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Abstract

The issue of correctness in the context of a certain style of program transformation is investigated.
This style is characterised by the fully automated application of large numbers of simple transformation
rules to a representation of a functional program (serving as a specification) to produce an equivalent
efficient imperative program. The simplicity of the transformation rules ensures that the proofs of their
correctness are straightforward.

A selection of transformations appropriate for use in a particular context are shown to preserve pro-
gram meaning. The transformations convert array operations expressed as the application of a small
number of general-purpose functions into applications of a large number of functions which are amenable
to efficient implementation on an array processor.

Keywords: Correctness proofs, program transformation, functional programming, array pro-
cessor

1 Introduction

In [1, 2], and elsewhere, a style of program derivation is advocated in which a complex change is wrought
on a program through a number of simpler changes brought about by the automated application of a se-
quence of sets of simple transformations. For example, in [3] an imperative, explicitly data-parallel pro-
gram is derived from a pure, functional program (which is used as an abstract specification) in six main
steps.

SML � �-calculus � Unfolded� Simplified
� Array Form � Common Sub-expressions Eliminated
� Fortran Plus Enhanced (DAP)

The functional program (expressed in SML [4]) is translated into the �-calculus; definitions are unfolded;
expressions are simplified using algebraic rules; array expressions are translated into explicitly data-parallel
(but still pure) forms; expressions are optimized; state and imperative control constructs are introduced to
produce an imperative program (expressed in a variant of Fortran for execution on the AMT DAP array
processor [5]).

One of the advantages claimed for this style of derivation is that establishing that program correctness
is preserved at all stages is simplified by (i) the representation of a complex change as a sequence of

�The work reported in this paper was supported by SERC grant GR/G 57970.
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simpler, conceptually independent changes; (ii) the simplicity of the individual transformations; and (iii)
regarding transformations as abstract rewrite rules rather than concentrating on their concrete effect on
given programs.

This paper presents evidence to support this claim. It contains, for the stage in the derivation that pro-
duces the explicitly data-parallel form, a proof of correctness for each of the more complex transformations
and a sample of proofs of correctness for the simple transformations. This stage is conceptually and tech-
nically significant. It is the first of the two pivotal stages in the derivation, the other being the translation
from functional to imperative form. Note that the proofs are of themselves not of great interest — none of
them contains novel proof techniques. Indeed, the interest lies in the fact that the proofs are mundane.

The structure of the paper is as follows: the basic notation used is explained; the functions used in the
initial form and in the Array Form are defined; useful lemmas relating to the functions are stated (their
proofs are relegated to the appendix); the transformations are defined; and their correctness is proved.

2 Basic Notation

.
The basic notation used in this paper is that of the �-calculus with optional type information and a set

of primitive functions. An array is considered to be a mapping from a (finite) set of indices onto some
range of values of type �. A 1-dimensional array may be referred to as a vector and a 2-dimensional array
as a matrix. For a set, the operator + indicates element insertion: S+i � S � –i˝.

In the following sections, four primitive array functions and the Array Form functions are defined.
The primitive functions are taken to define the semantics of arrays. Most array operations commonly en-
countered in numerical mathematics can be compactly expressed using these primitives. However, it is
not intended that a programmer be restricted to using only these primitives: other, perhaps more conve-
nient, functions can be defined in terms of these primitive functions. Transformations can be employed to
eliminate such derived functions using techniques such as unfolding and algebraic simplification.

The Array Form functions are much more restricted than the primitive functions, but are also much
simpler to implement efficiently on an array processor such as the AMT DAP. In effect, the Array Form
may be considered as a functional abstraction of an array processor.

2.1 Primitive Array Functions

The four primitive array functions are: shape, element, generate and reduce.

shape(A:� array) � Shape
Given an array, the function shape can be used to obtain its index set. The extent of an array in a
particular dimension can be obtained by specifying the dimension:

shape(A:� array, n:int) � int

element(A:� array, i:index) � �
The element function returns the value of the element of A at position i. For convenience, the infix
operator @ is defined to be equivalent to element:

A@i � element(A, i)

generate(S:Shape, g:index � �) � � array
The basic function for constructing arrays is generate. The first argument, S, specifies the index
set of the constructed array. The second argument, g, is a function, called the generating function,
which determines the values of the elements: the value of element i is g(i).

The following are some examples of arrays constructed using generate:

� the elementwise addition of two arrays, of arbitrary dimensionality, having the same shape:
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generate(shape(A), �i�A@i+B@i)

� the transpose of a 2-dimensional array A of shape [m, n]:

generate([n, m], �[i, j]�A@[j, i])

An argument, such as i, of a generating function is called a generating index. For multi-dimensional
arrays, the term may also be used of the components of an index argument; for example, in �[i, j]�e,
the generating indices are i and j. It should be clear from context whether a whole index or a compo-
nent is being considered.

reduce(r:� � �� �, r0:�, S:Shape, g:index � �) � �
Many array operations require the elements of an array to be accumulated — or reduced — into a
single value by the repeated application of a binary reducing function. For example, the sum of the
elements of a numeric array is a reduction using the addition function. Reductions are denoted using
the reduce function.

The argument r is the reducing function. The argument r0 is the initial value which is used to
instantiate the accumulation (it is usually an identity of the reducing function and so does not alter
the value of the reduction; its inclusion helps simplify the semantics of reductions by ensuring that a
reduction is well defined even if an array contains only one element, or even no elements).

The arguments S and g (g is a generating function) can be used to specify the elements of the array
which are to be reduced. For example, reduce(+, 0, shape(A), �i�A@i) produces the sum of the
elements of array A. However, the generating function need not necessarily be an application of
element: a reduction can involve any set of values which can be specified by applying a generating
function over an index set. For example, the inner-product of two vectors U and V, of shape [n], can
be expressed as reduce(+, 0, [n], �i�U@i * V@i)

The four functions shape, element, generate and reduce are the basic array functions; most common
vector and matrix operations can be readily expressed using them. Some further examples are given below:

� Row i of a matrix A: generate(shape(A, 2), �[j]�A@[i, j])

� Product of two matrices A and B (which are assumed to be conformant; i.e. the number of columns
of A equals the number of rows of B):

generate([shape(A, 1), shape(B, 2)],
�[i, j]�reduce(+, 0, shape(A, 2), �[k]�A@[i, k]*B@[k, j]))

� Boolean matrix, of shape [n, n], having leading diagonal elements true, and all other elements false:

generate([n, n], �[i, j]�i=j)

2.1.1 Formal Definition of generate and reduce

Definition 1: generate
The generate function is defined by the two identities

shape(generate(S, �i�g)) � S (G1)
� i� � S: element(generate(S, �i�g), i�) � �i�g (i�) (G2)

�

That is, the shape of an array constructed by an application of generate is the shape specified by the
shape argument; and the value of each element of the constructed array is found by applying the generating
function to the element’s index.

When the shape of a generation is a manifest list, axiom G1 may be used in the form

shape(generate([m, n], �i�g), 1) � m
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In the proofs presented in this paper, the condition i� � S in axiom G2 — that an index be a member of
an array’s shape — is usually ignored. It could be verified separately from the main proofs, or it could be
included in the form

element(generate(S, �i�g), i�) � if (i� � S) then �i�g (i�) else 	 (G2�)
where 	 is the undefined value, bottom. Context could then be used to establish that the condition i� � S is
true, and so the conditional expression can be reduced into just the true limb. This technique is illustrated
in one proof (of lemma 5).

Definition 2: reduce
The reduce function is defined recursively on the index set over which the reduction is to be performed:

reduce(r, r0, 
, �i�g) � r0 (R1)
reduce(r, r0, S+i�, �i�g) � r(�i�g (i�), reduce(r, r0, S, �i�g)) (R2)

where i’ �� S and 
 denotes the empty set (of indices)

�

Note that no order is defined for performing reductions, so reducing functions must be associative and
commutative.

2.2 Array Form Functions

The main Array Form functions are now defined. These functions are intended to capture the sorts of
operations that any array processor could be expected to implement efficiently (for example, simultaneously
adding corresponding elements of two arrays). Some of the functions, and some of the transformations
discussed later, are perhaps peculiar to array processors in which the processing elements are arranged in a
two-dimensional array (the AMT DAP is one such processor). It should be emphasized that what is under
consideration in this paper is the correctness of the transformations that create the Array Form, rather than
how well suited the Array Form is for use on a particular processor.

2.2.1 Main Array Form Functions

See Figure 1 for examples. Probably the most important functions of the Array Form are the mapping
functions, which apply a scalar function to each element of an array, or to corresponding elements of a pair
of arrays. Mappings are supported for only certain scalar functions — for example, the basic arithmetic
and logical functions.

Definition 3: map

map(A:� array, f:�� �) � � array
def
� generate(shape(A), �i�f(A@i))

map(A:� array, B:� array, f:� � � � �) � � array
def
� generate(shape(A), �i�f(A@i, B@i))

where A and B have the same shape
�

The fold function performs restricted forms of reductions, in which the values reduced are elements of
an array and where the reducing function is one of a limited set (and typically evaluating sum, product,
logical and, logical or, minimum or maximum). A variant of fold is also defined which reduces a matrix
along its rows, thereby forming a vector of (partial) cumulative values — this corresponds to operations on
the DAP which compute multiple vector reductions simultaneously.

Definition 4: fold
fold(r:� � �� �, r0:�, A:� array) � �

def
� reduce(r, r0, shape(A), �i�A@i)

�

Definition 5: fold.rows
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Figure 1: Examples of Array Form functions

fold.rows(r:� � �� �, R0:� vector, A:� matrix) � � vector
def
� generate([shape(A, 1)], �[i]�reduce(r, R0@[i], [shape(A, 2)], �[j]�A@[i, j]))

�

The join function is a data-parallel conditional. The result of applying join is an array with elements
merged from two arrays according to whether the corresponding element of a mask array is true or false.

Definition 6: join

join(M:boolean array, T:� array, F:� array) � � array
def
� generate(shape(M), �i�if M@i then T@i else F@i)

where M, T and F have the same Shape

�

2.2.2 Miscellaneous Functions

The Array Form defines many functions for performing miscellaneous array operations such as transposing
a matrix, ‘shifting’ the elements of a matrix in a specified direction and constructing logical matrices having
true values in certain patterns (such as along their main diagonals or in their upper triangles). Here, only
a few examples of such functions are considered, since the correctness of transformations involving such
functions is usually trivial to establish from the function definitions.

Definition 7: matrix.transpose

matrix.transpose(A:� array) � � array
def
� generate([shape(A, 2), shape(A, 1)], �[i, j]�A@[j, i])

�

Definition 8: row

row(A:� array, i:int) � � array
def
� generate(shape(A, 2), �[j]�A@[i, j])

�
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3 Preliminary Results

Some properties of generate and reduce are presented below — proofs of these properties are presented
in the appendix. In addition, some elementary identities of the �-calculus are noted (without proof).

In the following, if an identifier is introduced on the right of an identity, then it should be assumed that
it is a ‘new’ identifier, i.e. one that does not occur free in the expression on the left. For example, in the
identity

B � �x�B[e � x] (e)

it is to be assumed that x does not occur free in B, so that no problem arises with name clashes.

Lemma 1: Identity �-bindings
A �-binding in which the bound identifier and the bound value are the same is redundant.

�x�B (x) � B

�

Lemma 2: Propagation of �-binding out of abstraction
A �-binding can be moved out of an immediately enclosing �-abstraction if the bound value does not
depend on the identifier of the abstraction.

�i�(�x�B (e)) � �x�(�i�B) (e)
where e does not contain i

(Note that x is still bound to e.)
�

Lemma 3: Propagation of �-binding through a function application
An applied �-binding that is an argument in a function application can be moved outside the function
application.

f(�x�B (e)) � �x�f(B) (e)
where f does not contain x

�

This identity can be generalised for moving a �-binding out of an argument in a function application
which has more than one argument, provided all of the other arguments are free of the bound identifier.
Note that this lemma can be applied in both directions, to move a �-binding into, as well as out of, an
argument position.

3.1 Properties of Elementwise Applications

The following lemmas pertain to elementwise applications of functions. Such applications can be denoted
using the map function but, for convenience in later proofs, the operator � is used to promote a binary
function to a binary function on arrays. For example, �(+) is a function that performs elementwise addition
of two arrays.

Definition 9: Elementwise Operator, �

�(f:� � � � �) � (� array � � array � � array)
def
� �X:� array, Y:� array�generate(shape(Y), �i�f(X@i, Y@i))

�

Lemma 4: Shape of an elementwise application
The shape of an application of an elementwise function to two arrays is the same as the shape of the second
argument array (which is required to be of the same shape as the first argument array).

shape(�(f)(A, B)) � shape(B)

�

6



Lemma 5: Element of an elementwise application
An element of an elementwise application of a function to two arrays is the value of that function applied
to the corresponding elements of the arrays; that is, element propagates through �:

element(�(f)(A, B), i) � f(element(A, i), element(B, i)) � f(A@i, B@i)
for i � shape(�(f)(A, B))

�

3.2 Properties of Reductions

If the reducing function of a reduction is an elementwise function, then the result of the reduction is an
array, so it is valid to apply the shape and element functions to the result. Such a reduction is called an
�-reduction:

Definition 10: �-reduction
A reduction of the form

reduce(�(r), R0, S, �i�g)

is called an �-reduction.
�

The following two lemmas pertain to �-reductions.

Lemma 6: Shape of an �-reduction
The result of an �-reduction has the same shape as the reduction’s initial value:

shape(reduce(�(r), R0, S, �i�g)) � shape(R0)

�

Lemma 7: Element of an �-reduction
An element of a reduction using �(r) is a reduction using r: that is, element can be propagated through an
�-reduction.

element(reduce(�(r), R0, S, �i�g), j)
� reduce(r, element(R0, j), S, �i�element(g, j))

where S is independent of j
�

Lemma 8: Reduction over a union
Since no order is specified for performing reductions (and since reducing functions are required to be
associative and commutative), a reduction over an index set that is the union of two sets can be split into a
pair of reductions.

reduce(r, r0, S � T, �i�e) � r(reduce(r, r0, S, �i�e), reduce(r, r0, T, �i�e))
where r0 is an identity element of r, and S and T are disjoint

�

Lemma 9: Collapsing singleton dimensions
If one of the dimensions of a multi-dimensional reduction contains only a single member, that dimension
can be collapsed — that is, removed from the reduction’s index set. For this paper, collapsing is required
for only leading dimensions (i is a leading dimension in –i˝ � S).

reduce(r, r0, –i�˝ � S, �ij�e) � reduce(r, r0, S, �j�(�i�e (i�)))
where r0 is an identity element of r
and where i� and i have the same dimensionality

�
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4 The Transformations

In this section, the main transformations (actually, identities) for converting from expressions that use the
basic array functions (generate, reduce, etc.) into expressions that use Array Form functions are listed;
their correctness is established in the following section. The basic strategy for converting into Array Form
is to propagate applications of generate into generating functions; for example, a generation of a suitable
scalar function becomes an application of map; and a generation of a conditional expression becomes
an application of join — this strategy is discussed at length in [3]. In addition, several transformations
optimize combinations of operations to make best use of the DAP hardware.

4.1 General Transformations

Constructing an array by applying a scalar function to the elements of an array (or to corresponding el-
ements of a pair of arrays) is equivalent to applying the elementwise version of the function (expressed
using map).

Transformation 1: Propagation through scalar functions

generate(S, �i�f(a)) � map(generate(S, �i�a), f)
generate(S, �i�f(a, b)) � map(generate(S, �i�a), generate(S, �i�b), f)

where f is a scalar function for which elementwise application is supported by map

�

(The function f is necessarily independent of i.)
Constructing an array by evaluating a conditional expression for each element is equivalent to forming

a data-parallel conditional, in which arrays are constructed from the true and false limbs of the conditional
and are merged according to a mask generated from the predicate.

Transformation 2: Propagation through conditional

generate(S, �i�if p then t else f)
� join(generate(S, �i�p), generate(S, �i�t), generate(S, �i�f))

�

As mentioned previously, only a few examples of miscellaneous Array Form functions will be consid-
ered.

Transformation 3: matrix.transpose

generate([m, n], �[i, j]�A@[j, i]) � matrix.transpose(A)
where A has shape [n, m]

�

Transformation 4: row

generate([m], �[j]�A@[r, j]) � row(A, r)
where A has shape [n, m] and A and r are independent of j

�

4.2 Propagation through �-expressions

Consider a generation in which the body of the generating function is a �-binding:

generate(S, �i�(�x�B (e)))

The task of the Array Form transformations is to convert this generation into a form that can be efficiently
implemented on an array processor: in the general case, all of the bindings are evaluated in parallel, then
all of the body expressions are evaluated in parallel:

8



� i � S: evaluate e;
� i � S: evaluate B

If parallelism of unlimited dimensionality were permitted, it would be a simple matter to create this parallel
form. However, because the DAP is limited to 2-dimensional parallelism, it is incapable of efficiently
implementing the general case in the above manner. For example, if S were 2-dimensional and e 1-
dimensional, then the above scheme would require the creation of a 2-dimensional array of 1-dimensional
arrays, a structure which the DAP can manipulate, but not in a completely parallel manner.

Nevertheless, the above scheme can be used for certain cases where the effective or useful parallelism
is at most 2-dimensional: for example, if S is 1- or 2-dimensional and e is a scalar value; or if S is 2-
dimensional and e is a vector which is independent of one of the dimensions of S. The transformations
below pertain to such cases; if none of these transformations applies to a given binding, then, as a last
resort, the binding can be �-reduced in the hope that the resulting expression can be parallelised. In the
following, it is assumed that all shapes in generations and reductions are at most 2-dimensional.

If the bound value is independent of the generating index, then the generation can be propagated into
the binding.

Transformation 5: Invariant binding

generate(S, �i��x�B (e)) � �x�generate(S, �i�B) (e)
where e is independent of i and S is independent of x

�

If the bound value is a scalar, then the generation can be propagated into the binding by creating an
array of bound values.

Transformation 6: Scalar binding

generate(S, �i�(�x�B (e)))
� �X�generate(S, �i�(�x�B (X@[i]))) (generate(S, �i�e))

where e is a scalar expression
�

The binding for x is removed by �-reduction after application of this transformation.
Suppose that a 2-dimensional array of shape [l, m] is being generated over indices i and j, and that for

each element a �-binding is formed in which the bound value is a vector generation over index k. In the
general case, l�m vectors must be created. However, if the bound vector is independent of j, then only l
vectors need be created (one for each value of i). These l vectors can be created simultaneously as the rows
of a matrix generation over indices i and k.

Transformation 7: Matrix generation, vector binding independent of one generating index

generate([l, m], �[i, j]�(�x�B (generate([n], �[k]�e))))
� �X�generate([l, m], �[i, j]�(�x�B (generate([n], �[k]�X@[i, k]))))

(generate([l, n], �[i, k]�e))
where e is a function of i and k but not of j, and is not an application of element

�

As it stands, the expression produced by this transformation does not appear to be an improvement over
the initial expression, as the generation still contains a vector binding. However, it is usually the case that
B requires only individual elements of x, and not the vector as a whole.� Then the binding for x can be
reduced and parallelisation of the resulting expression can proceed.

A similar transformation can be applied when e is independent of i rather than j. (It is assumed that the
case of e independent of k is optimized by converting the vector binding into a scalar binding.)

If the array being constructed is a matrix and the bound value is a vector which is dependent on both
matrix indices, and if the generating function of the vector is a function application, then the function
application can be moved outside the vector. This transformation is expressed below for arrays of arbitrary
dimensionality, but it is applied in practice only to a matrix generation/vector binding combination.

�Function unfolding and algebraic simplification normally result in array expressions occurring solely as arguments of element.
The exceptions are arrays which occur as arguments in or results of applications of recursive functions.
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Transformation 8: Binding is a function application

generate(S, �i�(�x�B (generate(T, �j�f(a)))))
� generate(S, �i�(�x��(�x�B (generate(T, �j�f(x�@j))))) (generate(T, �j�a)))

�

As discussed above, it may be possible to remove the binding for x if only individual elements of x are
required, and not the entire array. The repeated application of this transformation may reduce the binding
into a form that can be parallelised by one of the preceding transformations. A similar transformation can
be used if f is a binary function.

4.3 Transformations for Reductions

Consider a generation having a generating function that is a reduction:

generate(S, �i�reduce(r, r0, T, �j�g))

There are several ways that this expression could be converted into Array Form:

� Each of the reductions can be parallelised: that is, i is iterated over sequentially, and for each i, a
parallel reduction is performed.

� The generation can be parallelised by exchanging the generate and the reduce; then j is iterated
over sequentially, while for each j, the generation is evaluated in parallel.

� The generation and the reduction can be combined into a partial reduction (such as fold.rows), so
that both are evaluated in parallel.

The third option, combination, is generally preferable when it is feasible, since it makes maximum use
of parallelism. However, on a computer such as the DAP, which is limited to 2-dimensional parallelism,
combination is possible only when both S and T are 1-dimensional.

Failing the third option, the second option is preferable, since generations generally make better use
of parallelism than reductions. (For example, two arrays of arbitrary size can, theoretically, be added in a
single step, whereas the reduction of an array of size [n] requires log

�
�n� steps.) �

The following two transformations enforce these preferences.

Transformation 9: generate-reduce combination

generate([m], �[i]�reduce(r, r0, [n], �[j]�e))
� fold.rows(r, generate([m], �[i]�r0), generate([m, n], �[i, j]�e))

where n and r are independent of i

�

Transformation 10: generate-reduce swap

generate(S, �i�reduce(r, r0, T, �j�e))
� reduce(�(r), generate(S, �i�r0), T, �j�generate(S, �i�e))

where r, r0 and T are independent of i and S is independent of j

�

This transformation can be applied for arrays of arbitrary dimensionality; for the DAP, however, it is used
only for matrix generation and vector reduction.

If each component of a reduction is itself a reduction (which uses the same reducing function), then
coalescing the reductions into a single reduction increases parallelism.

�Exchanging a matrix generation and a vector reduction is equivalent to the well known optimization for matrix product, in which
the ‘ijk’ order (k parallel) is converted into the ‘kij’ order (ij parallel).
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Transformation 11: reduce-reduce combination
reduce(r, r0, S, �i�reduce(r, r0, T, �j�e)) � reduce(r, r0, S � T, �ij�e)

where r0 is an identity element of r, and r and T are independent of i
�

5 Proofs of Correctness

The correctness of the transformations discussed in the preceding section is established below. The proofs
are presented in the same order as the transformations.

Proof 1: Propagation through scalar functions
Consider the case of a binary function.

generate(S, �i�f(a, b)) � map(generate(S, �i�a), generate(S, �i�b), f)

Proof follows directly from the definition of map:

map(generate(S, �i�a), generate(S, �i�b), f)
= definition 3

generate(shape(generate(S, �i�a)),
�i�f(element(generate(S, �i�a), i), element(generate(S, �i�b), i)))
= by G1 and G2

generate(S, �i�f(�i�a (i), �i�b (i)))
= remove identity bindings (lemma 1)

generate(S, �i�f(a, b))
�

A similar proof applies for unary functions.
Note that the proof is simplified by choosing the appropriate generating index when the generation is

introduced. Any other generating index, say j, could be used and would lead to an expression such as

generate(S, �j�f(�i�a (j), �i�b (j)))

which, since f is independent of j, is equivalent to

generate(S, �j�(�i�f(a, b) (j)))

which is one way of expressing the process of �-converting a �-abstraction from using identifier i to using
identifier j; that is, this expression is equivalent under �-conversion to generate(S, �i�f(a, b)).

Proof 2: Propagation through conditional

generate(S, �i�if p then t else f)
� join(generate(S, �i�p), generate(S, �i�t), generate(S, �i�f))

Proof follows directly from the definition of join:

join(generate(S, �i�p), generate(S, �i�t), generate(S, �i�f))
= definition 6

generate(shape(generate(S, �i�p)),
�i�if element(generate(S, �i�p), i)
then element(generate(S, �i�t), i)
else element(generate(S, �i�f), i))
= by G1 and G2

generate(S, �i�if �i�p (i) then �i�t (i) else �i�f (i))
= remove identity bindings (lemma 1)

generate(S, �i�if p then t else f)
�
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Proof 3: matrix.transpose

generate([m, n], �[i, j]�A@[j, i]) � matrix.transpose(A)
where A has shape [n, m]

Proof follows directly from the definition of matrix.transpose:

matrix.transpose(A)
= definition 7

generate([shape(A, 2), shape(A, 1)], �[i, j]�A@[j, i])
= substituting for the shape of A

generate([m, n], �[i, j]�A@[j, i])
�

Proof 4: row
generate([m], �[j]�A@[r, j]) � row(A, r)

where A and r are independent of i and A has shape [n, m]

Proof follows directly from the definition of row:

row(A, r)
= definition 8

generate(shape(A, 2), �[j]�A@[r, j])
= substituting for the shape of A

generate([m], �[j]�A@[r, j])
�

5.1 Proofs of Transformations for �-bindings

The following proofs pertain to transformations for generating functions whose bodies are �-bindings.

Proof 5: Invariant binding

generate(S, �i�(�x�B (e))) � �x�generate(S, �i�B) (e)
where e is independent of i and S is independent of x

Proof involves only elementary properties of the �-calculus:

generate(S, �i�(�x�B (e)))
= move binding of x out of abstraction of i (lemma 2)

generate(S, �x�(�i�B) (e))
= move binding out of application of generate (lemma 3)

�x�generate(S, �i�B) (e)
�

Proof 6: Scalar binding

generate(S, �i�(�x�B (e)))
� �X�generate(S, �i�(�x�B (X@[i]))) (generate(S, �i�e))

where e is a scalar
Proof follows by �-reducing X:

�X�generate(S, �i�(�x�B (X@[i]))) (generate(S, �i�e))
= �-reduce X; only occurrence of X is that shown

generate(S, �i�(�x�B (element(generate(S, �i�e), i))))
= by G2

generate(S, �i�(�x�B (�i�e (i))))
= remove identity binding (lemma 1)

generate(S, �i�(�x�B (e)))
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Proof 7: Matrix generation, vector binding independent of one generating index

generate([l, m], �[i, j]�(�x�B (generate([n], �[k]�e))))
� �X�generate([l, m], �[i, j]�(�x�B (generate([n], �[k]�X@[i, k]))))

(generate([l, n], �[i, k]�e))
where e is depednent on i and k, but not on j

Proof follows by �-reducing X:

�X�generate([l, m], �[i, j]�(�x�B (generate([n], �[k]�X@[i, k]))))
(generate([l, n], �[i, k]�e))
= �-reduce X; only occurrence of X is that shown

generate([l, m],
�[i, j]�(�x�B (generate([n], �[k]�element(generate([l, n], �[i, k]�e), [i, k])))))
= by G2

generate([l, m], �[i, j]�(�x�B (generate([n], �[k]�(�[i, k]�e ([i, k]))))))
= remove identity binding (lemma 1)

generate([l, m], �[i, j]�(�x�B (generate([n], �[k]�e))))
�

Proof 8: Binding is a function application

generate(S, �i�(�x�B (generate(T, �j�f(a)))))
� generate(S, �i�(�x��(�x�B (generate(T, �j�f(x�@j))))) (generate(T, �j�a)))

Proof follows by �-reducing x�:

generate(S, �i�(�x��(�x�B (generate(T, �j�f(x�@j))))) (generate(T, �j�a)))
= �-reduce x�: only instance of x� is that shown

generate(S, �i�(�x�B (generate(T, �j�f(element(generate(T, �j�a), j))))))
= by G2

generate(S, �i�(�x�B (generate(T, �j�f(�j�a (j))))))
= remove identity binding (lemma 1)

generate(S, �i�(�x�B (generate(T, �j�f(a)))))
�

5.2 Proofs of Transformations for Reductions

Proof 9: generate-reduce combination

generate([m], �[i]�reduce(r, r0, [n], �[j]�e))
� fold.rows(r, generate([m], �[i]�r0), generate([m, n], �[i, j]�e))

where n and r are independent of i

Proof follows directly from the definition of fold.rows:
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fold.rows(r, generate([m], �[i]�r0), generate([m, n], �[i, j]�e))
= by definition 5

generate([shape(generate([m, n], �[i, j]�e), 1)],
�[i]�reduce(r,
element(generate([m], �[i]�r0), [i]),
[shape(generate([m, n], �[i, j]�e), 2)],
�[j]�element(generate([m, n], �[i, j]�e), [i, j])))

= by G1 and G2

generate([m], �[i]�reduce(r, �[i]�r0 ([i]), [n], �[j]��[i, j]�e ([i, j])))
= remove identity bindings (lemma 1)

generate([m], �[i]�reduce(r, r0, [n], �[j]�e))
�

Proof 10: generate-reduce swap

generate(S, �i�reduce(r, r0, T, �j�e))
� reduce(�(r), generate(S, �i�r0), T, �j�generate(S, �i�e))

where r, r0 and T are independent of i and S is independent of j

Since both sides of this identity evaluate to arrays, proof of this identity requires proof that the two
arrays have the same shape and the same elements.

Same Shapes

Left side:

shape(generate(S, �i�reduce(r, r0, T, �j�e)))
= by G1

S

Right side:

shape(reduce(�(r), generate(S, �i�r0), T, �j�generate(S, �i�e)))
= by lemma 6

shape(generate(S, �i�r0))
= by G1

S

Same Elements

Consider an arbitrary element i�.

Left side:

element(generate(S, �i�reduce(r, r0, T, �j�e)), i�)
= by G2

�i�reduce(r, r0, T, �j�e) (i�)
= since r, r0 and T are independent of i, move binding into reduction (lemma 3)

reduce(r, r0, T, �i�(�j�e) (i�))
= move binding of i into abstraction of j (lemma 2)

reduce(r, r0, T, �j�(�i�e (i�)))
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Right side:

element(reduce(�(r), generate(S, �i�r0), T, �j�generate(S, �i�e)), i�)
= move element into reduction (lemma 7)

reduce(r, element(generate(S, �i�r0), i�), T,
�j�element(generate(S, �i�e), i�))
= by G2

reduce(r, �i�r0 (i�), T, �j�(�i�e (i�)))
= since r0 is independent of i

reduce(r, r0, T, �j�(�i�e (i�)))
Hence, the left and right sides have the same shapes and the same elements; thus they are equivalent.

�

Proof 11: reduce-reduce combination

reduce(r, r0, S, �i�reduce(r, r0, T, �j�e)) � reduce(r, r0, S � T, �ij�e)
where r0 is an identity element of r and r, r0 and T are independent of i

Proof is by induction over S.

Base Step: 


Left side:

reduce(r, r0, 
, �i�reduce(r, r0, T, �j�e))
= by R1

r0

Right side:

reduce(r, r0, 
 � T, �ij�e)
=

reduce(r, r0, 
, �ij�e)
= by R1

r0

Inductive Step: S+i’

Assume identity holds for shape S. Now consider shape S+i�, where i� �� S.

Left side:

reduce(r, r0, S+i�, �i�reduce(r, r0, T, �j�e))
= by R2

r(�i�reduce(r, r0, T, �j�e) (i�), reduce(r, r0, S, �i�reduce(r, r0, T, �j�e)))
= since r, r0 and T are independent of i,

move binding for i into reduce (lemma 2)

r(reduce(r, r0, T, �i�(�j�e) (i�)), reduce(r, r0, S, �i�reduce(r, r0, T, �j�e)))
= induction hypothesis; move binding for i into abstraction of j (lemma 3)

r(reduce(r, r0, T, �j�(�i�e (i�))), reduce(r, r0, S � T, �ij�e))
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Right side:

reduce(r, r0, (S+i�) � T, �ij�e)
= by definition of set insertion

reduce(r, r0, (S � –i�˝) � T, �ij�e)
=

reduce(r, r0, (S � T) � (–i�˝ � T), �ij�e)
= split reduction (lemma 8)

r(reduce(r, r0, S � T, �ij�e), reduce(r, r0, –i�˝ � T, �ij�e))
= collapse singleton dimensions in reduction (lemma 9); r commutes

r(reduce(r, r0, T, �j�(�i�e (i�))), reduce(r, r0, S � T, �ij�e))
Hence, by induction, the identity holds for all shapes.

�

6 Conclusions

The transformations required for converting basic array expressions into whole-array form have been shown
to preserve the meaning of expressions. The majority of the proofs of correctness are simple and many are
trivial; even the more complex proofs are straightforward to carry out, and use only well-known techniques
(primarily induction over sets).

The simplicity of the proofs is due in large measure to the decomposition of a derivation into indepen-
dent stages and to the decomposition of each stage into a sequence of simple transformations — the effect
of each transformational step is small and is consequently readily amenable to formal analysis. In addition,
the postponement of consideration of imperative details until very late in a derivation allows most of the
transformational steps to be made within a purely functional framework; indeed, in this paper, it was not
necessary to consider imperative details at all, even though the motive for applying the transformations is
to tailor a program to the peculiarities of a particular type of imperative system.

Transformation sequences provide a means of characterising the special features of particular parallel
architectures and/or problems domains (e.g. array processors or sparse matrix problems). The transfor-
mations relating to array processors presented in this paper may be reused in the derivation of efficient
implementations of algorithms for the solution of a range of problems. Further, they are applied automati-
cally by a tool. For these reasons, it is particularly important that the transformation sequence be proved to
be meaning preserving.

A Proofs of Preliminary Lemmas

Some basic properties of generate and reduce are established below.

A.1 Properties of Elementwise Applications

Proof of Lemma 4: Shape of an elementwise application

shape(�(f)(A, B)) � shape(B)

Proof.

shape(�(f)(A, B))
= definition of � (definition 9)

shape(�X, Y�generate(shape(Y), �i�f(X@i, Y@i)) (A, B))
= �-reduce

shape(generate(shape(B), �i�f(A@i, B@i)))
= by G1

shape(B)
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Proof of Lemma 5: Element of an elementwise application

element(�(f)(A, B), i) � f(element(A, i), element(B, i)) � f(A@i, B@i)
for i � shape(�(f)(A, B))

Proof.

element(�(f)(A, B), i�)
= definition of � (definition 9)

element(�X, Y�generate(shape(Y), �i�f(X@i, Y@i)) (A, B), i�)
= �-reduce

element(generate(shape(B), �i�f(A@i, B@i)), i�)
= by G2�

if (i� � shape(�(f)(A, B))) then �i�f(A@i, B@i) (i�) else 	
= i� � shape(�(f)(A, B)) is true by assumption

�i�f(A@i, B@i) (i�)
= �-reduce

f(A@i�, B@i�)
�

A.2 Properties of Reductions

Proof of Lemma 6: Shape of an �-reduction

shape(reduce(�(r), R0, S, �i�g)) � shape(R0)

Proof.
Proof is by induction on S.

Base Step: 


shape(reduce(�(r), R0, 
, �i�g))
= by R1

shape(R0)

Inductive Step: S+i’
Assume lemma holds for shape S. Now consider shape S+i�, where i� �� S.

shape(reduce(�(r), R0, S+i�, �i�g))
= by R2

shape(�(r)(�i�g (i�), reduce(�(r), R0, S, �i�g)))
= by lemma 4

shape(reduce(�(r), R0, S, �i�g))
= by induction hypothesis

shape(R0)
Hence, by induction, the lemma holds for all shapes.

�

Proof of Lemma 7: Element of an �-reduction

element(reduce(�(r), R0, S, �i�g), j)
� reduce(r, element(R0, j), S, �i�element(g, j))

where S is independent of j
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Proof. Proof is by induction on the shape over which the reduction is performed.

Base Step: 


Left side:

element(reduce(�(r), R0, 
, �i�g), j)
= by R1

element(R0, j)

Right side:

reduce(r, element(R0, j), 
, �i�element(g, j))
= by R1

element(R0, j)

Inductive Step: S+i’
Assume the lemma holds for shape S. Now consider shape S+i�, where i� �� S.

Left side:

element(reduce(�(r), R0, S+i�, �i�g), j)
= by R2

element(�(r)(�i�g (i�), reduce(�(r), R0, S, �i�g)), j)
= by lemma 5

r(element(�i�g (i�), j), element(reduce(�(r), R0, S, �i�g), j))
= by induction hypothesis

r(element(�i�g (i�), j), reduce(r, element(R0, j), S, �i�element(g, j)))

Right side:

reduce(r, element(R0, j), S+i�, �i�element(g, j))
= by R2

r(�i�element(g, j) (i�), reduce(r, element(R0, j), S, �i�element(g, j)))
= since j does not contain i, propagate �-binding into element (lemma 3)

r(element(�i�g (i�), j), reduce(r, element(R0, j), S, �i�element(g, j)))
Hence, by induction, the lemma holds for all shapes.

�

Proof of Lemma 8: Reduction over a union
reduce(r, r0, S � T, �i�e) � r(reduce(r, r0, S, �i�e), reduce(r, r0, T, �i�e))

where r0 is an identity element of r, and S and T are disjoint

Proof. Proof is by induction over S.

Base Step: 


Left side:

reduce(r, r0, 
 � T, �i�e)
=

reduce(r, r0, T, �i�e)

Right side:

r(reduce(r, r0, 
, �i�e), reduce(r, r0, T, �i�e))
= by R1

r(r0, reduce(r, r0, T, �i�e))
= since r0 is an identity of r

reduce(r, r0, T, �i�e)
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Inductive Step: S+i’

Assume lemma holds for shape S. Now consider shape S+i�, where i� �� S � T.

Left side:

reduce(r, r0, (S+i�) � T, �i�e)
= interchanging set insertion and union

reduce(r, r0, (S � T)+i�, �i�e)
= by R2

r(�i�e (i�), reduce(r, r0, S � T, �i�e))
= by induction hypothesis

r(�i�e (i�), r(reduce(r, r0, S, �i�e), reduce(r, r0, T, �i�e)))

Right side:

r(reduce(r, r0, S+i�, �i�e), reduce(r, r0, T, �i�e))
= by R2

r(r(�i�e (i�), reduce(r, r0, S, �i�e)), reduce(r, r0, T, �i�e))
= since r is associative

r(�i�e (i�), r(reduce(r, r0, S, �i�e), reduce(r, r0, T, �i�e)))
Hence, by induction, the lemma holds for all shapes.

�

Proof of Lemma 9: Collapsing singleton dimensions

reduce(r, r0, –i�˝ � S, �ij�e) � reduce(r, r0, S, �j�(�i�e (i�)))
where r0 is an identity element of r
and where i� and i have the same dimensionality

Proof. Proof is by induction over S.

Base Step: 


Left side:

reduce(r, r0, –i�˝ � 
, �ij�e)
=

reduce(r, r0, 
, �ij�e)
= by R1

r0

Right side:

reduce(r, r0, 
, �j�(�i�e (i�)))
= by R1

r0

Inductive Step: S+j’

Assume lemma holds for shape S. Now consider shape S+j�, where j� �� S.
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Left side:

reduce(r, r0, –i�˝ � (S+j�), �ij�e)
= by definition of set insertion

reduce(r, r0, –i�˝ � (S � –j�˝), �ij�e)
=

reduce(r, r0, (–i�˝ � S) � (–i�˝ � –j�˝), �ij�e)
= split index set (lemma 8)

r(reduce(r, r0, –i�˝ � S, �ij�e), reduce(r, r0, –i�˝ � –j�˝, �ij�e))
= induction hypothesis; cartesian product of singleton sets is a singleton set

r(reduce(r, r0, S, �j�(�i�e (i�))), reduce(r, r0, –i�j�˝, �ij�e))
= by R2

r(reduce(r, r0, S, �j�(�i�e (i�))), r(�ij�e (i�j�), reduce(r, r0, 
, �ij�e)))
= by R1 and by definition of index concatenation

r(reduce(r, r0, S, �j�(�i�e (i�))), r(�i, j�e (i�, j�), r0))
= r0 is an identity of r; Currying

r(reduce(r, r0, S, �j�(�i�e (i�))), �j�(�i�e (i�)) (j�))

Right side:

reduce(r, r0, S+j�, �j�(�i�e (i�)))
= by R2

r(�j�(�i�e (i�)) (j�), reduce(r, r0, S, �j�(�i�e (i�))))
= since r is commutative

r(reduce(r, r0, S, �j�(�i�e (i�))), �j�(�i�e (i�)) (j�))
Hence, by induction, the lemma holds for all shapes.

�
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