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Abstract – We propose a formalism for the synthesis of

“functions”, called computation boxes (C-boxes), which possess

memory: arguments are put into them and results are gotten

from them, avoiding unnecessary computations and possibly

using previously calculated intermediate results. C-boxes may

be “functionally” composed in graph-like structures, thus

allowing modularity and reusability. Different languages may

be used to implement computations. C-boxes may be externally

specified by means of purely functional specifications called

extended functions (E-functions), without bothering about their

internal structure.

These characteristics make C-boxes particularly well-suited to

be used as a software engineering formalism to synthesize

efficient controllers for Discrete Event Systems in a clear and

modular way.

 I. INTRODUCTION

In this paper, a Discrete Event System (DES) is a triple

S = 〈X,E,T〉 , where X is a set of states, E is a set of events,

and T ∈  [X × E →p X] is a transition function ([X × E →p X]

is the set of all partial functions from X × E to X). For

example, Petri Nets [1] and Colored Petri Nets [2] are DESs,

with markings being states, transition firings being events,

and firing rules defining transition functions. DESs, in

particular (Colored) Petri Nets, are widely used in the

automated manufacturing field, as discrete event controllers

for plants [3].

In this paper, a controller for a DES S = 〈X,E,T〉  is a

function C ∈  [X → 2E] (2E is the set of all subsets of E;

[X → 2E] is the set of all functions from X to 2E): for each

x ∈  X, controller C selects the subset of all events e enabled

in state x (i.e. such that T(x,e) is defined) which belong to

C(x); more precisely, DES S and controller C together define

a closed-loop DES S′ = 〈X,E,T′〉  such that for each state x and

event e, T′(x,e) is defined iff T(x,e) is defined and e ∈  C(x),

and in that case T′(x,e) = T(x,e). In other words, controller C

constrains the behavior of S by allowing only some events to

occur in each state. This approach to the control of DESs is

slightly different from others found in literature: in [4] a

supervisor (i.e. controller) is defined as a function mapping a

string of events generated by the DES to a subset of E; our

approach is motivated below.

It is sometimes useful to design a complex DES

S = 〈X,E,T〉  in terms of another DES S0 = 〈X,E,T0〉  and a

controller C ∈  [X → 2E] for S0, where S is the closed-loop

DES defined by S0 and C. For example, consider the design

of a Colored Petri Net as discrete event controller for a large

plant where uses of resources (machines, robots, etc.) by

productive processes interact in complex ways, thus being

subject to many potential deadlocks. In order to avoid such

deadlocks, resources must be given to productive processes

(e.g. put a part into a machine) according to the state of many

other resources (e.g. which productive processes are holding

them): so, a deadlock-free Net would have lots of arcs

connecting places and transitions for the sole purpose of

checking the states of some resources, thus making unclear

real uses of resources by productive processes. It might be

easier and clearer to design a non-deadlock-free Net which

only deals with real uses of resources, and then constrain the

behavior of the Net to avoid deadlocks by means of a

controller mapping each marking into a set of transition

firings which do not lead to deadlocked markings.

The implementation of a controller for a DES would

reasonably consist in a functional procedure taking a state as

argument and returning a set of events as result; when an

event occurs and state changes the procedure is called upon

the new state, and this is repeated over and over again. It is

very often the case that the state of a DES can be naturally

partitioned into components (e.g. the components of the

marking of a (Colored) Petri Net are the markings of the

individual places), and that when an event occurs only a few

components change, the others remaining unaltered (e.g.

when a transition fires in a (Colored) Petri Net, only the

places connected to that transition change their markings):

so, after an event occurs, many of the computations executed

upon the previous state are equally repeated upon the new

state, thus wasting time.

In this paper we propose a formalism for the synthesis of

“functions”, called computation boxes (C-boxes for short),

which possess memory: arguments are put into C-boxes (i.e.

written into memory) and results are gotten from C-boxes

(i.e. read from memory). C-boxes write results into their

memory by reading arguments from their memory and

executing computations upon them. When getting results,

computations which are unnecessary to determine such

results may be avoided; furthermore, since memory may also

contain intermediate results, when getting results after

changing only some arguments, some computations may be

avoided by using previously calculated intermediate results

which are still valid. C-boxes may be “functionally”

composed together in graph-like structures to build more



complex C-boxes, thus allowing modularity and reusability.

Computations are specified as generic mathematical

functions, so that they may be implemented in any language,

thus allowing the use of different languages in a clear way.

An extremely important property of C-boxes is that they may

be externally specified by means of purely functional

specifications called extended functions (E-functions for

short): in order to compose C-boxes together or to use them

putting arguments and getting results, it is sufficient to know

their functional specifications, without bothering about the

internal structure.

These characteristics make C-boxes particularly well-

suited to be used as a software engineering formalism to

synthesize efficient controllers for DESs in a clear and

modular way.

 II. OVERVIEW OF THE FORMALISM

Since a complete formal presentation of our formalism

would make this paper exceedingly long, we only give an

overview of it by means of some simple examples; for details,

see [5].

Firstly, a type is a non-empty set of objects not including ⊥
(“nil”). In our simple examples we use the following types:

ZZ = {…,−2,−1,0,1,2,…}, the set of integers; BB = {T,F}, the

set of booleans; KEYKEY, a set of keys (identifiers, names, or

whatever); TABLETABLE, the set of tables, where a table is a finite

set of entries 〈key,val〉  ∈  KEYKEY × ZZ such that no two distinct

entries in the table have the same key.

Given types τ1,…,τn (n ≥ 1) and τ1,…,τm (m ≥ 1), a

computation box (C-box for short) from 〈τ 1,…,τn〉  to

〈τ 1,…,τm〉  is a level-u computation box (Cu-box for short)

from 〈τ 1,…,τn〉  to 〈τ 1,…,τm〉 , for some u ∈  NN (NN is the set of

natural numbers).

 A. Level-0 Computation Boxes

Fig. 1, Fig. 2 and Fig. 3 respectively depict C0-boxes

search from 〈TABLETABLE,KEYKEY 〉  to 〈BB,ZZ〉 , if from 〈BB,ZZ,ZZ〉  to ZZ

and plus from 〈ZZ,ZZ〉  to ZZ. A C0-box from 〈τ 1,…,τn〉  to

〈τ 1,…,τm〉  basically consists of n argument memories

(A-mems for short), m result memories (R-mems for short)

and a tree. Each A-mem or R-mem (represented as a

rectangle) contains an object of the associated type or the

special value ⊥ . Each node of the tree is labeled by one of

Arg1,…,Argn,Res1,…,Resm; each branch connecting two

nodes is labeled by a constraint, i.e. a subset of τj1 × … × τjq,

where Argj1
,…,Argjq are the labels among Arg1,…,Argn of the

nodes preceding the branch, in that order; each node labeled

by a Resi is also labeled by a calculation, i.e. a mathematical

function from τj1 × … × τjq to τi∪ {⊥ }, where Argj1,…,Argjq

are the labels among Arg1,…,Argn of the nodes preceding the

node, in that order. In Fig. 1 constF is the function from

TABLETABLE to BB ∪ {⊥ } such that constF(tbl) = F, is-present? is

the function from TABLETABLE × KEYKEY to BB ∪ {⊥ } such that

is-present?(tbl,key) = if ∃〈 key,val〉  ∈  tbl then T else F,

assoc-val is the function from TABLETABLE × KEYKEY to ZZ ∪ {⊥ }

such that assoc-val(tbl,key) = if ∃〈 key,val〉  ∈  tbl then val

else ⊥ ; in Fig. 2 copy-int is the function from BB × ZZ to ZZ

such that copy-int(b,val) = val; in Fig. 3 add is the function

from ZZ × ZZ to ZZ such that add(val1,val2) = val1 + val2.

C0-boxes can be executed, as we now explain by means of

search as an example (see Fig. 1). Execution starts at the

root of the tree: label Arg1 means that the first argument (i.e.

the object in the first A-mem) must be read. If it is ⊥
execution stops (⊥  represents a “missing value”), and can

then be resumed (see next subsection); otherwise, let tbl be

the table contained there. There are two branches from the

root, labeled by constraints {∅ } and TABLETABLE, respectively:

execution goes on at the leftmost node such that the

constraint labeling the corresponding branch contains tbl, if

any. Thus, if tbl = ∅  execution goes on at the node labeled by

Res1 and calculation constF: Res1 means that the first result

must be written into the first R-mem, and constF means that

such result is constF(tbl) (i.e. F); since there are no branches

from this node, execution terminates. If otherwise tbl ≠ ∅ ,

execution goes on at the node labeled by Arg2, which means

that the second argument (i.e. the object contained in the

second A-mem) must be read. If it is ⊥  execution stops and

can then be resumed; otherwise, let key be the key contained

there. There is one branch from this node, labeled by

constraint TABLETABLE × KEYKEY: the leftmost node such that the

constraint labeling the corresponding branch contains

〈 tbl,key〉  is thus the node labeled by Res1 and calculation

is-present?, so execution goes on there. Res1 and is-present?

mean that is-present?(tbl,key) must be written into the first

R-mem. There is one branch from this node, labeled by

constraint {〈 tbl,key〉  ∈  TABLETABLE × KEYKEY | ∃〈 key,val〉  ∈  tbl}: if

∀〈 key,val〉  ∉  tbl then execution terminates because there is

no node such that the constraint labeling the corresponding

branch contains 〈 tbl,key〉 . Otherwise execution goes on at the

{∅ }

BB ZZ

TABLETABLE KEYKEY

TABLETABLE

TABLETABLE ×× KEYKEY

{〈 tbl,key〉  ∈  TABLETABLE × KEYKEY |
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node labeled by Res2 and calculation assoc-val, which mean

that assoc-val(tbl,key) (which is not ⊥ ) must be written into

the second R-mem. Since there are no branches from this

node, execution terminates.

Analogously, the execution of if (see Fig. 2) consists in

reading the first argument and writing the second (third)

argument as result if the first argument is T (F), and the

execution of plus (see Fig. 3) consists in reading the first and

second arguments and writing their sum as result; in both

cases, if a ⊥  argument is read execution stops and can then

be resumed.

So, execution of a C0-box moves down the tree along the

leftmost path allowed by constraints: arguments are read

from memory, and results are written into memory as

specified by calculations; when a ⊥  argument is read

execution stops and can then be resumed; furthermore, when

a calculation yields a ⊥  result, execution stops with an error

(anyway search is such that no error ever occurs).

Calculations and tests for membership to constraints can be

implemented in any language; the fact that a calculation

gives ⊥  for some arguments represents the fact that its

implementation does not expect such arguments (e.g. for

efficiency reasons), and this is why in our formalism

execution stops with an error when a calculation yields a ⊥
result.

Basically, two operations can be performed over C0-boxes.

One consists in putting an argument into memory: a

j ∈  {1,…,n} and a v ∈  τj are specified, and v is written into

A-mem j, at the same time writing ⊥  into all R-mems

(because previous results may change now). The other

consists in getting a result from memory: an i ∈  {1,…,m} is

specified, and if a v ∈  τi is in R-mem i such v is returned,

otherwise the C0-box is executed; execution can stop with an

error, or stop because a ⊥  argument has been read, or

terminate; in the last case, if after termination R-mem i still

contains ⊥  an error occurs, otherwise the v ∈  τi contained

there is returned.

We can thus put arguments into a C0-box and get the

corresponding results, and it is important that during

execution the C0-box sometimes avoids reading arguments

which are irrelevant for determining results (e.g. search
avoids reading the key if the table is empty) and avoids

performing unnecessary computations (e.g. search avoids

the computations of is-present? and assoc-val if the table is

empty).

 B. Higher-Level Computation Boxes

Fig. 4 depicts C1-box addkeys from 〈TABLETABLE,KEYKEY,KEYKEY 〉
to ZZ. A Cu-box from 〈τ 1,…,τn〉  to 〈τ 1,…,τm〉  with u ≥ 1

basically consists in a directed acyclic graph with memory

nodes (represented as circles), computation nodes

(represented as rectangles), and arcs connecting them; each

arc connects nodes of different kinds; each memory node has

at most one incoming arc. Each memory node is associated a

type and contains an object of that type or the special value

⊥ ; n distinguished memory nodes with no incoming arcs

have types τ1,…,τn and are called argument memories

(A-mems for short); m distinguished memory nodes with no

outgoing arcs have types τ1,…,τm and are called result

memories (R-mems for short); zero or more distinguished

memory nodes (represented as thick circles) always contain

the same non-⊥  values (indicated inside thick circles) of the

associated types and are called constant nodes. Each

computation node contains a C-box of level less than u

(indicated inside rectangles) whose argument and result types

match with the types associated to connected memory nodes

in the obvious way. The numbers by non-constant memory

nodes are for reference purposes only.

Cu-boxes with u ≥ 1 can be executed, as we now explain by

means of addkeys as an example (see Fig. 4), which “maps”

a table and two keys to the sum of the integers identified by

the keys in the table (if any of the keys is not present in the

table, we consider 0 the value identified by that key). Suppose

that nodes 1, 2 and 3 respectively contain a table tbl and two

keys key1 and key2, and that all other nodes contain ⊥ ; the

contents of A-mems and R-mems of the five nested C0-boxes

are the same of the corresponding memory nodes, as obvious

(e.g. the second A-mem of the rightmost search contains

key2). Since node 10 has an incoming arc from the

computation node containing plus, the execution of addkeys
starts by activating the execution of plus, which stops when

ZZZZ
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Arg1

Arg2

Res1

ZZ × ZZ

Fig.3 C
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⊥  is read as first argument. Since node 8 has an incoming arc

from the leftmost computation node containing if, the

execution of such if is activated, which stops when ⊥  is read

as first argument. Since node 4 has an incoming arc from the

leftmost computation node containing search, the execution

of such search is activated, which writes a boolean b1 into

node 4 (and also into the first A-mem of the leftmost if and

into the first R-mem of search itself) and possibly an integer

val1 into node 5, then terminates. At this point, the execution

of if is resumed: the first argument is read again, but now it is

b1 ≠ ⊥ : if b1 = T the second argument val1 is read and written

into node 8; if b1 = F the third argument is read (which is

always 0) and written into node 8. In both cases, as the

execution of if terminates the execution of plus is resumed,

which now reads ⊥  as second argument; so, similarly to

before the execution of the rightmost if and then of the

rightmost search are activated, and at the end the execution

of plus is resumed. The second argument is read again, and

now it is an integer; the sum of the two integers in nodes 8

and 9 is written into node 10, and the execution of addkeys
terminates.

So, execution of a Cu-box with u ≥ 1 consists in activating

executions of nested C-boxes: when one of them stops

because a ⊥  argument has been read, another one is activated

as determined by node connections, in a sort of backward

chaining; if one of them stops with an error, the whole

Cu-box stops with an error; furthermore, if a ⊥  argument is

read from an A-mem of the Cu-box, the whole Cu-box stops

its execution (e.g. if the first A-mem of addkeys contains ⊥
the execution of addkeys stops), which can then be resumed.

Thus, execution of C0-boxes and execution of Cu-boxes with

u ≥ 1 are “externally” the same.

Basically, two operations can be performed over Cu-boxes

with u ≥ 1. One consists in putting an argument into

memory: a j ∈  {1,…,n} and a v ∈  τj are specified, and v is

written into argument memory j, at the same time writing ⊥
into all those memory nodes whose content may depend on v

(e.g. if we put a key key2′ ≠ key2 as third argument of

addkeys, a ⊥  is written into nodes 6, 7, 9 and 10, while the

other nodes retain their contents). The other consists in

getting a result from memory: an i ∈  {1,…,m} is specified,

and if a v ∈  τi is in R-mem i such v is returned, otherwise the

Cu-box is executed; unlike addkeys, in general a Cu-box may

have more than one R-mem, whose incoming arcs are from

distinct computation nodes, so i determines which nested

C-box must be executed first. Execution of the Cu-box can

stop with an error, or stop because a ⊥  argument has been

read, or terminate; in the last case, if after termination

R-mem i still contains ⊥  an error occurs, otherwise the v ∈  τi

contained there is returned.

We can thus put arguments into a Cu-box with u ≥ 1 and

get the corresponding results, but it is important that during

execution the Cu-box sometimes avoids reading arguments

which are irrelevant for determining results (e.g. addkeys
avoids reading the two keys if the table is empty) and avoids

performing unnecessary computations (e.g. addkeys avoids

performing the computations of is-present? and assoc-val in

the two search’s if the table is empty). Furthermore, suppose

that, after the execution of addkeys explained above, a key

key2′ ≠ key2 is put as third argument, and that we get the

result: since an integer is still in node 8, the leftmost if and

leftmost search are not executed; in general, during the

execution of a Cu-box with u ≥ 1 some computations may be

avoided by using previously calculated intermediate results

which are still valid.

 C. Extended Functions

Given types τ1,…,τn (n ≥ 1) and τ1,…,τm (m ≥ 1), an

extended function (E-function for short) from 〈τ 1,…,τn〉  to

〈τ 1,…,τm〉  is basically a function from τ1∪ {⊥ } × … × τn∪ {⊥ }

to τ1∪ {⊥ } × … × τm∪ {⊥ }. Each C-box from 〈τ 1,…,τn〉  to

〈τ 1,…,τm〉  is associated an E-function from 〈τ 1,…,τn〉  to

〈τ 1,…,τm〉  which constitutes the specification of the C-box,

because it completely “characterizes” the C-box, as

formalized by some theorems and as we now explain by

means of examples.

C0-box search is associated E-function Search, which is

such that: Search(tbl,key) = 〈F,⊥〉  if key is not in tbl, which

means that after we put arguments tbl and key, with key not

in tbl, into search, we can then get F as first result without

errors, but we cannot get the second result (because an error

would occur); Search(tbl,key) = 〈T,val〉  if 〈key,val〉  ∈  tbl,

which means that after we put arguments tbl and key, with

〈key,val〉  ∈  tbl, into search, we can then get both T and val

as first and second result without errors; Search(∅ ,⊥ ) =
〈F,⊥〉 , which means that after we put ∅  as first argument

into search we can then get F as first result without errors

and without the second argument being read by search (i.e.

the second argument may also be ⊥ , but the execution does

not stop because search does not even attempt to read it);

Search(⊥ ,key) = 〈⊥ ,⊥〉 , which means that it is not possible

to get any result without the first argument being read. The

TABLETABLE KEYKEYKEYKEY
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fact that the first result of Search is T iff the second one is

non-⊥  means that, after we get the first result from search,

we can then get the second one without errors iff the first one

was T (and search does not execute again, because it has

already written the second result into memory when the first

one was gotten).

C0-box if is associated E-function If, which is such that:

If(T,val1,⊥ ) = val1 (If(F,⊥ ,val2) = val2), which means that

after we put T (F) and val1 (val2) into the first and second

(third) A-mems of if we can then get val1 (val2) as result

without errors and without the third (second) argument being

read; If(⊥ ,val1,val2) = ⊥ , which means that the first argument

is always read by if, and it is not possible to get the result

without a boolean being present there.

C0-box plus is associated E-function Plus, which is such

that: Plus(val1,val2) = val1 + val2, which means that after we

put two integers as arguments into plus we can then get their

sum as result without errors; Plus(⊥ ,val2) = Plus(val1,⊥ ) =
⊥ , which means that plus always reads both its argument.

C1-box addkeys is associated E-function Addkeys, which

is such that: Addkeys(tbl,key1,key2) = val1 + val2, where for

i = 1,2 vali is the integer identified by keyi in tbl or 0 if keyi is

not in tbl, which means that after we put arguments tbl, key1

and key2 into addkeys we can then get the sum of the

integers identified by key1 and key2 in tbl (0 if not present) as

result without errors; Addkeys(∅ ,⊥ ,⊥ ) = 0, which means

that after we put ∅  into the first argument memory of

addkeys we can then get 0 as result without errors and

without the other two arguments being read;

Addkeys(⊥ ,key1,key2) = ⊥ , which means that it is not

possible to get the result without the first argument being

read.

So, in order to use a C-box, putting arguments and getting

results, or nesting it into a higher-level one, we only need to

know its associated E-function (which constitutes the

specification), without bothering about its internal structure

(which constitutes the implementation). For example, in

order to use search properly we only need to know Search,

without bothering about the tree in Fig. 1, its constraints and

calculations. We can thus view a C-box as shown in Fig. 5. A

very important point is that the E-function associated to a

Cu-box with u ≥ 1 is obtained by functionally composing the

E-functions associated to nested C-boxes according to the

graph structure of the Cu-box in the obvious way, thus

allowing transparent local implementation changes.

 III. AN EXAMPLE IN AUTOMATED MANUFACTURING

We now present a simple but representative example of use

of C-boxes in automated manufacturing.

Consider the plant sketched in Fig. 6. Raw products (all

equal to each other) from storage RP (which is never empty)

are operated by machines M1, M2 and M3 (each machine

contains at most one product at once, and operates it in a null

time) according to productive processes PP1, PP2 and PP3 as

indicated in Fig. 6, and the corresponding three kinds of

finished products go into storage FP (which is never full);

products are moved from place to place by robot R in a null

time.

The discrete event control of this plant may be realized by

means of DES S = 〈X,E,T〉  defined as follows. We have

X = (MS × PP) × (MS × PP) × (MS × PP),

where MS = {empty,ready,finished} (machine states) and

PP = {PP1,PP2,PP3,none}, i.e. states are triples of pairs,

each pair referring to a machine Mi: if no product is present

in Mi the pair is 〈empty,none〉 ; otherwise the pair is

〈 ready,PPj〉  or 〈 finished,PPj〉  if (respectively) the product

has still to be operated or has already been operated by Mi,

and PPj is the productive process of the product. We have

E = {O1,O2,O3,PP1,PP2,PP3,M1,M2,M3},

each event corresponding to a command to the physical

controllers of M1, M2, M3 or R: event Oi causes Mi to operate

the product present in it, event PPi causes R to move a raw

product from RP to the first machine of process PPi, and

event Mi causes R to move the product in Mi to its next

destination (another machine or FP). For each state

x = 〈〈 ms1,pp1〉 ,〈ms2,pp2〉 ,〈ms3,pp3〉〉  we have:

 • T(x,Oi) = x′ is defined iff msi = ready, and in that case x′
is x with msi changed to finished;

 • T(x,PPi) = x′ is defined iff 〈msj,ppj〉  = 〈empty,none〉  (Mj

being the first machine of PPi), and in that case x′ is x

with 〈msj,ppj〉  changed to 〈 ready,PPi〉 ;
 • T(x,Mi) = x′ is defined iff one of two cases holds: first

case, Mi is the last machine of ppi, and in that case x′ is x

with 〈msi,ppi〉  changed to 〈empty,none〉 ; second case,

〈msj,ppj〉  = 〈empty,none〉  (Mj being the machine

immediately following Mi in process ppi), and in that case

x′ is x with 〈msi,ppi〉  changed to 〈empty,none〉  and

〈msj,ppj〉  changed to 〈 ready,ppi〉 .
Such DES S may lead to deadlocks (e.g. no event can take

place in state 〈〈 finished,PP1〉 ,〈 finished,PP3〉 ,〈 finished,

PP2〉〉 ). We may avoid deadlocks by using a controller C for S

which maps each state x into the set C(x) of all events e such

that state T(x,e) is safe, where a state is safe iff state

〈〈 empty,none〉 ,〈empty,none〉 ,〈empty,none〉〉  is reachable

from it.

Fig.6 Sketch of the plant.
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Controller C is realized as C-box controller from

〈MS,MS,MS,PP,PP,PP〉  (i.e. the types of the objects which

compose states) to 2E, depicted in Fig. 7a (the A-mems are

nodes 1, 2, 3, 4, 5 and 6; to improve clarity some memory

nodes appear more than once, like node 7); Fig. 7b, 7c and

7d respectively depict C-boxes machine-events from

〈MS,PP,PL,CFG,2E,2E〉  to 〈2E,2E〉 , move-event from

〈B,PP,PL,CFG,2E〉  to 2E and operate-event from 〈MS,2E〉  to

2E, where PL = {RP,M1,M2,M3,FP} (places) and

CFG = ({M1,M2,M3}
∗ ∪{ free})3 (configurations, see below;

{M1,M2,M3}
∗  is the set of all finite sequences of elements of

{M1,M2,M3}).

Memory nodes 9, 11, 13, 14, 15, 16, 8, 10, 12 respectively

“correspond” to events O1, O2, O3, PP1, PP2, PP3, M1, M2,

M3 in the following sense: just after getting the result from

controller, each of these nodes contains the singleton set of

the “corresponding” event (e.g. node 13 contains {O3}) if

such event is enabled by C, otherwise it contains ∅ .

C0-box union reads the arguments and writes their union

as result, which is also the result of controller.
C0-box build-config reads the arguments pp1, pp2 and pp3,

and writes result 〈cfg1,cfg2,cfg3〉  defined as follows: if

ppi = none then cfgi = free, otherwise cfgi is the sequence of

all machines which follow Mi in process ppi (e.g.

cfg3 = [M2,M1] if pp3 = PP2).

C0-boxes finished? and ready? read the argument and

write result T if that argument is finished or ready
(respectively), F otherwise.

C0-box if is exactly like the one of the previous section,

except that it deals with sets of events instead of integers.

C0-box next-place reads the two arguments pp and pl, and

writes result pl′ which is the next place after pl where the

product of process pp must go (e.g. pl′ = FP if pp = PP1 and

pl = M2); if pp = none an error occurs (i.e. the calculation

specifies a ⊥  result).

C0-box free? reads the first argument pl, and if pl = FP

then result T is written; otherwise, if pl = Mi it reads the
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Fig.7a C-box controller.
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second argument 〈cfg1,cfg2,cfg3〉 , and if cfgi = free then

result T is written, otherwise result F is written.

C0-box next-config reads its arguments cfg, pp and pl and

writes result cfg′ which is the configuration obtained by

moving the product of process pp from place pl to the next

place where it must go; if pp = none or the product cannot be

in pl or the next place is a non-empty machine then an error

occurs.

C0-box and reads the first argument, and if it is F then it

writes result F; otherwise it reads the second argument, and

if it is F then it writes result F; otherwise it reads the third

argument and writes it as result.

C0-box safe? reads the argument cfg = 〈cfg1,cfg2,cfg3〉  and

writes result T if cfg is safe (i.e. it corresponds to a safe

state), result F otherwise. The calculation might be

implemented by means of the following self-explaining

Prolog program:

readcfgcomp(cfg(X,Y,Z),m1,X).

readcfgcomp(cfg(X,Y,Z),m2,Y).

readcfgcomp(cfg(X,Y,Z),m3,Z).

writecfgcomp(cfg(X,Y,Z),m1,W,cfg(W,Y,Z)).

writecfgcomp(cfg(X,Y,Z),m2,W,cfg(X,W,Z)).

writecfgcomp(cfg(X,Y,Z),m3,W,cfg(X,Y,W)).

directlyreachable(C1,C2):-

       readcfgcomp(C1,M,[]),

       writecfgcomp(C1,M,free,C2).

directlyreachable(C1,C2):-

       readcfgcomp(C1,M1,[M2|ML]),

       readcfgcomp(C1,M2,free),

       writecfgcomp(C1,M1,free,C),

       writecfgcomp(C,M2,ML,C2).

reachable(C1,C2):-directlyreachable(C1,C2).

reachable(C1,C2):-directlyreachable(C1,C),

                  reachable(C,C2).

The above program is executed upon
?-reachable(cfg(x1,x2,x3),cfg(free,free,free))

where xi is free if cfgi = free, otherwise it is the Prolog list

of m1, m2, m3 corresponding to sequence cfgi of M1, M2, M3;

result T or F is determined by answer Yes or Failure,

respectively.

E-function Controller associated to controller is such that

for each state 〈〈 ms1,pp1〉 ,〈ms2,pp2〉 ,〈ms3,pp3〉〉  with ppi = none

if msi = empty, we have that Controller(ms1,ms2,ms3,

pp1,pp2,pp3) is non-⊥  and it is the set of all events enabled by

C. Thus, after putting arguments constituting the initial state

(i.e. 〈〈 empty,none〉 ,〈empty,none〉 ,〈empty,none〉〉 ) we can

repeatedly get the result and change some arguments

according to the state transition determined by any event of

that result: computations will always terminate without

errors, and no deadlock in the plant will ever occur. Note that

when for example event O3 takes place, we only change the

third argument (in node 3), thus when we get the result only

the following C0-boxes are executed (in order): union; if and

and inside move-event inside the rightmost

machine-events; finished? inside the rightmost

machine-events; if and ready? inside operate-event inside

the rightmost machine-events.

 IV. FUTURE WORK

As the example in the previous section has shown, the

characteristics of C-boxes make them particularly well-suited

to be used as efficient controllers for DESs. Anyway, we

think that C-boxes constitute a general software engineering

formalism for the modular synthesis of efficient procedures,

which allows the use of different languages in a clear way:

thus, it is worth investigating other fields in which C-boxes

could be applied.

Another interesting direction for future work is the

development of a software system for the synthesis of

C-boxes, in which different languages may be used to

implement calculations. In principle, the user should define a

procedure for each calculation and a procedure for test of

membership to each constraint; in practice, it would be better

to allow more flexibility (e.g. in C-box search the two results

should be produced by one procedure, even if we have two

distinct calculations). Efficiency of synthesized C-boxes

could be greatly increased by automatic and user-transparent

flattening of C-boxes to C1-boxes, and also of parts of them to

C0-boxes (in fact, if we have computation nodes containing

very simple and fast C-boxes, it is too costly to read from and

write into memory nodes). It would also be interesting to

integrate such software system into existing packages for the

synthesis of software systems, such as PETREX [6].
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