
A Family of

Data Parallel Derivations

Maurice Clint

Stephen Fitzpatrick

Terence J� Harmer

Peter L� Kilpatrick

Department of Computer Science

The Queen�s University of Belfast

Belfast� Northern Ireland� UK

James M� Boyle

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne� USA

This work is supported by SERC Grant GR�G ������ by a research

studentship from the Department of Education for Northern Ireland

and by the O�ce of Scienti�c Computing� U	S	 Department of

Energy� under Contract W
��
���
Eng
�



Clarity V E�ciency

High�level� architecture�independent programs

� Easier to construct

� Easier to understand

� Portable

E�cient programs

� Tailored to particular machine�

non�portable

� Awash with details

� Di�cult to construct

� Di�cult to understand

�



Example� Transpose of a Matrix

De�nition� transpose AT of m�n matrix A

is an n�m matrix such that

�i� j � AT �i� j��A�j� i�

High�level implementation

function transpose�A�m�n�
� generate��n�m��fn�i�j���A�j�i��

E�cient sequential implementation for

square matrix 	m 
 n�

SUBROUTINE transpose�A�n�
DO i���n
DO j�i	��n
t 
� A�i�j�
A�i�j� 
� A�j�i�
A�j�i� 
� t

END
END

�



Our resolution

Programmer constructs speci�cation and

implementation automatically derived�

Speci�cation language

Functional programming language

� Mathematically based

� Simple semantics� easily understood

� Useful mathematical properties

� Executable prototypes

Implementation language

Whatever required by implementation environ�

ment usually version of Fortran or C�

� E�cient

� Good vendor support

� More convenient than machine language

Derivation by program transformation

�



Program Transformations

Program rewrite rules�

pattern�replacement

All occurrences of pattern in program changed

to replacement�

� Achieves a small� local change

� Based on formal properties

Clearly preserves meaning of program

� Formally de�ned in wide spectrum gram�

mar

� Formal proof possible

Derivations

Sequences of transformations

� Complete metamorphosis through many ap�

plications of many transformations

� Automatically applied by TAMPR system

�



Family of Derivations

Derivation performed in steps

� Sub�derivations

� Intermediate forms between speci�cation

and implementation languages

For example�

SML � ��calculus � Fortran��

Same intermediate form for�

� other speci�cation languages

� other architectures�implementation languages

Combinations have included�

SML

Lisp

Miranda

��
� � ��calculus �

���
��

Fortran

CRAY Fortran

DAP Fortran

C

�



Other sub�derivations�intermediate forms for�

� Optimization e�g�

function unfolding

common subexpression elimination

� Tailoring for particular forms of data

e�g� sparse matrices

SML Lisp

λ-calculus

Evaluated

Unfolded

Processes

Shared
Memory

Processes &
Communication

Distributed
Memory

Sectioned

Array Form

Common
Subexpression

DAP FortranFortran90

Fortran77

Common
Subexpression

CRAY

Sparse

�



Example

Matrix�vector multiplication
�
								


� � �

� � �

� � � �

� � �

� � �

� � �

�
��������
�

�
			


a

b

c

d

�
���


�
								


� � �

� � �

�a��b��c��d

� � �

� � �

� � �

�
��������

fun times�U
vector�V
vector�
vector
� generate�size�U��fn�i
int���U��i��V��i��

fun sum�U
vector�
real
� reduce�U�	���

fun innerproduct�U
vector�V
vector�
real
� sum�times�U�V��

fun mvmult�A
matrix�V
vector�
vector
� generate�size�A���

fn�i
int���innerproduct�row�A�i��V��

SML speci�cation

Data parallel functions

� generate de�nes vector�matrix

� reduce combines elements of vector�matrix

into single value

�



Optimize�

generate��n���i�
reduce��n���j�real�times�
element�A��i�j���
element�V��j����

real�plus���
�

Sequential�CRAY implementation�

generate and reduce implemented as loops

DO i���n��
AV�i���
DO j���n��
AV�i��AV�i�	A�i�j��V�j�
ENDDO
ENDDO

DAP implementation� whole�array operations

AV�sumc�A�matr�V�n��





Assessment

Techniques have been applied to more com�

plex algorithms for sequential�vector� array and

shared�memory architectures�

Comparing with independent� manually con�

structed implementations�

� Derived implementations similar�

� Execution performance equal or better�

Techniques are being extended for yet more

complex algorithms� for distributed and shared

memory parallel architectures and for further

special data structures�

�



With derivational approach� programmer
� develops implementation techniques

� encodes techniques as derivations

Reusability

Multiple speci�cations

Multiple implementations of each

Algorithm modi�ed� modify speci�cation

and re�apply derivation

Extensibility

New optimization technique

or new architecture

or new data representation�

�slot in� new sub�derivation

Transferability

Sub�derivation requires no expertise to use

One programmer may use another�s work

Correctness

Correctness of transformations

implies correctness of implementation

��


