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Abstract

Data re�nement is the transformation in a program of one data type to another.

With the obvious formalization of nondeterministic data types in equational logic how-

ever, many desirable nondeterministic data re�nements are impossible to prove correct.

Furthermore, it is di�cult to have a well-de�ned notion of re�nement. We propose an

alternative formalization of nondeterministic data types, in which the requirement of

referential transparency applies only to deterministic operators. We show how the

above-mentioned problems can be solved with our approach.
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1 Introduction

Data re�nement is the transformation in a program of one data type to another. Data

re�nement has been approached by formalizing the semantics of abstract data types by

initial algebras[6], data type speci�cations by algebraic theories in equational logic[1], and

(correct) data re�nements by theory morphisms[5, 10]. Such formalization has the nice

property that, assuming abstract data type A is re�ned to abstract data type B, replacing

A by B in program P preserves the correctness of P [4].

Nondeterminism provides a convenient vehicle to avoid specifying all details of an im-

plementation prematurely. The stepwise re�nement of a speci�cation to an implementation

can be viewed as a process in which nondeterminism is gradually removed by making de-

sign decisions[12]. The semantics of nondeterministic data types has been formalized as

multi-algebras[7, 9], which essentially avoids nondeterminism by encapsulating it through

the medium of set construction. However, the straightforward formulation of nondetermin-

istic data type speci�cations as algebraic theories in equational logic makes many desirable

data re�nements impossible to prove correct.

Consider for example the re�nement of set to sequence[3]. It is desirable to re�ne

equality of set not to equality of sequence but to an equivalence relation of sequence, in

which sequences that are permutations of the same set are equivalent. Meanwhile, it is also

desirable to re�ne the nondeterministic choose operator of set, which chooses an element

from a nonempty set, to the head operator of sequence, which takes the �rst element of a

nonempty sequence. Obviously these two data re�nements cannot coexist in the presence of

referential transparency: x = y ! choose(x) = choose(y).

Data re�nements are often speci�ed as re�nement rules, which are formalized as equations

in data type speci�cations. For example, we would like to have a conditional re�nement rule

in our speci�cation of set: x 6= fg: choose(x[y) =) choose(x). Assuming both S and S

0

are

nonempty, we would have choose(S [ S

0

) =) choose(S) and choose(S

0

[ S) =) choose(S

0

).

Because of referential transparency, they lead to choose(S) = choose(S

0

), which is clearly

undesirable.

Referential transparency and related issues were studied in detail in [11]. It was recog-

nized in [2] that one might have to give up referential transparency in order to adequately deal

with nondeterminism. There it was also suggested that a well-de�ned notion of re�nement

should be reexive, transitive, and such that all constructs are monotonic with respect to it.

Meseguer observed in [8] that term rewriting should not be formalized in equational logic for

applications such as nondeterministic data types, concurrent systems, and object-oriented

computation.

The rest of the paper is organized as follows. In Section 2, we propose an alternative

formalization of nondeterministic data types in which referential transparency applies only

to deterministic operators. We show in Section 3 how various desirable data re�nements

can be proved correct with our approach, and in Section 4 how a well-de�ned notion of
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re�nement can be incorporated into the formalism. Section 5 concludes the paper.

2 Nondeterministic Data Types

A signature � is a pair hS;
i, where S is a set of sort symbols and 
 is a family of �nite

disjoint sets f


v;s

g

v2S

�

;s2S

of operator symbols. 
 is divided into two disjoint families 


d

and 


n

. Operator symbols in 


d

are deterministic, while operator symbols in 


n

are non-

deterministic. We write f : v ! s to denote v 2 S

�

; s 2 S, and f 2 


v;s

. Let bool be the sort

symbol for truth values, 


v;bool

is a set of predicate symbols for v 2 S

�

. For every sort s 2 S

we assume that there is an (in�x) predicate symbol =

s

2 


s;s;bool

. The logical connectives

_;^;:;!;$ are treated as boolean operator symbols.

For signature � = hS;
i, the �-terms are de�ned inductively as the well-sorted compo-

sition of variables and operator symbols in 
. A �-term t is deterministic if all operator

symbols in t are from 


d

. Otherwise t is nondeterministic. A �-formula is a formula built

from �-terms and quanti�ers 8 and 9. A �-sentence is a closed �-formula.

Let � = hS;
i be a signature. A �-algebra A is an S-indexed family of carrier sets

A = fA

s

g

s2S

, a function f

A

:A

v

1

� � � � � A

v

n

! A

s

for every f 2 


d

v;s

, and a function

f

A

:A

v

1

� � � � � A

v

n

! P(A

s

) for every f 2 


n

v;s

, where v = hv

1

; : : : ; v

n

i and P(A

s

) denotes

the set of nonempty subsets of A

s

.

A nondeterministic data type T is a pair h�;�i, where � = hS;
i is a signature and �

is a set of �-sentences called axioms. For every sort s 2 S we assume that the following

equality axioms are in �:

1. Reexivity (8x)(x =

s

x)

2. Symmetry (8x; y)(x =

s

y ! y =

s

x)

3. Transitivity (8x; y; z)(x =

s

y ^ y =

s

z ! x =

s

z)

4. Monotonicity For f 2 


d

v;s

where v = hv

1

; : : : ; v

i

; : : : ; v

n

i,

(8x; y; z

1

; : : : ; z

i�1

; z

i+1

; : : : ; z

n

)

(x =

v

i

y ! f(z

1

; : : : ; z

i�1

; x; z

i+1

; : : : ; z

n

) =

s

f(z

1

; : : : ; z

i�1

; y; z

i+1

; : : : ; z

n

))

The monotonicity axiom schemata applies only to deterministic operators, meaning that we

do not enforce referential transparency on nondeterministic operators. A T -model is a �-

algebra that satis�es the axioms of T . A �-sentence p is a T -theorem, denoted as T j= p, if p

is a logical consequence of the axioms of T . T -theory is the set of T -theorems. As examples,

the following are the speci�cations of two nondeterministic data types: set and seq, both of

which take atom as a parameter data type with sort atom and operator f( ): atom ! atom.
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set(atom)

def

= (sorts set

deterministic operators fg:! set

� : atom; set ! set

2 : atom; set ! bool

apply

f

( ): set ! set

nondeterministic operators choose( ): set ! atom

axioms :(a � S = fg)

a � (b � S) = b � (a � S)

a � (a � S) = a � S

:(a 2 fg)

a 2 (b � S)$ a = b _ a 2 S

apply

f

(fg) = fg

apply

f

(a � S) = f(a) � apply

f

(S)

:(S = fg)! choose(S) 2 S)

seq(atom)

def

= (sorts seq

deterministic operators [ ]:! seq

� : atom; seq ! seq

head( ): seq ! atom

2 : atom; seq ! bool

apply

f

( ): seq ! seq

axioms :(a �Q = [ ])

a �Q = b �Q

0

! a = b ^Q = Q

0

head(a �Q) = a

:(a 2 [ ])

a 2 (b �Q)$ a = b _ a 2 Q

apply

f

([ ]) = [ ]

apply

f

(a �Q) = f(a) � apply

f

(Q))

The intuition behind the nondeterministic choose operator of set is that it can be refer-

entially opaque. We do not expect that choose(S) computes a speci�c element of S, nor that

choose(S) always computes the same element of S. All we require about choose is given by

the last axiom of set.

3 Data Re�nement

A signature morphism �: � ! �

0

, where � = hS;
i and �

0

= hS

0

;


0

i, is a pair h�; �i

where �:S ! S

0

is a map and � is a family of maps f�

v;s

: 


v;s

! 


0

�

�

(v);�(s)

g

v2S

�

;s2S

where

�

�

(hv

1

; : : : ; v

n

i) denotes h�(v

1

); : : : ; �(v

n

)i for v

1

; : : : ; v

n

2 S. We write �(s) for �(s), �(v)
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for �

�

(v), and �(f) for �

v;s

(f) where f 2 


v;s

. Given a �-formula p, �(p) denotes the �

0

-

formula resulted from replacing every operator symbol f in p by �(f). An obvious signature

morphism from set to seq is:

fset 7! seq;

fg 7! [ ]; �

set

7! �

seq

;2

set

7!2

seq

; apply

f

set

7! apply

f

seq

;=

set

7!=

seq

; choose 7! headg

Let T = h�;�i and T

0

= h�

0

;�

0

i be two nondeterministic data types, and �: �! �

0

be

a signature morphism. We say that � is a data re�nement from T to T

0

if T

0

j= �(A) for

every axiom A 2 �. Apparently the above signature morphism from set to seq is not a

data re�nement, because seq 6j= a � (a �Q) = a �Q.

Suppose T

1

; T

2

are two nondeterministic data types with equality predicates =

1

;=

2

re-

spectively. In re�ning T

1

to T

2

, a critical decision is how to re�ne equality. There are two

possible ways that =

1

can be re�ned through signature morphism �.

1. If �(=

1

) is =

2

, then we are often forced to require more knowledge from T

1

. Moreover,

it might add too much detail that prohibits certain e�cient implementations. For

example, if �(=

set

) is =

seq

, then �(�

set

) cannot be �

seq

. We might require that there

is a total ordering � on atom, and build into seq an (ordered) insert operator �

: atom; seq ! seq de�ned by:

a � [ ] = a � [ ]

a � (a �Q) = a �Q

a < b! a � (b �Q) = a � (b �Q)

b < a! a � (b �Q) = b � (a �Q)

Now �(�

set

) can be �. This implementation represents every set as an ordered sequence

with no duplicate atoms. It is more e�cient when =

set

is used more frequently than

�

set

.

2. If �(=

1

) is � di�erent from =

2

, then � must be logically weaker than =

2

, namely for all

x; y we have x =

2

y implies x � y, because � must satisfy all the equality axioms. The

re�nement of =

1

is underspeci�ed: every object of T

1

is re�ned to a group of objects of

T

2

not distinguishable under �. This delay of implementation decisions is essential in

keeping more implementation options available. For example, we might build into seq

a range containment predicate v : seq; seq ! bool and a range equality predicate

=

r

: seq; seq ! bool de�ned by:

[ ] v Q

a �Q v Q

0

$ a 2 Q

0

^Q v Q

0

Q =

r

Q

0

$ Q v Q

0

^Q

0

v Q
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Now �(=

set

) can be =

r

, and �(�

set

) can be �

seq

. This implementation represents every

set by a group of sequences not distinguishable under =

r

: these sequences all contain

the same set of atoms. It is more e�cient when �

set

is used more frequently than =

set

.

Suppose T

1

has a nondeterministic operator f : v ! s. Another critical decision is how to

re�ne f such that the right amount of nondeterminism is removed from T

1

.

1. We might re�ne f to a nondeterministic operator. For example, we might build into

seq a nondeterministic operator choose

seq

( ): seq ! atom de�ned by

:(Q = [ ])! choose(Q) 2 Q

and re�ne choose

set

to it. Since data re�nement can be viewed as the gradual removal of

nondeterminism, this re�nement causes unnecessary delay of implementation decisions.

2. We might re�ne f to a deterministic operator. For example, if there is a min operator

on atom, we might build into seq a select (minimum) operator select( ): seq ! atom

de�ned by

select(a � [ ]) = a

select(a � (b �Q)) = min(a; select(b �Q))

and re�ne choose

set

to it. This implementation represents arbitrary selection in a set

by the selection of the minimal element of a sequence, which is linear in the size of the

sequence. It destroys the exibility about choose in set by having the implementation

of choose(S) computes a de�nite and speci�c element of S. Alternatively, we might

re�ne choose to head , which is a constant-time operation that preserves the exibility

about choose in set.

If referential transparency is enforced on nondeterministic operators however, certain de-

sirable re�nement combinations of equality and nondeterministic operators become incorrect.

In general, if �(=

v

) is � weaker than =

�(v)

, f : v ! s, and �(f) is deterministic, then �(f)

has to satisfy the additional requirement that x � y ! �(f)(x) =

�(s)

�(f)(y). For example,

with referential transparency enforced on choose

set

, the following signature morphism from

set to seq is not a data re�nement, since seq 6j= Q =

r

Q

0

! head(Q) = head(Q

0

).

fset 7! seq;

fg 7! [ ]; �

set

7! �

seq

;2

set

7!2

seq

; apply

f

set

7! apply

f

seq

;=

set

7!=

r

; choose 7! headg

Under our approach where nondeterministic operators are referentially opaque, it is easy to

verify that the above signature morphism is indeed a data re�nement. It does not require

additional knowledge on atom such as a total ordering or a min operator, and it provides

constant-time implementation for both �

set

and choose

set

. The combination of =

r

and head

operators in seq captures the essence of nondeterministic behavior exhibited by = and choose

operators in set.
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4 Re�nement Predicate

To capture the notion of re�nement rules in nondeterministic data type re�nement, we

introduce a re�nement predicate. Given a nondeterministic data type T = h�;�i where

� = hS;
i, we extend T with a re�nement predicate )

s

2 


s;s;bool

for s 2 S. For every sort

s 2 S we assume that the following re�nement axioms are in �:

1. Reexivity (8x)(x)

s

x)

2. Transitivity (8x; y; z)(x)

s

y ^ y )

s

z ! x)

s

z)

3. Monotonicity For f 2 


v;s

where v = hv

1

; : : : ; v

i

; : : : ; v

n

i,

(8x; y; z

1

; : : : ; z

i�1

; z

i+1

; : : : ; z

n

)

(x)

v

i

y ! f(z

1

; : : : ; z

i�1

; x; z

i+1

; : : : ; z

n

))

s

f(z

1

; : : : ; z

i�1

; y; z

i+1

; : : : ; z

n

))

4. Equality For deterministic �-terms t; t

0

,

t)

s

t

0

! t =

s

t

0

Compared with the equality axioms of Section 2, the monotonicity axiom schemata applies to

nondeterministic as well as deterministic operators. The last axiom says that the re�nement

predicate is stronger than the equality predicate in nondeterministic data types: there are

nondeterministic �-terms t; t

0

such that t )

s

t

0

but :(t =

s

t

0

). In the special case of

deterministic data types, the last axiom implies that the re�nement predicate is equivalent

to the equality predicate, which corresponds to rewriting in equational logic.

A conditional re�nement rule �: t =) t

0

in the re�nement of nondeterministic data type

T = h�;�i, where � is a �-formula and t; t

0

are �-terms, is expressed by a (universally

quanti�ed) �-sentence p of the form � ! t ) t

0

. The re�nement of T by this rule is

a nondeterministic data type T

0

= h�;�

0

i where �

0

= � [ fpg. Conditional re�nement

rules can be used both to reduce nondeterminism and to obtain optimal implementation of

nondeterministic data types. As an example, we can re�ne set by the following conditional

re�nement rules:

:(S = fg): choose(S [ S

0

) =) choose(S)

:(S = fg): choose(apply

f

(S)) =) f(choose(S))

The resulting nondeterministic data type set

0

contains the following two axioms in addition

to axioms of set:

:(S = fg)! choose(S [ S

0

)) choose(S)

:(S = fg)! choose(apply

f

(S))) f(choose(S))
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Compared with set, set

0

has a reduced degree of nondeterminism and is more e�cient

in computation. The re�nement predicate is stronger than the equality predicate, because

from S = S

0

we cannot infer choose(S) = choose(S

0

) (choose is referentially opaque), but

from S ) S

0

we can infer choose(S) ) choose(S

0

). Notice that such a re�nement is

not semantically sound if nondeterministic operators are referentially transparent. As an

example, suppose choose is referentially transparent, and we have in set a union operator

[ : set ; set ! set such that

fg [ S

0

= S

0

(a � S) [ S

0

= a � (S [ S

0

)

>From S [S

0

= S

0

[S, we infer by the monotonicity axiom choose(S [S

0

) = choose(S

0

[S).

Applying the �rst conditional re�nement rule we get :(S = fg)^:(S

0

= fg)! choose(S) =

choose(S

0

), which leads to the collapse of the carrier set A

atom

to a single element in any set

0

-

model, since from :(a�fg = fg) and :(b�fg = fg), we infer choose(a�fg) = choose(b�fg)

and hence a = b.

5 Conclusion

The re�nement of nondeterministic data types is a process which gradually removes nonde-

terminism by making design decisions that lead to an e�cient implementation. However,

with the speci�cation of nondeterministic data types formalized in equational logic, many

desirable re�nements become impossible to prove correct. Nondeterminism often has to be

removed entirely in one re�nement step, rather than gradually through many re�nement

steps. This problem is caused by the requirement of referential transparency imposed on

nondeterministic operators.

We proposed an alternative formalization of nondeterministic data types, which imposes

the requirement of referential transparency only on deterministic operators. With this ap-

proach, we can easily show the correctness of many desirable re�nements. Moreover, a well-

de�ned notion of re�nement can be built into nondeterministic data types as a re�nement

operator. Using such an operator, the gradual removal of nondeterminism can be formulated

as conditional re�nement rules, whose stepwise application leads to e�cient implementation.
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