Scalable, Anytime Constraint Optimization through Iterated, Peer-to-Peer Interaction in Sparsely-Connected Networks

Stephen Fitzpatrick & Lambert Meertens
Kestrel Institute
3260 Hillview Avenue, Palo Alto, California, U.S.A.
fitzpatrick@kestrel.edu & meertens@kestrel.edu

This work is sponsored in part by DARPA through the following programs:
ANTS: Autonomous Negotiating Teams http://ants.kestrel.edu/
NEST: Networked Embedded Software Technology http://consona.kestrel.edu/
Contracts #F30602-00-C-0014 & #F30602-01-C-0123 monitored by Air Force Research Laboratory

The views and conclusions expressed here may be those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

25 June 2002
IDPT 2002, Pasadena
Overview

- **Context:** autonomous coordination in large networks of simple sensors
 - scalable, robust, decentralized, adaptive
- **Approach:**
 - scheduling of sensor actions
 - locally computable metrics on schedules as basis for optimization
 - stochastic, distributed hill climbing to optimize schedules
- **Abstract problem for investigation of algorithm dynamics**
 - distributed, approximate graph coloring
- **Summary of experimental results**
- **Conclusions**
- **Details of experimental results**
 - if time permits
Large Networks of Simple Sensors

- Scenario: thousands of small, cheap sensors scattered over terrain
- Sensors equipped with low-power radio transmitters & receivers
 - permit broadcast communication between geographically close sensors
 - every node within range of a transmitting node may receive a message
 - communication should be minimized to reduce interference
 - latency is high enough that data/control variables are essentially distributed
- Autonomous coordination is required
 - sensors must be activated & deactivated appropriately to allow long periods of unattended operation with limited energy
 - the quality of data from a single sensor is low so multiple sensors must collaborate to acquire complimentary data
- Emphasis is on attaining good coordination quickly
 - soft real time adaptivity
 - long-term quality is secondary, though important for stable conditions
 - network load may vary dramatically
Example Application: Target Tracking

- Multiple targets moving through field of radars
- Each radar is capable of scanning in one of three directions at a time
 - a single scan requires 1 to 2 seconds
 - signal strength depends on distance and angle to target
- About three scans from different radars is required to accurately locate a target
 - scans should be approximately simultaneous
 - a given target should be rescanned every 2 seconds, approximately
- Coordination is required to ensure:
 - most radars can deactivate but targets are still detected
 - each target gets scanned adequately
 - radars scanning the same target do so approximately simultaneously to enhance data quality
Abstract Approach: Scan Scheduling

• Each radar’s actions are scheduled over a reasonable period
 – targets are reasonably predictable for ~15 seconds
 – rescheduling allows radars to adapt to changes (e.g., a target turning)

• Metrics quantify schedule quality w.r.t. target behavior
 – high scores when targets are scanned simultaneously by about three radars
 – also take into account cost of scanning and constraint violations

• Objective is to determine scan schedules that optimize overall metric
 – an overall metric can be defined in terms of expected values
 – in practice, need simplifying assumptions to reduce computations
Distributed Computation of Scan Schedules

• Define a local, per-radar version of the quality metric
 – assume that each radar knows about targets in its vicinity
 – assume that each radar knows the scan schedules of nearby radars
 – then each radar can compute the quality of its scan schedule based on local information

• Each radar optimizes its own schedule w.r.t. its local quality metric
 – assume that a stable set of locally-good schedules is computed
 • given stable target behavior
 – then overall quality is expected to be good for practical sensor applications
 • can not in general make claims about true optimality
 – there may be pathological metrics for which achieving everywhere locally-good quality results in overall poor quality
 • probably will not occur in sensor domain
 – more practical concern is rate of convergence and stability
 • how to validate assumptions …
Continual Data Push

• *Assumption*: each radar knows about targets in its vicinity
 – when a radar acquires data, it broadcasts it to nearby radars
 – each radar can combine data to produce local target estimates

• *Assumption*: each radar knows the scan schedules of nearby radars
 – when a radar computes its own scan schedule, it broadcasts the new schedule to nearby radars
Distributed Hill Climbing

- **Assumption**: a stable set of locally-good schedules is computed
 - if schedules are recomputed too frequently, then incoherence results
 - because of communication latency, each radar is using out-of-date information in making its own decisions
 - some out-of-date information can be tolerated, but there is a limit
 - if schedules are recomputed too infrequently, then radars cannot keep pace with changes in target behavior
 - need to balance coherence against adaptivity

- **Stabilization technique**: stochastic activation
 - each radar is periodically given a chance to reschedule
 - but it reschedules only if a random number falls below some fixed, uniform activation probability

- **The activation probability allows coherence and adaptivity to be balanced**
 - it was expected that the ideal activation probability would depend on, e.g., density of the network
 - but so far a value of ~0.3 has worked well for sparse networks
Experimental Results with Simulator

- Visualization shows two targets being tracked simultaneously
- Radars adapt to target positions
 - middle radars multi-task between targets
- Proof of concept demonstration
 - large scale, quantitative experiments planned
 - meanwhile …

- each blob is an estimated target position
 - green indicates a good estimate
- each target follows an oval track
 - just visible under estimated positions
Distributed, Anytime, Approximate Graph Coloring

- Want an abstract problem with similar properties to sensor coordination
 - for experimental investigation of dynamics without details of scanning
- Distributed, approximate k-coloring of a graph’s nodes:
 - each node in a given graph is to be assigned one of k colors
 - such that the fraction of conflicts is minimized
 - where a conflict is an edge that connects nodes of the same color
- Clean metric: (normalized) degree of conflict
 \[\Gamma = k \times \frac{|\{\{u,v\} \mid \{u,v\} \in E \land C_u=C_v\}|}{|E|} \]
 where u,v are nodes, E is the set of undirected edges and C_u is u’s color
 - for a proper coloring \(\Gamma=0 \); for a random coloring \(\Gamma=1 \)
- Same basic algorithm as for sensor coordination
 - called Fixed Probability (FP)
 - each node undergoes periodic-stochastic activation
 - when activated, a node chooses an optimal color for itself
 - based on what it knows of its neighbors’ colors
 - when a node changes color, it broadcasts its new color to adjacent nodes
Summary of Experimental Results

• Activation probabilities of around 0.2 to 0.3 are typically good for sparse graphs
 – higher probabilities lead to incoherence
• The algorithm is scalable in costs and quality of solution
 – per-node, per-step costs depend on edge density
• The algorithm is robust against topological changes and message noise and loss
• Execution does not need to be strictly synchronous
 – the communication latency determines an upper bound on the activation probability
• For very high density graphs, a phase transition is observed
 – proper colorings quickly obtained
Conclusion

• Sensor coordination and graph coloring can both be viewed as distributed constraint optimization
 – where a constraint exists between variables that can influence each other
• The FP algorithm can be view as distributed hill climbing
 – where the variables are essentially distributed (not parallel hill climbing)
 – and where the hill climbing metric can be decomposed into local terms
• This problem class and algorithm seem well suited to soft-real-time applications in which approximate solutions are OK
 – most of the computational cost of combinatorial problems is typically incurred in obtaining the last 5% of a solution
• Ongoing research:
 – formally specifying problems as soft, global constraints
 – refining soft, global constraints into soft, local constraints
 • automated support
 – synthesizing executable code from soft, local constraints
 • automated support
Related Work

• Stochastic activation is a simple technique to enhance coherency of distributed solutions
 – more sophisticated techniques may produce better results
 – but would need to show they are worth the effort/cost
 – of interest: locally adapting the activation probability for highly irregular networks

• Washington University at St. Louis (Zhang et al.) is conducting experiments comparing the FP algorithm with Distributed Breakout (Yokoo et al.)

• A deterministic FP algorithm was published by Fabiunke
 – deterministic version can cause short-term increases in conflicts
 – when combined with randomization, can reach proper colorings
Extra Slides

Details of Experimental Results
Experimental Results: Activation Probability

- Synchronous execution
- As expected, high activation probabilities result in incoherence
 - in extreme cases, thrashing results: constant change with no improvement

- plot shows effect of various activation probabilities
- results are for regular 2D grids
 - edges along x & y axes and diagonals
 - number of colours = chromatic number = 4
 - 500-5000 nodes
- experiments also performed with random graphs having higher, known chromatic numbers
Scalability

• Per-node, per-step costs are independent of the number of nodes
 – for a given edge density
• Quality of solution is independent of the number of nodes

• results shown are for FP(0.3) on 2D grids
• 6 graphs of different sizes (500-5000 nodes)
 – each graph has chromatic number 4
 – each was coloured using 2, 3, 4 & 5 colours
Robustness against Node “Failure”

• Maintain a pool of R randomly selected nodes that have been removed from the graph
 – with period P, restore half of the removed nodes and remove others
 – also remove/restore edges incident to removed/restored nodes

• If the fraction of edges removed is small, the chromatic number of the graph probably does not change
 – changing the chromatic number might cause effects unrelated to robustness

![Graph 1: Continuous change, P=1, small R, little effect](image1)

![Graph 2: Intermittent change, P=30, large R, spikes in the number of conflicts](image2)
Robust Against Communication Noise

- Subject each color-change message to a probabilistic process that may
 - randomize the color (noise)
 - discard the message (loss)
 - pass the message through unchanged
- Small amounts of noise/loss cause small increases in conflicts

- results shown are for FP(0.3) on 2D grids with 4 colours subject to various amounts of message randomization
- similar results were obtained for small amounts of message loss
Effect of Asynchronous Execution/Latency

• Periodic but asynchronous coloring
 – simplifies implementation on distributed hardware

• Asynchronous execution is OK provided that the activation probability α is low with respect to communication latency L
 – “collision probability” along an edge = $1 - (1 - \alpha)^L < \text{threshold}$

• Academic interest: extremely high communication latencies cause a “resonance” effect
 – each color is adopted in turn by almost every node simultaneously
Possible Phase Transition w.r.t. Network Density

- For high-density graphs, the degree of conflict increases with the density for a while.
- For very-high-density graphs, all conflicts are rapidly eliminated—presumably due to large number of backbone variables that implicitly guide the search.

![Graph showing effect of graph density](image)

- Random 20-colorable graphs
- Size ~ 2000 nodes
- \(d\) is the mean degree