
Deriving distributed MIMD implementations from functional

speci�cations

J�P� Wraya� S� Fitzpatrick� M� Clint� P�L� Kilpatrick

aDepartment of Computer Science�The Queen�s University of Belfast�
Belfast BT� �NN� Northern Ireland� UK

The construction of reliable and e�cient scienti�c software for execution on novel com�
puter architectures is a demanding and error�prone task� By automatically generating
e�cient parallel implementations of functional speci�cations using program transforma�
tion� many of these problems may be overcome� The basic method is discussed� with
particular reference to its extension to generate implementations for execution on dis�
tributed memory MIMD machines�

�� INTRODUCTION

Many commonly occurring problems in science and engineering involve the application
of a single operation to each element of a very large vector or matrix� Such problems
are eminently suitable for fast solution on both SIMD and MIMD parallel computers�
However� the construction of programs in the high level languages currently available for
these machines su	ers from several drawbacks


� constructing reliable parallel programs is a very demanding task�for example� the
programmer must consider non�determinism and deadlock�

� parallel programming languages are not� in general� portable� consequently port�
ing an existing program to a new machine may necessitate that the program be
completely rewritten�

� parallel programs are often hard to read and are di�cult to prove correct�

By automatically generating multiple realisations of a program from a single machine�
independent speci�cation these disadvantages can be eliminated without any sacri�ce in
e�ciency�

�� FUNCTIONAL SPECIFICATIONS

In the work described in this paper� machine�independent functional speci�cations are
expressed in a small subset of standard ML ��� A library of numerical mathematical
primitives is provided for the most common matrix operations� For scienti�c applications
ML speci�cations are easy to write and understand because they closely resemble the
original mathematical descriptions�� ���
In order to illustrate the functional speci�cation style� we outline the functional speci�

�cation of a signi�cant problem in applied mathematics




���� Speci�cation of the multigrid algorithm for Poisson�s problem

We require to solve the equation

Lu � f

where L is an approximation� on a given step length� to the Poisson operator� u is a
grid over which the equation is to be solved �each element of u is a function of x and y��
and f is a given n�n grid �each element of which is a function of x and y�� The problem
is assumed to have Dirichilet boundary conditions� ie� the values of u are known on all
boundaries� The solution is given by

solve�L� Jc� f� bv� epsilon�

where L is the operator� Jc is the Jacobian of the operator� f is the given grid� bv is the
boundary value function� epsilon is a measure of the required accuracy� and solve is
de�ned as

fun solve�L�grid�int�int��real� Jc�jacobian� f�grid�

bv�int�int��real� epsilon�real� �

let

val n � size�f�	

val h � 
��real�n�
�	

val u� � create�n� bv�	

val hsqf � scale�f� h�h�	

val epsilon� � epsilon�residual�L� hsqf� u��

in

iterate�L� Jc� u�� hsqf� epsilon��

end	

The functions size� create� and scale are library functions which return the dimension
of a grid� generate a grid from an index function� and scale each element of a grid�
respectively�
The function iterate repeatedly applies a function mg �multigrid� until an acceptably

accurate approximation to the result is obtained


fun iterate�L�grid�int�int��real� Jc�jacobian� ui�grid�

f�grid� epsilon�real� �

let

val res � residual�L� f� ui�	

in

if res � epsilon

then ui

else iterate�L� Jc� mg�L� Jc� ui� f�� f� epsilon�

end	

The function residual returns the error in an approximation to the result�
A single application of the multigrid method is de�ned as follows




fun mg�L�grid�int�int��real� Jc�jacobian� u�grid� f�grid��grid �

let

val relaxu � relax�L� Jc� u� f�	

val csize � �Grid�size�u��
� div �

in

if size�u� � �

then relaxu

else relax�L� Jc�

interpolate� mg�L� Jc� constant�csize� �����

restrict�defect�L� f� relaxu����

relaxu��

f�

end	

The functions relax� restrict� etc� are all speci�ed in the same style� This top�down
derivation continues until all functions are expressed in terms of primitive functions or
previously de�ned functions�
The important thing to note about this style of speci�cation is its transparency�the

functions specify the computation to be carried out� without adding any implementation
details� Furthermore� the speci�cation is not biased towards a particular implementation
language or architecture� As well as being amenable to formal analysis� the speci�cation
can be executed for testing purposes� However� direct execution of the speci�cation is
extremely ine�cient in comparison with an imperative implementation� We outline in
the next section how an e�cient imperative implementation may be generated from the
functional speci�cation�

�� DERIVATION OF IMPERATIVE CODE

An e�cient imperative implementation �expressed in Fortran or C� say� of the speci��
cation may be obtained by the automatic application to the speci�cation of a sequence
of transformations� The transformations are applied using the TAMPR transformation
system��� Each transformation is de�ned by a syntactic pattern replacement rule� For
example� a transformation which applies the distributive law might be expressed as fol�
lows


Transform�

��factor��
� �addop��
� �factor����� �multop��
� �factor����

���

�factor��
� �mult op��
� �factor���� �add op��
�

�factor���� �mult op��
� �factor����

Note that �factor�� �addop� and �multop� are non�terminals of the grammar being
transformed and not entities de�ned by the transformation tool� This rule would� for
example� transform any expression of the form �A�B��C �where A�B� and C belong to the
syntax class �factor�� into the form A�C � B�C�
A single application of a transformation e	ects a small change to the speci�cation�

consequently it is not di�cult to prove that correctness is preserved� The cumulative



e	ect of the application of many transformations can produce an e�ciently executable
Fortran or C version of the original speci�cation� The main steps that are common to all
derivations are as follows


�� The speci�cation is prepared in order to simplify later transformations� For example�
bound variables are renamed in order to eliminate the possibility of name clashes�
and multiple�variable lambda expressions are converted to nests of single variable
lambda expressions� At this stage the transformed speci�cation is in a standard
functional form� Employing a standard form allows alternative functional speci�ca�
tion languages �eg� LISP� Miranda� to be used as the starting point
 transforming
any functional language into standard form is straightforward�

�� The speci�cation is simpli�ed using function unfolding and folding�

�� The prepared speci�cation is manipulated into a form in which all function appli�
cations have simple arguments �either variables or constants�� The transformations
which e	ect this change are based on algebraic identities of the ��calculus�

�� Transformations based on the distributive laws change assignments involving com�
plicated functional expressions into sequences of assignments involving only simple
expressions�

�� Function evaluation is implemented using a mechanism suitable for the target ar�
chitecture� for example� a simple push�pop stack�

�� The implementation is completed by inserting imperative equivalents for certain
functional primitives�

This is a somewhat simpli�ed description
 the complete process is described in more detail
in ���
It is important to note that this approach is not a monolithic process such as compila�

tion� The user can inspect the transformed speci�cation at any stage of the process� and is
free to modify the process by inserting additional transformations or modifying�deleting
existing ones� Therefore the entire process can be tailored to the user�s speci�c require�
ments� In particular� by inserting a few architecture�speci�c transformations at well�
chosen points in a derivation� an appropriate new implementation of the original speci�
�cation can be quickly generated� The method has already been successfully applied to
generate e�cient implementations for sequential� shared�memory multiprocessor� vector�
and distributed array processor machines�� �� �� ��� In all cases the performance of the
automatically generated code matched that of hand�crafted versions�
In the remainder of this paper the extension of the method to allow the generation of

code for distributed memory MIMD machines is described�

�� TRANSFORMATIONS FOR MIMD ARCHITECTURES

���� Implementation Strategy

All data parallel vector and matrix functions in a speci�cation are �automatically�
unfolded and expressed in terms of a primitive function� generate� This function takes



two arguments
 a shape expression �which de�nes the structure of the result� and a
generating function �which de�nes the computation to be carried out for each element of
the structure�� For example� the application

generate�
 
 n� 
 
 n�� fun�i� j� �� a�i� j� � b�i� j��

returns the matrix sum of a and b� On a sequential machine� the result of this expression is
calculated by evaluating the expression a�i�j� � b�i�j� for each element of the matrix�
The result can be e�ciently evaluated on a distributed memory machine if the matrices
a and b are partitioned over the available processing elements so that� for each i and
j� elements a�i�j� and b�i�j� are stored on the same processing element� then the
individual portions of the result can be evaluated in parallel�
However� it is frequently necessary to evaluate expressions such as

generate�
 
 n� 
 
 n�� fun�i� j� �� F�a�i � 
� j�� b�i� j � 
����

In this case� assuming the same partition of data structures as before� there is no guarantee
that the elements a�i�
�j� and b�i�j�
� are local to the processor that is required to
calculate the �i�j�th element of the result� Therefore� in general� each processor must
obtain some non�local data� and transmit data to other processors� before it can evaluate
its portion of the result�
It is convenient to adopt a vertical �striped� partition of data structures� For example� a

structure of dimension ��
��� �
��� could be partitioned over a four�element processor array
in segments of dimension ��
����
��� ��
����
��� ��
����
��� and ��
�����
��� respectively�
The advantage of using stripes is that the north and south neighbours of each element
will always be stored on the same processor� Thus� for example� the expression

a�i� j� � b�i� 
� j� � c�i� 
� j�

could be evaluated locally on each processor without any inter�processor communication�
We assume that only nearest�neighbour data transfers are required� Many scienti�c

applications involve only generating functions of this type� and those that do not can be
re�expressed in this form�
Thus� evaluation of a generate involves� in general� a message�passing phase in which

neighbouring processing elements exchange the values of their leftmost and rightmost
columns� and a computation phase in which the individual segments of the result are
calculated in parallel�

���� Automatic Generation of a MIMD Implementation

The initial �Fortranizing� transformations will ensure that all instances of data parallel
primitives �generate� appear on the right hand side of assignment statements� viz

g��� � generate�
 
 n� 
 
 n�� fun�i� j� �� F�a�i � 
� j�� b�i� j � 
����

We now consider� in a little more detail� how a distributed MIMD implementation of
this assignment is derived� For the sake of clarity� a syntax slightly di	erent from that
used in practice is employed�



The �rst step is to make explicit the data that will be required by each processing ele�
ment� This is achieved using transformations which abstract each occurrence of a variable
out of the body of the generating function� After the application of these transformations
the assignment becomes

g��� � generateusing��a�i � 
� j�� b�i� j � 
��� 
 
 n� 
 
 n��
fun�i� j� �� F�a�i � 
� j�� b�i� j � 
����

The �rst argument of generateusing de�nes a list of matrix elements that are required
to evaluate the generating function for each element of the result� These elements may or
may not be local to the processing element which requires them� The second and third
arguments are the two arguments of the original generate�
A recursive transformation then generates the abstract message�passing and computa�

tion phases necessary to implement the assignment


call obtainifnecessary�a�i � 
� j�� i� j��
call obtainifnecessary�b�i� j � 
�� i� j��
g��� � localgenerate�
 
 n� 
 
 n�� fun�i� j� �� F�a�i � 
� j�� b�i� j � 
���

Note that each of the stages described so far is common to any distributed MIMD imple�
mentation� Only at this point is it necessary to introduce language�speci�c transforma�
tions�
The next stage is to substitute the actual message passing code required for the two calls

to obtainifnecessary� Two subroutines� getfromeast and getfromwest� pre�written
in the target language are required for this� The subroutine getfromeast causes each
processor to pass the leftmost column of its portion of a structure to its west neighbour�
and obtain the corresponding values from its east neighbour� subroutine getfromwest is
similar� The �rst call to obtainifnecessary above is transformed to the empty statement
since� for each i and j� the element a�i�
�j� is local to the processor which is calculating
the �i�j�th element of the result� The second call� however� necessitates data transfer
from west to east and is therefore transformed to

call getfromwest�b� firstcolumn� lastcolumn��

�Note that firstcolumn and lastcolumn are local constants which de�ne a processor�s
share of the matrix��
Finally� the localgenerate is implemented using a nested loop� the bounds for the inner

loop being de�ned by the constants firstcolumn and lastcolumn� Other transformations
introduce the declarations for loop�counter variables� Thus we obtain


integer i� j�

a�
 
 n� firstcolumn 
 lastcolum�� b�
 
 n� firstcolumn 
 lastcolum�
call getfromwest�b� firstcolumn� lastcolumn��
do i � 
� n

do j � firstcolumn� lastcolumn

g����i� j� � F�a�i � 
� j�� b�i� j � 
��
end do

end do�
�����



�� A DISTRIBUTED IMPLEMENTATION OF MULTIGRID

The transformations described in the previous section provide a basis for the generation
of a variety of distributed implementations of a functional speci�cation� They have been
applied to produce an implementation of the multigrid speci�cation outlined in Section ���
for execution on a ring of transputers� The implementation language used is Meiko Fortran
��� In order to produce this implementation� it was necessary to write the skeleton code for
setting up channel names� etc� and to code the subroutines getfromeast and getfromwest

in terms of the message passing primitives of the language� Of course� this only needs
to be done once� so implementations of other functional speci�cations may be generated
without further coding by hand� The code for getfromeast is given below


SUBROUTINE getfromeast�firstcolumn�lastcolumn�columnsize�

� dimension�slice�ename�wname�transport�

� processid�

�include�csncsn�inc�

�include�cs�inc�

�include�csnnames�inc�

PARAMETER �dimens�
��

integer westslaveid�status�firstcolumn�lastcolumn�

� dimension�transport�processid�columnsize�

� slice�dimens�����

character�
� ename� wname

logical notonleft� notonright

notonleft� firstcolumn�NE�


IF �notonleft� THEN

status�csnlookupname�westslaveid�wname��TRUE��

IF �status�NE�CSNOK� THEN

CALL csabort��slave
� cannot look up �wname��
�

ENDIF

CALL csntx�transport ��� westslaveid� slice�
����columnsize�

ENDIF

notonright� lastcolumn�NE�dimension

IF �notonright� THEN

CALL csnrx�transport�CSNNULLID�

� slice�
�lastcolumn�firstcolumn���

� �columnsize�

ENDIF

RETURN

END

Even if adequately commented� code of this nature is quite di�cult to read� write or
modify due to the low�level nature of the communication primitives it uses� However� since



calls to this routine are automatically generated by transformations� these problems are
of no concern to the user� whose view of the implementation is provided by the functional
speci�cation�
As expected� the performance of the distributed imperative implementation far exceeds

that achieved by executing the functional speci�cation� although it is not yet as good
as that of the best handwritten version� However� the automatically generated code can
be inspected to determine what optimizations might be applied to improve e�ciency�
and these optimizations may then be applied automatically to the program using further
transformations�

	� CONCLUSION

It has been demonstrated that it is possible to derive automatically an �admittedly
primitive� imperative implementation of a functional speci�cation for a distributed mem�
ory machine� This derivation is the skeleton for further development
 in particular� by
considering other topologies with more sophisticated data transfer requirements and hy�
brid architectures� The strength of the transformational approach is that such tailoring
is a natural part of the software development process�

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the work of Dr Jim Boyle in developing the TAMPR
system� and Dr Terry Harmer for providing many helpful suggestions� This work is funded
by the SERC under grant No� GR�G ������

REFERENCES

�� J�M� Boyle� Program adaptation and program transformation� In R� Ebert� J� Lueger�
and L� Goecke� editors� Practice in Software Adaptation and Maintenance� pages �����
North�Holland Publishing Co�� Amsterdam� �����

�� J�M� Boyle� M� Clint� S� Fitzpatrick� and T�J� Harmer� The construction of numerical
mathematical software for the AMT DAP by program transformation� In L� Boug�e�
M� Cosnard� Y� Robert� and D� Trystam� editors� Parallel Processing� CONPAR���
VAPP V �LNCS ���	� pages �������� Springer�Verlag� Berlin� �����

�� J�M� Boyle and T�J� Harmer� A practical functional program for the Cray X�MP�
Journal of Functional Programming� ����
������� �����

�� J�M� Boyle and M�N� Muralidharan� Program reusablility through program transfor�
mation� IEEE Transactions on Software Engineering� SE������
�������� �����

�� J� Hughes� Why functional programming matters� The Computer Journal� �����
���
���� �����

�� A� Wilst om� Functional Programming using Standard ML� Prentice Hall� London�
�����


