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1 Introduction

Developing an implementation of a numerical mathematical algorithm is a difficult
task—from a simple textbook specification of an algorithm a programmer must create
an implementation efficient in execution. The textbook specifier emphasizes clarity and
ignores the detail of how an algorithm may be executed efficiently; the implementer
will often sacrifice clarity in order to achieve efficient execution. For many numeri-
cal mathematical algorithms an efficient implementation is essential because of their
computational requirements.

A programmer will attempt to exploit characteristics of a particular machine archi-
tecture to achieve high execution performance. For example, loops will be designed to
ensure that vectorization is possible and thus that the implementation can take advantage
of available vector hardware. Similarly, if a machine can perform more than one task
simultaneously then large computations may be partitioned into a number of parallel
tasks.

A programmer will attempt to exploit the characteristics of the data being operated
on by the algorithm to improve execution performance. For example, if a matrix is
symmetric then this symmetry may be used in some computations to reduce the number
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of arithmetic operations performed. If a matrix is sparse then computations can be
concentrated on the significant matrix elements. In addition, the characteristics of the
data can be used to reduce the machine storage requirements of an implementation—
only half the elements of a symmetric matrix, or only the significant elements of a sparse
matrix, may be recorded.

The programmer must then develop an efficient implementation taking into con-
sideration the particular computations to be performed, the machine architecture to be
used by the implementation and the characteristics of data on which the implementation
operates. Often this may involve the development of a family of related implementations
with each implementation tailored for a particular execution model, characteristics of
data, or both. An implementation of a programming model may be refined further given
the particular (and often peculiar) characteristics of some computers.

Such a family of implementations is derived from the single textbook algorithm
specification but each implementation is different. Is it possible to automate the deriva-
tion of implementations from the abstract textbook algorithm specifications? We have
demonstrated that automatic program transformation makes it possible to derive highly
specialized, efficient implementations from high-level, abstract functional specifica-
tions [4, 6, 7]. The starting point for transformation is a high-level specification of
an algorithm—a specification in the sense that it describes what should be computed
without unnecessary detail about how the computation should be performed. The im-
plementations for parallel execution that we derived have, in most cases, equalled the
performance of equivalent hand-crafted implementations.

In this paper we consider how to obtain efficient implementations of algorithm spec-
ifications tailored for sparse data and vector parallel machines. That is, we demonstrate
how an implementation can be derived for efficient execution on parallel computers
from an abstract specification of an algorithm which does not refer to the sparsity of the
data being manipulated. This approach is in contrast to that followed traditionally—in
either a functional language context or imperative language context—where an imple-
mentation is constructed with a particular sparse representation in mind [13, 14, 9] As
an example of our approach we consider general sparse matrices—matrices in which
there is no pattern to the sparsity,but in which each row has (nearly) the same number
of significant elements.

2 Functional Specifications

The language we use for algorithm specifications is a small subset of the Standard
ML (SML) language [10]—a pure functional programming language. The important
features of this language are:

– Algorithms are denoted as pure expressions; executing an algorithm is performed
by evaluating expressions.

– Functions and operators can be overloaded to allow vector and matrix operations to
be expressed in a manner similar to standard mathematics.

– Modularity is supported through functional decomposition and a structure mecha-
nism for defining abstract data types.



We use a library of vector and matrix operations that commonly occur in numerical
and scientific algorithms.

2.1 Example: Conjugate Gradient

Figure 1 is an example of the functional specification of a moderately complex algorithm:
a conjugate gradient algorithm for the solution of systems of simultaneous equations —
that is, the algorithm calculates a vector x (of size n) which satisfies Ax � b, where A
is a matrix (of size n�n) and b is a vector (of size n).

val epsilon:real = 1.0E-14;
type cgstate
= real vector*real vector*real vector*real vector*int;
fun cg_construct(A:real matrix,b:real vector):cgstate
= let
val x0:real vector = constant(shape(b),0.0);
val r0:real vector = b;
val p0:real vector = r0;
val q0:real vector = A*p0;
fun is_accurate_solution((x,r,p,q,cnt):cgstate):bool
= innerproduct(r,r)<epsilon;

fun cg_iteration((x,r,p,q,cnt):cgstate):cgstate
= let
val rr:real = innerproduct(r,r);
val cnt�:int = cnt+1;
val alpha:real = rr/innerproduct(q,q);
val x�:real vector = x+p*alpha;
val r�:real vector = r-transpose(A)*q*alpha;
val beta:real = innerproduct(r�,r�)/rr;
val p�:real vector = r�+p*beta;
val q�:real vector = A*r�+q*beta

in
cgstate(x�,r�,p�,q�,cnt�)

end

in
iterate(cg_iteration,

cgstate(x0,r0,p0,q0,0),
is_accurate_solution)

end

Fig. 1. Functional specification of conjugate gradient

Most of the specification should be readily understood by anyone with a knowledge
of conjugate gradient algorithms. Some of the significant features of the specification
are:

– The algorithm defines an iterative process: it repeatedly applies a function until
a satisfactory solution is obtained. The function iterate is used to define this
repetition. The arguments to iterate are, in order: the function to be repeat-
edly applied (cg_iterate); an initial value with which to begin the iteration
(cgstate(x0,r0,p0,q0,0)); and a Boolean function that specifies when the
iteration should stop (is_accurate_solution).



– The function cg_iteration takes an argument of type cgstate and returns a
value of type cgstate. The type cgstate is the Cartesian product of four real
vectors and an integer.

– The operator * is overloaded in the specification to indicate both matrix-vector
multiplication and the multiplication of a vector by a scalar. Similarly, the operator
+ is overloaded to indicate integer addition, real addition and vector addition. Such
overloading is in accord with normal mathematical notation.

The library definitions we use are defined in a similar manner.

fun times(U:real vector,V:real vector):real vector
= generate(size(U),fn(i:int)=>U@[i]*V@[i])
fun sum(V:real vector):real
= reduce(+,0.0,size(V),fn(i:int)=>V@[i])
fun innerproduct(U:real vector,V:real vector):real
= sum(times(U,V))
fun mvmult(M:real matrix,V:real vector):real vector
= generate(size(M,0),

fn(i:int)=>innerproduct(row(M,i),V))

Fig. 2. Functional specification of numerical mathematical primitives

These definitions use three basic array functions:

generate(S:shape,g:index��)
defines an �-array over the index set S. The value of element i is the value of the
generating function g applied to i. A generating function may be defined in SML
using a function prototype: for example, fn(i)=>E defines a function with formal
parameter i, and ‘body’ E.

element(A:� array,i:index)
returns the value of the element at the location specified by the index i.

reduce(r:(�����),r0:�,S:shape,g:(index��))
combines the elements of an array (defined as the combination of the shape S and
the generating function g) into a single value using the binary reducing function r.

Space does not permit us to discuss our specification language further and the
interested reader is referred to [6, 7].

We believe that functional specifications should be high-level: they should express
operations in the most natural way, with no consideration being given to efficiency
or implementation concerns such as vectorization. However, functional definitions are
algorithmic and can be executed for the purpose of rapid prototyping. We provide library
definitions for a collection of useful functional specification primitives. When textually
included with a specification, the elements of this library provide a complete executable
definition of a computation. The problem with the rapid prototyping approach is that it
leads to very leisurely execution. The theme of this paper is to show how an efficient
implementation can be obtained, while still maintaining a direct connection between
that implementation and the specification used for rapid prototyping.



3 The Data Sets

In this paper, we show the steps required to develop an efficient implementation of the
conjugate gradient algorithm when the matrix A is known to be sparse. There are many
types of sparsity: here we consider a matrix which has a fixed number of non-zero
elements per row[9], as illustrated in Fig. 3.

Sparse matrix�
����

0 1 0 0 2
3 0 0 0 0
0 4 5 0 0
0 0 0 6 7
8 0 9 0 0

�
����

�

Primary store�
����

1 2
3 0
4 5
6 7
8 9

�
����

Secondary store�
����

2 5
1 2
2 3
4 5
1 3

�
����

Fig. 3. Storage for a general sparse matrix

Such a matrix of order n, with w non-zeros per row, can be stored in two n�w

matrices: the primary store Ap stores the values of the elements; the secondary store
As stores the column indices for the elements in the primary store. Location �i� j�� in
the primary store contains the value of the �i� j� element of the sparse matrix, where
j�As�i� j��; that is, the following identity holds:

Ap�i� j
���A�i� �As�i� j

��� .

If the number of non-zero elements in a given row is less than w, then sufficient
zeros can be stored in the primary matrix to fill the row. This form of sparsity is efficient
in storage if the number of non-zeros averaged over the rows is not much less than the
maximum number of non-zeros.

This is an example of a particular form of sparsity—one that was useful in our
work—and is intended as an illustration of how transformation can simultaneously
tailor an implementation to use both this form of compressed data representation and
a parallel computer. Other representations are possible, of course, and it is the strength
of the program transformation approach that it is a relatively straightforward procedure
to change the type of implementation generated by transformational derivations. In
our derivation a new implementation could be generated by replacing the mapping
transformation phase (outlined below).

4 Program Transformation

Because the direct execution of functional specifications for rapid prototyping is slow,
we do not intend functional definitions to be used as practical implementations of al-
gorithms; rather, they are the source from which we derive efficient implementations
by program transformation. Program transformation is performed using TAMPR trans-
formation rules. A transformation rule is a rewrite rule consisting of a pattern and a



replacement, both defined using a wide spectrum grammar [1, 5]. When a transformation
rule is applied to a program, sections of the program that are matched by the pattern are
changed into the replacement.

Transformations are often constructed so that two or more rules are combined to
achieve some change. Such combinations of rules are grouped in a transformation set:
each rule in the set is applied exhaustively until none of the patterns matches any section
of the program.

A transformation set achieves some well-defined change in a program. A practical
program transformation may require many such changes,so sequencesof transformation
sets — or derivations — are constructed. In practice, it is useful to construct derivations
from sub-derivations, which in turn are constructed from transformation sets, or even
from other sub-derivations.

For example, the transformation from SML to Fortran is performed by an SML-
Fortran derivation, consisting of an SML–�-Calculus3 sub-derivation and a �-Calculus–
Fortran sub-derivation. Both of these sub-derivations are sequences of transformation
sets. The �-calculus is an example of an intermediate form created by a sub-derivation.

There are advantages to dividing a derivation into sub-derivations beyond the stan-
dard divide-and-conquer simplification of the task of implementing a specification: the
sub-derivation that creates the �-calculus form is independent of the final implementa-
tion language, and so may be combined with another sub-derivation to create, say, an
implementation in C or an array processor implementation (for example, for the AMT
DAP [7]). Similarly, the �-Calculus–Fortran sub-derivation is independent of how the
�-calculus form was created, and may be combined with another sub-derivation that
converts another specification language into the �-calculus.

Further, sub-derivations can be added to optimize implementations in various ways
by performing, for example, function unfolding or common sub-expression elimination.
Other sub-derivations can be added to tailor an implementation when data sets are
known to have particular properties, such as sparsity. Figure 4 is a (somewhat simplified)
illustration of the relationships among various intermediate forms created by such sub-
derivations.

The derivation of an implementation is thus not a single, monolithic process that
transforms a functional specification to an imperative implementation; rather, it is a
process that molds an implementation from the definition through many intermedi-
ate forms. Unlike a conventional programming-language compiler, a transformational
derivation can be customized for a particular target architecture or algorithm. Steps in
the derivation may be added or removed depending on the particular requirements of
the algorithm or of the implementation. A transformation system can thus be thought of
as providing an easy way to define a diverse family of compilers.

5 An Example: Matrix-Vector Multiplication

In this section we illustrate the stages in deriving implementations of the functional
specification of matrix-vector multiplication defined in Fig. 2—the conjugate gradi-

3 The �-calculus is a standard mathematical formalism for expressing computation.
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Fig. 4. A family of derivations

ent example is too large for presentation purposes, although later we present timing
information for a sparse version derived from our conjugate gradient specification.

For this simple specification we must decide upon the type of implementation to be
produced and thus select the transformation sets that should be applied (see Fig. 4). It
is important to realize that the transformations are performed automatically (after the
user has selected a particular derivation path) and that for most users the transformation
process is like a sophisticated programming language compiler.

For an implementation in Fortran and with sparse data representation the stages are:

1. Conversion to Abstract Functional Specification Language (the �-Calculus)
The SML special forms are removed from the program text. A derivation is now indepen-
dent of the starting language—SML, Lisp, Miranda or another functional programming
language.

�

fun times:real vector � real vector � real vector
= �U,V�generate(size(U),

�i�real.times(element(U,i),element(V,i)))
fun sum:real vector � real
= �V�reduce(+,0.0,size(V),�i�element(V,i))
fun innerproduct:real vector � real vector � real
= �U,V�sum(times(U,V))
fun mvmult:real matrix � real vector � real vector
= �M,V�generate(size(M,0),�i�innerproduct(row(M,i),V))



2. Unfolding and Static Evaluation
Much of the structure of a functional specification is provided to facilitate human
understanding. For example, separate function definitions divide the definition into
easily understood parts. However, if this structure persists in the final implementation,
it increases the execution costs of the program.

These potential inefficiencies can be removed using the techniques of function
unfolding (in which an application of a function is replaced with the body of the
function’s definition) and static evaluation (in which algebraic properties of data types
are used to simplify expressions). The result of applying these sub-derivations to the
expression for matrix-vector multiplication is:

�

fun mvmult = generate(n,
�i�reduce(+,0.0,n,

�j�times(element(A,[i,j]),element(V,[j]))))

where we assume that the sizes ofA andV have been defined in terms of some parameter
n.

3. Sparse Specialization
The specification at this stage assumes that the matrix is dense. A sparse specialization
must optimize the computation to take advantage of the sparsity and map the sparse
matrix from its standard, dense representation to its compressed representation.

A sparse specialization derivation is sub-divided into three phases.

Phase 1:annotation
The functional specification is annotated to indicate that particular data structures
are sparse. For example, the specifier may indicate that certain input matrices are
tridiagonal or, as in the example presented here, that a matrix has a fixed number of
non-zero elements scattered along each row.

Transformations then use such annotations to make explicit the distinction be-
tween the zeros and non-zeros: each application of the element function is re-
placed with a conditional expression that checks whether the index refers to a zero
or a non-zero element — if the former, the conditional expression evaluates to zero;
if the latter, it yields the value of the element.

�

fun mvmult = generate(n,
�i�reduce(+,0.0,n,

�j�times(
if ([i,j] � fixed_row_number([n,n],w))
then element(A,[i,j])
else 0.0,
element(V,[j]))))

The function fixed_row_number is the set of significant indices of the
matrix—which is of size n�n with w elements significant in each row. The deriva-
tion treats this function as an unknown: the set of indices for a particular matrix is
not known until the implementation is executed.



Phase 2: optimization
The computation is optimized to take advantage of the sparse data being manipu-
lated. The conditional expression is distributed out of the application of the times
function to give

�

fun mvmult = generate(n,
�i�reduce(+,0.0,n,

�j�if ([i,j] � fixed_row_number([n,n],w))
then times(element(A,[i,j]),element(V,[j]))
else 0.0))

which can be further optimized by restricting the reduction to only the significant
elements of a row of the sparse matrix:

�

fun mvmult = generate(n,
�i�reduce(+,0.0,
row(fixed_row_number([n,n],w),i),
�j�times(element(A,[i,j]),element(V,[j]))))

where the functionrow returns the set of indices of non-zero elements in a specified
row. This expression is more efficient in two ways when compared with the expres-
sion at the end of phase 1: there are no checks for zero and non-zero elements; and
the reduction is over only the w non-zero elements in a row.

Phase 3: mapping
The sparse matrix is mapped onto primary and secondary stores, according to the
rules:

�i� j���i� locate�shape� �i� j���

and the inverse
�i� j����i� secondary��i� j���� .

�

fun mvmult = generate(n,
�i�reduce(+,0.0,w,

�j�
�times(
element(A:[i,j�]),
element(V,[secondary(A,[i,j�])]))))

The function secondary maps locations in the primary store onto locations
in the sparse matrix (using the column indices stored in the secondary store). Note
that the reduction is now over the index set 1 to w rather than over the set of indices
of the non-zero elements in a particular row.

This phase may be tailored to the particular needs of the user—thus this im-
plementation is one of many possible implementation that could be generated. The
strength of the transformation method is that a user can mix-and-match transforma-
tion sets to cater for the idiosyncrasies of the application.



4. Imperative Implementation
This stage of the derivation tailors the specification for execution on a particular
computer—the output language may be either Fortran or C.

Sequential Implementation
The derivation is specialized to execute on a sequential computer.

�

integer n,w
parameter(n=??,w=???)
real Ap(n,w),U(n),V(n)
integer As(n,w)
integer i,j
do 100 i=1,n
U(i)=0.0
do 101 j=1,w
U(i)=U(i)+Ap(i,j)*V(As(i,j))

101 continue
100 continue

end

Additional transformations can be applied as part of the sequential derivation to
derive an implementation suitable for execution on a vector computer, such as the
Cray X-MP [6].

Implementations for other computer architectures are possible, such as an imple-
mentation tailored for the AMT DAP 510 array processor and a partitioned MIMD
solution [7, 8].

6 Results

Matrix-vector multiplication is a simple operation, and the derived code presented above
is clearly well tailored for sparse matrices. The derived code for more complex examples
such as the conjugate gradient algorithm is not so amenable to scrutiny (it is designed
for compilation, not for reading). To show that the tailoring is still effective, we compare
the execution times of the sparse implementation with the execution times of a dense
implementation.

Figure 5 displays execution times for both the standard, dense version and the
sparse version of the conjugate gradient algorithm on a sequential computer (a NeXT
workstation) and on a CRAY vector machine. For the sparse version, each row contained
2% non-zeros in random positions.

7 Conclusion

We have outlined how a highly efficient implementation, tailored to a particular type
of data set, may be automatically produced from a clear, high-level, implementation-
independent algorithm specification. Such an implementation is part of a family of
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Fig. 5. Execution times for conjugate gradient

implementations, all derived from the same specification. Each implementation is tai-
lored for the particular architecture on which the algorithm will be executed and tailored
for the particular data being manipulated. The tailoring of the implementation for the
architecture ensures that the best performance is extracted from the architecture being
used. When an implementation for another architecture is required, a new specialized
derivation is developed and a new implementation derived from the same initial speci-
fication.

The transformational approach does not require significant effort from the user.
In our experience a competent mathematician can write functional specifications in a
few hours. A given derivation can be used in the same way a conventional compiler is
used, without knowledge (or understanding) of the internal transformation process—the
programmer provides a functional specification and receives as output a Fortran or C
program which can be compiled and executed.

Developing a specialized derivation for a new architecture and forms of data does
require specialized skills. However, available collections of derivations and transforma-
tions provide a backbone to which further sub-derivations may be added with minimal
programmer effort. The development of a derivation for a particular data form re-
quires, in practice, a few weeks. For example, the development of the CRAY derivation
specialization took approximately two weeks and much of this effort was devoted to
understanding the programming forms that execute well on the CRAY. Once this effort
has been expended, of course, the derivation may be used with many specifications
and without the user needing to understand the transformations. In contrast, using a
conventional approach, a programmer must reapply his skills for each new algorithm
implementation and must revalidate each new implementation produced.

The transformational approach is comparable in purpose to that of developing a
programming language compiler, yet fundamentally different in method. In constructing
a derivation we attempt to identify the many distinct language models that lie between an
abstract functional specification and some implementation model. These models can then
be encoded as transformations. The identification of intermediate models facilitates the
development of a derivation, but, more importantly, it produces models that are shared by



related derivations. For example, most of the transformations used by the sub-derivations
that create implementations for the CRAY and AMT DAP architectures—which have
distinctly different implementation models—are common to the two sub-derivations.
Indeed, the transformations are also shared with the derivation for a shared-memory
multiprocessor (see Fig. 4).

The transformational approach is still in its infancy. Additional work is required
in analysing additional algorithm specifications and understanding and encoding the
optimizations applied by programmers.
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