missed. The clock process
had to be adjusted downward as more functionality was added to the intersection
routine to ensure all necessary computations occurred. The reason for not making
the clock process run very slowly is that there is a small window between missing
some data and seeing it twice. If calculations must only be performed once, then
periodic scheduling will have to be done.

Our three related solutions showed rapid development of a parallel application.
We used both process- and data-parallelism for different parts of the problem,
finding success with both. The developed code was substantially smaller than
NSWC’s effort (in Ada), primarily due to the high-level nature of the language
and was well-accepted. One advantage we had, and made use of, is that Proteus
data values (sets, sequences, tuples) can be read directly, eliminating any need
to structure the data as it is read or written. The entire geo-server activity was
small and short, but many of the benefits found during this activity will save time,
coding effort, and bug elimination in larger projects due to the comparative ease
with which Proteus code can be developed.

4.3. Other efforts. Most of our experiments have been performed by Proteus
developers well acquainted with the language and the programming environment;
however, others are also using the system to develop parallel applications and to
predict their performance on various platforms. One such effort, by the medical
image processing group at UNC, is to develop sophisticated new parallel algorithms
for 3D image segmentation. In this case, the prototypes developed are operational
and have been invaluable in locating problems in the mathematics and the paral-
lelization of these algorithms. The Raytheon corporation also intends to use Pro-
teus in this fashion to explore the implementation of multiple hypothesis tracking
algorithms.

4.4. Conclusions from Experiments. Our results with the FMA clearly illus-
trate the utility of the prototyping methodology that we have defined. The parallel
algorithms with the best theoretical asymptotic performance may not be most
efficient for obtaining solutions on realistic problem sizes, due to costs and param-
eter limits not made explicit in the model supporting the preliminary design of
these algorithms. The FMA is particularly sensitive to this effect since it is an
asymptotically-optimal but highly complex algorithm. It has many variants which
generate a design space which to date is not well understood. The goal of our
experiments with Proteus is to explore this space. Our experiments have identified
new adaptive problem decompositions that yield good performance even in complex
settings where bodies are not uniformly distributed.

5. Conclusions

In the Proteus system, we stress the use of high-level specifications, the de-
velopment of implementations by successive refinement and translation, and early
feedback on designs through the use of executable prototypes.
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The ability to compactly specify a wide variety of parallel algorithms in an
architecture-independent fashion forms a convenient and comprehensible starting
point for the development activity that eventually leads to implementations for
different architectures. Our experience with the Proteus language has been that it
is well-suited for the construction of executable specifications and their successive
refinements.

Generally speaking, it is best to to avoid new languages whenever the equivalent
capabilities may be achieved by the introduction and implementation of appropriate
abstractions in widely used conventional languages such as C with libraries or C++
with classes. There are many hurdles to overcome for a new language: obtaining
a clean design, tool support, and most of all, wide-spread adoption. We believe
that the constructs and concepts needed in a wide-spectrum parallel programming
language of the sort we advocate here can not easily be expressed in current lan-
guages. Thus we have developed the Proteus notation, adding a few key concepts
to a standard base.

Automated support for refinement and translation of Proteus programs is less
far along, and thus it is premature to evaluate its strengths. In the development of
the FMA and other trial projects, we have relied on manual refinement to bridge
the gap from specification to subsets that can be automatically translated. The
individual refinement steps in these efforts had well-defined objectives and were
quite manageable. After each step, there was great value in executing the new
version to compare it with the previous version.

With respect to automated translation, our main effort thus far has been the
development of a translation that vectorizes arbitrary data-parallel expressions.
This is a non-trivial translation; only Nesl [4] and Proteus provide this capabil-
ity to date. We were able to use transformation tools from the Kestrel Institute
to rapidly implement this translation; these tools are capable of generating good
code and performing significant analysis. We are encouraged by this success, and
believe that the refinement and translation approach will allow us to incorporate
sophisticated compilation strategies relatively easily as they are developed in the
optimizing compiler community.

Prototyping is essential in the development of complex parallel applications. We
have started from the premise that information obtained through disciplined exper-
imentation with prototypes reduces risks and improves productivity. In the domain
of parallel computation, where design principles are not well understood, the knowl-
edge acquired from prototyping can be particularly valuable. However, without the
ability to migrate the prototype into an efficient implementation, the investment
required to produce a working prototype cannot often be justified. Therefore, we
emphasize the use of refinement as a means of evolving prototypes into production
code.
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