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1 Introduction

Scientific computing is dominated by matrix and vector algorithms, drawn from linear algebra. Many such
algorithms can be formally defined in a simple, elegant manner that is independent of any particular compu-
tational architecture and that is amenable to analysis. Yet their efficient implementation — and efficiency is
normally paramount in scientific computing — usually requires a low-level, architecture-specific formulation
in a programming language (Fortran or C) that possesses ill-defined semantics.

It is thus generally the case that an efficient implementation of a numerical algorithm is almost completely
different in form from any high-level definition of the algorithm — the form of an implementation is dictated as
much by the computational architecture as by the computations required by the algorithm. The lack of a ready
correspondence between definition and implementation can make an implementation difficult to construct
initially, difficult to verify once constructed and difficult to maintain as the algorithm and implementation
techniques evolve. The strong influence of the computational architecture on an implementation often hinders
adaptation for another architecture.

Furthermore, linear algebra algorithms can usually be employed for arbitrarily large data sets; practical appli-
cations often require data sets for which standard programming techniques would result in an implementation
that requires too much storage or that takes too long to execute to be useful. In such cases, it may be possible
to use special programming techniques based on properties of the data sets (such as symmetry or sparsity) to
reduce the time and storage requirements of an implementation.

While such programming techniques are often conceptually simple, their use normally requires considerable
attention to detail from the programmer (so their use is error prone) and often distorts an implementation of
an algorithm even further from any high-level definition of the algorithm (so further hindering construction,
verification and maintenance).

1A revised version of this report is to appear in the Computer Journal.
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1.1 Program Derivation

1.1 Program Derivation

The method of formal program derivation can be used to overcome the problems arising from the discrepancy
in form between algorithm definition and algorithm implementation. Rather than manually construct an
implementation that is intended to correspond to the definition, an implementation is derived step-by-step
from the definition, each step of the derivation being performed by the application of a correctness-preserving
program transformation. A derived implementation is thus known by construction to satisfy the definition.

In the work reported here,program transformation and derivation is entirely automated: a programmer constructs
transformations using a formal, wide-spectrum grammar; arranges the transformations in the order they are to
be applied; and initiates the derivation process, giving a definition of the algorithm that is to be implemented.
The programmer’s rôle is thus to develop methods that can be used to construct implementations, and to encode
these methods as sequences of transformations.

The automated approach to program derivation overcomes the problems of construction, verification and
maintenance:

� If the transformations and the transformation system are trusted, the derived implementation can be
assumed to match the source definition.

� If an algorithm definition is changed, simply re-derive an implementation. The process is automated, so
little effort is required from the programmer.

� Evolution of an implementation method requires changing and/or extending a subset of the transforma-
tions. New implementations can then be derived automatically.

� An automated system is not prone to human failings such as lapses in concentration when using intricate
implementation methods. A programmer develops systematic methods for implementing algorithms and
encodes these methods as transformations; the transformation system attends to the mechanical details
of applying the rules.

1.2 Families of Implementations

Experience has shown that many transformations are independent of the computational architecture for which an
implementation is being derived. Derivations may require relatively minor modification to produce implementa-
tions for other architectures. Program derivation thus permits a family of architecture-specific implementations
to be produced from a single, architecture-independent specification.

In previous work, Boyle, Harmer, Fitzpatrick et. al. [1, 2, 3] have discussed the derivation of implementations
for sequential, vector, array and multi-processor systems. In this paper, an additional stage for these derivations
is discussed. This new stage can optionally be applied to tailor implementations for a particular form of data —
sparse matrices. That is, a programmer produces an algorithm definition which uses standard (dense) definitions
of operations. He modifies this definition only by adding assertions to specify the type of sparsity of ‘input’
matrices. The new stage of the derivations optimizes computations to take advantage of sparsity and introduces
a compact storage scheme for the sparse data.

The sparse optimizations are independent of the target architecture, so the sparse stage can be combined
with stages that produce sequential, vector or array implementations. These architecture specific stages are
the same stages that would be applied even were the sparse stage not applied, in which case they produce
dense implementations. The use of sparse programming techniques is thus considered here as just another
implementation method, orthogonal to other implementation methods. Merely by choosing an appropriate
combination of stages, a programmer can produce dense or sparse implementations with little additional effort.
This is in marked contrast to the traditional implementation methods, which appear to treat the development of
a sparse implementation as a problem entirely separate from that of developing a dense implementation.

In this paper, we do not consider algorithms which construct sparse matrices (for example, an algorithm which
computes the product of two sparse matrices). We consider only algorithms in which the sparsity occurs
in ‘input data’. The method reported here can readily be extended for at least some simple cases of sparse
construction, but extension to more complex construction may be more difficult. For example, normalizing a
sparse matrix (so that the sum of the squares of its elements is 1) is a simple form of sparse construction that
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1.3 Overview of Paper

can be detected and optimized automatically; reordering the rows and columns of a sparse matrix to reduce the
band width is a form of construction that may be difficult to treat automatically.

Indeed, it may be that some methods of construction, such as reordering, are used only for sparse versions of
algorithms (with no equivalent construction being performed in dense versions). In such cases, it may be more
accurate to consider the sparse and dense versions as being implementations of different algorithms, rather
than as specializations of the same algorithm. However, it is worthwhile investigating the proposed methods to
determine the circumstances in which they are useful.

1.3 Overview of Paper

In this paper, derivations are discussed for several types of sparse matrices: tridiagonal, symmetric tridiagonal,
general banded and row-wise (a fixed number of non-zero elements in each row). Implementations are derived
for sequential, vector and array architectures. The derivations are illustrated using matrix product; two more
complex examples are also considered.

For the examples, it is assumed the reader possesses some familiarity with vector and array processors (partic-
ularly the CRAY and AMT DAP), though no knowledge of these is required for the main discussion.

The paper is structured as follows:

Section 2
Functional specification of algorithms and the basic functions used to define array operations.

Section 3
Program derivation and transformation; how derivations are structured to permit families of implementa-
tions to be produced.

Section 4
Details of the derivation for tridiagonal matrices.

Section 5 Extension for symmetric tridiagonal matrices.

Section 6 Extension for higher-banded matrices

Section 7 Extension for row-wise sparse matrices.

Section 8 Results: assessment of derived implementations.

Section 9 Related work.

Section 10 Conclusions.

2 Functional Specifications

The derivation of an implementation of an algorithm requires a formal definition of the algorithm suited to
automated manipulation. Most mathematical definitions of algorithms consist of a mixture of formal notation
and stylized English text, and so are not quite suited as sources for derivations.

In this paper, functional specifications of algorithms are used. Functional specifications are essentially recastings
of mathematical definitions into the entirely formal notation of a functional programming language — here,
the SML (Standard Meta Language [4]) programming language is used. Functional specifications retain the
high-level, machine-independent nature of mathematical definitions. In addition, they are usually easy to learn
by anyone with a basic mathematical background.
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2.1 Specification of Matrix Product

One of the primary characteristics of functional programming languages is that they are expression based
(just as mathematics is expression based): a functional program is an expression; execution of the program
means evaluating the expression. This expression basis provides a much simpler semantics than the state-
based semantics of imperative languages, facilitating human understanding and analysis of programs, and the
automated manipulation of programs (e.g. program transformation).

For example, the matrix transpose operation could be defined as follows: The transpose AT of an m�n matrix
A is an n�m matrix with elements

AT
ij�Aji .

A functional specification of transpose is:

fun transpose(A:� matrix,m:int,n:int):� matrix
= generate([n,m],fn(i:int,j:int)=>A@[j,i])

This specification defines a function for performing matrix transposition. The function constructs and returns
the transpose of it matrix argument. Since there is no concept of ‘state’ in a functional language, there is no
question of a function overwriting its arguments or causing other ‘side-effects’: all functions are pure. Pure
functions provide a superior decomposition technique to subroutines or ‘functions’ in imperative languages,
since pure functions have a much narrower interface: the only effect of a function application is to compute a
value, and all the parameters that affect the computed value are passed as explicit arguments to the function.

The transpose of the matrix is constructed using the generate function.

� The first argument to generate is the dimensions of the matrix being constructed — here, [n,m], indicating
an n�m matrix ([� � � ] is the SML notation for a list).

� The second argument is a function, called the generating function, which takes two integers (i and j) as
arguments. The generating function defines the elements of the matrix: the value of element �i�� j�� is
the value of the generating function applied to i� and j�.

� The body of the generating function is A@[j,i] (read "A at (location) j,i"). The @ symbol is an operator
which performs array indexing; thus, A@[j,i] is (the value of) element �j� i� of A.

An important aspect of the generate function is that no order is defined for constructing the elements: no order
need be defined as, in the context of a pure functional language, the construction of one element cannot affect
the construction of any other element. The elements can thus, for example, be constructed simultaneously if
that is appropriate for some particular computational architecture.

Definitions such as the one above are referred to as specifications to emphasize that the definitions convey
what is to be computed, rather than how the computation is to be performed; that is, primary importance is
attached to the denotational meaning of a specification rather than to its operational meaning. For example,
the ‘program’ x+y has denotational meaning ‘the sum of (the value of) x and (the value of) y’ and operational
meaning ‘evaluate x; evaluate y; perform the addition operation’.

In concrete terms, our emphasis on the denotational meaning requires that as an implementation is derived
from a specification, its denotational meaning must be preserved, but its operational meaning may change.
Derivations use properties of the denotation to modify a specification into forms that have operational meanings
better suited to some purpose (for example, to execution on an array processor, or to computations on sparse
matrices). The denotational meaning provides the formal basis for modification while the operational meaning
provides motivation to guide modification.

2.1 Specification of Matrix Product

As a more complex example of a functional specification, consider the computation of the product of two
matrices. The simple ‘row into column’ definition may be formalized as shown in figure 1.

� The function mmmult computes the product of two matrices, A and B. The product is constructed using
generate. The dimensions of the product are defined using size, which returns the size of an array in
the specified dimension (thus, size(A,1) is the number of rows in A).
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2.2 Summary

fun innerproduct(A:real vector,B:real vector):real
= reduce([size(A)],fn(i:int)=>A@[i]*B[i],+,0)

fun row(A:real matrix,i:int):real vector
= generate(size(A,2),fn(j:int)=>A@[i,j])

fun column(A:real matrix,j:int):real vector
= generate(size(A,1),fn(i:int)=>A@[i,j])

fun mmmult(A:real matrix,B:real matrix):real matrix
= generate([size(A,1),size(B,2)],

fn(i:int,j:int)=>innerproduct(row(A,i),column(B,j)))

Figure 1: SML specification of matrix product

� Each element of the product is defined as the inner-product of a row of A and a column of B (the definitions
of the row and column functions are straightforward applications of generate).2

� The inner-product of two vectors is defined using reduce, which combines a set of values into a single
value by the repeated application of a binary reducing function (here, real addition).The set of values
to be reduced is defined by the first and second arguments to reduce: the first is a list of dimensions
specifying a set of indices; the second is a generating function which is applied to each index in that set
to provide the values that are to be reduced. Thus, the inner-product may informally be regarded as the
sum:

A@�1� �B@�1� �A@�2� �B@�2� � � � � �A@�size�A�� �B@�size�B�� .

The above definitions are straightforward recastings of standard mathematical definitions using a formal nota-
tion.

The common mathematical operations on vectors and matrices are provided for use in specifications as a library
of functions. Most of the operations can be invoked using standard operator notation. For example, + denotes
vector and matrix addition and left or right addition of a scalar to a vector or matrix (as well as integer addition
and real addition). The * operator, when applied to two matrices, denotes algebraic matrix product rather than
elementwise product.

2.2 Summary

It is claimed that functional specification provides an entirely formal means of defining many numerical
algorithms in a way that is natural and that simplifies construction, understanding, analysis and manipulation.
More complex examples of functional specifications are presented in section 8.1.

3 Derivations and Transformations

Functional specifications of algorithms may be regarded as useful objects in themselves, as they facilitate
understanding and analysis of algorithms. However, the primary theme of this paper is their use as sources from
which practical, highly efficient implementations may be derived by program transformation. In this section,
program transformations and the grouping of transformations into derivations, as realized in the TAMPR
transformation system [5], are discussed.

3.1 Rewrite Rules and Transformations

A program transformation is a sequence of of rewrite rules. Application of a rewrite rule changes each program
section that matches a specified pattern into a specified replacement. For example, consider the rewrite rule

2In functional specifications, a vector is a one-dimensional array. The usual mathematical distinction between ‘row vectors’ and ‘column
vectors’ is disregarded, as this is based upon an identification between a vector and a matrix in which one dimension is of size 1.
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3.1 Rewrite Rules and Transformations

.sd. <entity>"1"+<entity>"1" ==> (2*<entity>"1") .sc.

� The symbols .sd. and .sc. indicate the start and end of a rewrite rule.3

� The pattern is <entity>"1"+<entity>"1".

� The symbol <entity> is a non-terminal symbol in the wide-spectrum grammar that is used in this work;
<entity> roughly corresponds to an expression.

� The label "1" attached to the two <entity>s in the pattern indicates that the same expression must by
matched by both <entity>s for the pattern as a whole to match. For example, the pattern would match
f(x)+f(x), but not 1+2.

� The replacement is (2*<entity>"1").

� The occurrence of <entity>"1" in the replacement stands for whatever was matched by <entity>"1" in
the pattern. Thus, f(x)+f(x) would be changed into (2*f(x)).

A transformation is a sequence of rewrite rules: for example, figure 2 shows two rewrite rules for performing
some basic distribution operations on expressions. When the TAMPR system applies a transformation to a
program, it exhaustively applies all of the rewrite rules, until the program cannot be further changed by the
transformation; i.e. when transformation is complete, no part of the transformed program can be matched by
any of the patterns of the rewrite rules. For example, the expression (a+b)*(c+d) would be transformed as
shown in figure 3.

{
.sd.

<entity>"1"*(<entity>"2"+<entity>"3")
==>
<entity>"1"*<entity>"2"+<entity>"1"*<entity>"3"

.sc.

.sd.
(<entity>"1"+<entity>"2")*<entity>"3"
==>
<entity>"1"*<entity>"3"+<entity>"2"*<entity>"3"

.sc.
}

Figure 2: Transformations for distributive operations

(a+b)*(c+d)

==> by the second rule
a*(c+d)+b*(c+d)

==> by the first rule
a*c+a*d+b*(c+d)

==> by the first rule
a*c+a*d+b*c+b*d

Figure 3: Application of the distributive transformations

All of the rewrite rules used in the work reported here are defined using a formal grammar. However, in this
paper, it is more convenient to use an informal notation, with names representing non-terminal symbols. For
example,

3The symbols stand for ‘structural definition’ and ‘structural change’, respectively.
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3.2 Derivations

.sd. <entity>"1"+<entity>"1" ==> 2*<entity>"1" .sc.

may be written informally as

.sd. e+e ==> 2*e where e is an expression .sc.

Qualification of the syntactic classes (such as ‘where e is an expression’) may be omitted when implied by
context.

3.2 Derivations

In general, a transformation contains a group of rewrite rules that are conceptually related or that are applied
recursively (the application of one may produce a program section that can be transformed by another). A
transformation brings about some simple, well-defined change in a program, with the rewrite rules being
responsible for the manipulation of the program.

More complex changes are brought about by applying a derivation, or sequence of transformations; each
transformation performs a single step required in bringing about the overall change. The transformation system
applies each transformation in the sequence once, in turn (for each transformation, the rewrite rules which
compose the transformation are applied exhaustively).

As an example of a derivation, consider �-reduction in the �-calculus. In the �-calculus, some expression, say
e, can be bound to a name, say a, using the notation

�a�B (e)

The meaning of this expression is the expression B with all free occurrences of a replaced by (the value of) the
expression e. (A free occurrence of a name is an occurrence of the name that does not appear within another
binding which introduces the same name.) For example, the expression

�a�a+1 (5)

has meaning 5+1.

The process of replacing a bound name with the value to which it is bound, is called �-reduction. If the
restriction to free occurrences is ignored (i.e. if it is assumed that all names are unique) �-reduction can be
performed by a simple transformation:

.sd.
�x�e1 (e2)
==>
e1 { .sd. x ==> e2 .sc. }

.sc.

in which the sub-transformation { .sc. x ==> e2 .sc. } is applied to only the expression e1 (rather than to the
entire program).

It cannot generally be assumed that all names introduced in �-bindings are unique. However, the name
introduced by a �-binding is arbitrary, and can be systematically changed to any other name (provided the
new name is not already in use). This is known as �-conversion. A transformation can be applied to perform
�-conversion before �-reduction is performed.4

For practical purposes, it is often undesirable to �-reduce all bindings: if there is more than one occurrence of
a bound name in an expression, �-reduction may result in the repeated evaluation of the expression to which
the name is bound — this may degrade program performance if the expression is computationally expensive.
It may be useful to identify certain types of expression that are not to be reduced: for example, expressions
involving applications of recursive functions, or expressions that evaluate to non-scalar types.

Thus, a derivation to perform �-reduction may comprise the following steps:

4The�-reduction transformation could be used to perform�-reduction even in the presence of name clashes, if an appropriate application
order is chosen. However, for this example, not all �-bindings are reduced, so �-conversion is still required.
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3.3 Sub-derivations and Intermediate Forms

Mark potentially expensive computations
Notation is introduced to identify computations that may be expensive (based, say, on type information
or analysis of function definitions). For example,

f(x) ==> expensive(f(x))
where f is a recursive function

The function ‘expensive’ designates an expensive computation; it is for use only in this derivation and is
removed later.

Perform �-conversion
This establishes the assumption used in the following transformation, that all names are unique.

Perform �-reduction
�-reduce only those bindings in which the bound value does not contain an application of the expensive
function.

Remove expensive
‘Clean up’ by removing the temporary notation used to designate expensive computations.

This example illustrates several points about the construction of derivations:

� A derivation is a sequence of clearly defined, relatively simple steps. It is preferable, where possible,
to split a task into several transformations, rather than to implement the task as a single, complex
transformation.

In many ways, it is the identification of the steps that is the important aspect of constructing derivations:
the transformations are the means of implementing the steps.

� It can be useful to introduce temporarily a notation to propagate information from points in a program
where information is available to points where the information is to be used. In this example, the
‘information’ required is whether or not a function is recursive. This information must be obtained by
analysis of the function definitions for the program. The information is used in expressions involving
applications of the functions.

Derivations often follow the pattern: localize information; use the information; remove the information.

3.3 Sub-derivations and Intermediate Forms

For more complex derivations, it may be useful to introduce a further level of structure, by dividing a derivation
into a sequence of sub-derivations, each of which is a sequence of transformations (and perhaps lower-level
sub-derivations). For example, a derivation to convert SML into Fortran 77 may consist of two sub-derivations:
the first to convert SML into an intermediate form such as the �-calculus; the second to convert the intermediate
form into Fortran 77.

SML � Fortran 77 � SML � �-calculus � Fortran 77

In general, an initial form is converted into a final form through a sequence of intermediate forms, each
intermediate form being produced by a sub-derivation. For example, the above derivation could be extended to
optimize a program by performing function unfolding and common sub-expression elimination, in addition to
performing straightforward conversion to Fortran.

SML � Fortran77
� SML � �-calculus � Unfolded
� Common Sub-expressions Eliminated � Fortran77

� Function unfolding is the replacement of each application of a (non-recursive) function with the function’s
definition. Function unfolding is performed for several reasons:
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3.3 Sub-derivations and Intermediate Forms

– It reduces implementation overheads caused by the function calling mechanism.

– Function definitions divide a program into conceptually simple segments. However, optimizations
can often be performed only when the separate segments are brought together (for example, multiple
loops can be combined into a single loop, reducing loop overheads). Function unfolding is perhaps
the simplest method for bringing segments together.

– A function definition is designed to be general and independent of the context in which a function is
to be applied. (Since a function is usually applied in several different contexts, its definition must be
context independent.) However, functions can often be optimized based upon context (for example,
based upon the arguments used in a particular application of the function). Function unfolding
permits a function to be tailored precisely to each context in which it is applied (the tailoring being
performed on the unfolded definition).

– Function unfolding eliminates all functions except a (small) set of primitive functions. These
primitive functions are the only functions that need be considered when defining the semantics of
data types and when considering program transformations (that are applied after unfolding): the
semantics of all other functions follow from the semantics of the primitive functions combined
with the semantics of function composition; transformations could not possibly affect non-primitive
functions, since they no longer occur in a program. For example, the only array functions considered
in detail in this paper are the primitive element, generate and reduce functions.

Thus, function unfolding improves implementation efficiency and simplifies transformation.

� Common sub-expression elimination is the combining of multiple occurrences of a computationally
expensive expression into a single occurrence. This combining can be expressed in the �-calculus as a
�-binding.

By structuring a derivation into independent sub-derivations, a programmer can concentrate on each imple-
mentation issue (such as unfolding definitions) independently. Furthermore, converting the �-calculus into
Fortran is independent of the initial language: conversion is based upon the �-calculus, not on SML. If other
specification languages can be converted into the �-calculus, then most of the derivation can be used unchanged
with the other languages. For example, a derivation to convert Lisp into Fortran 77 is:

Lisp � Fortran 77

� Lisp � �-calculus � Unfolded

� Common Sub-expressions Eliminated � Fortran 77

Similarly, most of the derivation is independent of the final language (Fortran 77). The final sub-derivation can
be replaced with another that converts the �-calculus into, say, C.

SML � C

� Lisp � �-calculus � Unfolded
� Common Sub-expressions Eliminated � C

Alternatively, a sub-derivation can be introduced that converts array operations into an explicitly data-parallel
form, followed by a sub-derivation that converts the data-parallel form into one of the array-based Fortran
dialects such as Fortran Plus Enhanced (FPE) for the AMT DAP array processor.

SML � FPE

� Lisp � �-calculus � Unfold � Array

� Common Sub-expression Elimination � FPE

Again, structuring a derivation permits implementation issues to be separated: converting to a data-parallel
form is mostly independent of converting into the specific syntax of a particular programming language — the
DAP sub-derivation could be replaced with one that converts the data-parallel form into, say, Fortran 90 or High
Performance Fortran.
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Implementation for Tridiagonal Matrices

A further alternative for the final stage of the derivation is to convert the �-calculus form into Fortran 77, but in
a form suited to vectorizing compilers (in which loops can be vectorized).

SML � Fortran 77
� SML � �-calculus � Unfold � CRAY
� Common Sub-expression Elimination � Fortran 77

The various intermediate forms produced by the sub-derivations can be represented as a family of forms, as
shown in figure 4.

SML Lisp

λ-calculus
Optimized
Functional

Form

Miranda

Array

Common
Subexpression

Fortran
Plus

Enhanced

Fortran90
High

Performance
Fortran

Fortran77

Common
Subexpression

CRAY
Vectorizable

C

Sparse

Figure 4: A family of intermediate forms

Function unfolding and the derivation of imperative forms are discussed elsewhere [1, 2, 3, 6, 7]. This paper
concentrates on a sparse sub-derivation; that is, a sub-derivation that tailors specifications for operation on
sparse matrices. This sub-derivation is applied to the optimized functional form to convert standard definitions of
functions into forms that take advantage of sparsity to reduce the amount of computation, and that use a compact
storage scheme. The output of the sparse sub-derivation is still in functional form (i.e. it denotes computations
as expressions). The imperative sub-derivations are applied to this form to produce implementations tailored
for various architectures. (Note that the imperative sub-derivations do not need to be altered to accommodate
the sparse sub-derivation.)

4 Implementation for Tridiagonal Matrices

The functional specification of numerical algorithms and the derivation of efficient implementations have
previously been discussed. In this section the derivation stage that optimizes specifications for tridiagonal
matrices is discussed.

4.1 Sparse Matrices

A tridiagonal matrix is a particular form of sparse matrix: a matrix of real elements is said to be sparse if
‘most’ of its elements have value zero [8].5 A sparse matrix is said to be structured if the non-zeros occur in a

5The term ‘most’ is intentionally vague: a matrix may be considered sparse when it is worthwhile using special programming techniques
to reduce the time and/or space requirements of an implementation.
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4.1 Sparse Matrices

definable pattern (if their positions can be specified parametrically); otherwise a sparse matrix is unstructured
(in which case the locations of the non-zeros must be individually specified).

There are many types of structured matrices (having their non-zeros in different patterns). Figure 5(a) shows
one example, a tridiagonal matrix — that is, a matrix in which all of the non-zeros lie in the tridiagonal region
(consisting of the main diagonal and the first sub- and super-diagonals; i.e. the region for which the row and
column indices differ by not more than 1).

Figure 5(b) shows an example of an unstructured sparse matrix.�
�����

1 2 0 0 0
3 4 5 0 0
0 6 7 8 0
0 0 9 10 11
0 0 0 12 13

�
�����

(a) A tridiagonal matrix

�
�����

0 1 0 0 2
3 0 0 0 0
0 4 5 0 0
0 0 0 6 7
8 0 9 0 0

�
�����

(b) An unstructured matrix

Figure 5: Sparse matrices

In this section, only tridiagonal matrices are considered; other forms of sparsity are considered later.

4.1.1 Reducing Storage Requirements

The storage required for a sparse matrix can be reduced by storing only the non-zero elements in a primary
store; for an n�n tridiagonal matrix, the minimum storage requirement is reduced from n2 units to �3n� 2�
units.

There are several ways in which the non-zeros can be stored. The method used here is to store the non-zeros
in a matrix of width 3: the first column stores the elements of the sub-diagonal, the second column stores the
elements of the diagonal, and the third column stores the elements of the super-diagonal. See figure 6.�

�����
1 2 0 0 0
3 4 5 0 0
0 6 7 8 0
0 0 9 10 11
0 0 0 12 13

�
�����

The sparse matrix

�

�
�����
� 1 2
3 4 5
6 7 8
9 10 11

12 13 �

�
�����

The primary store

Figure 6: Storage for a tridiagonal matrix

This storage scheme is characterized by three mappings:

� the mapping from the tridiagonal region to the rectangular shape:

tridiagonal�n���n� 3� ;

� the mapping from sparse index �i� j� (which indicates a position in the n�n sparse matrix) and primary
index �i�� j�� (which indicates a position in the n�3 primary store):

�i� j���i� j � i � 2�

and the inverse:
�i�� j����i�� i� � j� � 2� .

The domain of the inverse is the set of indices represented by the rectangular shape �n� 3� excluding the
two indices �1� 1� and �n� 3�. These two indices are invalid — they do not correspond to any location in
the tridiagonal region. Since the primary store must have some value at these locations, it is assigned the
value zero, allowing the invalid locations to be included in some, but not all, operations as if they were
valid locations (for example, the invalid locations can be included in the summation of the elements).
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4.2 Example: Matrix Product

4.1.2 Reducing Execution Time

The execution time of an implementation can be reduced by restricting operations to only the non-zero elements
of a sparse matrix. For example, consider the computation of the product vector P of a matrix A and a vector
V (all of order n): P�AV . One element of P is the inner-product of a row of A with V :

Pi�
nX

k�1

AikVk .

The computation of this inner-product requires n multiplications and �n� 1� additions. However, if the matrix
A is tridiagonal, then the only values of k which may contribute to the sum are �i� 1�, i and �i� 1� (since Aik

is zero for all other values of k). So,

Pi�Ai�i�1�Vi�1 �AiiVi �Ai�i�1�Vi�1 for A tridiagonal and for i �� 1� n.

Thus, the computation of one element of P requires at most only 3 multiplications and 2 additions.

However, the execution time of an algorithm is determined by more than just how many arithmetic operations are
to be performed: there is also the question of how well operations map onto the target architecture. For example,
array index expressions such as Vi�1 can introduce overheads for ‘shifting’ arrays on some architectures. Such
overheads are usually small for tridiagonal matrices, due to the regularity of the index expressions. However,
the overheads for unstructured matrices can be large.

4.2 Example: Matrix Product

Consider the expression A*B, which denotes the product of two real matrices A and B, which are initially
marked as being of shape n�n. The initial stages of a derivation convert this expression (and all the definitions
of library functions) into �-calculus form, and then unfold the definitions, to give the following expression for
the product:

generate([n,n],�[i,j]�reduce([n],�[k]�A[i,k]*B[k,j],+,0))

Now assume that A is marked as being tridiagonal. Operations involving A are converted into equivalent
operations on the n�3 primary store for A, which we designate, Ap.

generate([n,n],�[i,j]�
if (i=1) then 0 else Ap[i,1]*B[i-1,j]

+ Ap[i,2]*B[i,j]
+ if (i=n) then 0 else Ap[i,3]*B[i+1,j])

Note that:

� the reduction of n values has been converted into a pair of additions;

� the conditional expressions allow for there being only two non-zero elements in the first and last rows of
a tridiagonal matrix;

� accessing elements on the diagonal and sub- and super-diagonals has been converted into accessing
elements in the appropriate column of the primary store.

From this form, the latter stages of the derivation produce imperative forms. For example, the Fortran77
sub-derivation produces the implementation shown in figure 7 while the combination of the Array and DAP
sub-derivations produces the implementation shown in figure 8.

It is important to emphasize that the sequential and Array/DAP sub-derivations are independent of the tridiagonal
sub-derivation; they are the same sub-derivations that would be applied to produce implementations for dense
matrices.

In this paper, we discuss the derivation of the sparse form. The derivation of the imperative implementations is
discussed elsewhere.

12



4.3 Tridiagonal Sub-derivation

real Ap(n,3),B(n,n),P(n,n)
do 1 j=1,n,1
P(1,j) = Ap(1,2)*B(1,j)+Ap(1,3)*B(2,j)

1 continue
do 2 j=1,n,1
P(n,j) = Ap(n,1)*B(n-1,j)+Ap(n,2)*B(n,j)

2 continue
do 3 i=1,n,1
do 3 j=1,n,1
P(i,j) = Ap(i,1)*B(i-1,j)+Ap(i,2)*B(i,j)+Ap(i,3)*B(i+1,j)

3 continue

Figure 7: F77 implementation of the product of matrices A and B, where A is tridiagonal

matc(Ap( ,1),n)*shnp(B)+matc(Ap( ,2),n)*B+matc(Ap( ,3),n)*shsp(B)
where:

� A( ,j) (with the row index position blank) denotes column j of matrix A;

� shnp(B) denotes matrix B shifted one unit to the north, with zeros introduced along the south edge
(row 1 being the north edge of the matrix);

� shsp(B) is B shifted to the south.

Figure 8: DAP implementation of the product of matrices A and B, where A is tridiagonal

4.3 Tridiagonal Sub-derivation

The tridiagonal sub-derivation converts expressions in which matrices may have been marked as being tridiag-
onal into equivalent expressions involving the primary stores of the matrices. The sub-derivation proceeds in
three main steps:

Marking: the zero and non-zero elements of tridiagonal matrices are distinguished by introducing a condi-
tional expression that explicitly checks whether an index falls within the tridiagonal region.

Simplification: algebraic properties of the �-calculus and various data types (primarily real numbers and
arrays) are used to simplify expressions. (e.g. x� 0�x.)

Mapping: operations on tridiagonal matrices are converted into operations on the corresponding primary
stores. (Some further simplification is possible after this mapping.)

Of the three steps, only the final, mapping step is heavily dependent on the nature of the sparsity. The marking
step and the simplification step are mostly independent of the type of sparsity.

These steps are discussed further below, and are illustrated using matrix product. The tridiagonal sub-derivation
is applied to the expression for matrix product produced by the initial stages of the derivation, viz.:

generate([n,n],�[i,j]�reduce([n],�[k]�A[i,k]*B[k,j],+,0))

It is assumed that matrix A has been marked as being tridiagonal (matrix B is assumed to be dense).

4.3.1 Marking Step

An array element expression such as A[i,j], where A is sparse, is zero if the index [i,j] falls outside the non-
zero region (by definition of the non-zero region). Thus, the expression A[i,j] is equivalent to the conditional
expression

if ([i,j] 	 tridiagonal(n)) then A[i,j] else 0

The advantages of the conditional form are:

13



4.3 Tridiagonal Sub-derivation

� The zeros are explicitly distinguished from the non-zeros. Explicitness generally facilitates program
transformation (by providing some entity in a program which can be directly manipulated by transfor-
mations).

� The zeros are explicitly denoted by the number 0 (rather than by expressions of the form A[i,j]).

� All remaining array element expressions are known to refer to non-zeros.

Thus, the first step of the tridiagonal sub-derivation is to convert all element expressions for tridiagonal matrices
into conditional expressions.

.sd.
A[i,j] ==> if ([i,j] 	 tridiagonal(n)) then A[i,j] else 0
where A is marked as being tridiagonal(n)

.sc.

The expression for matrix product is transformed into

generate([n,n],�[i,j]�reduce([n],�[k]�A[i,k]*B[k,j],+,0))
==>
generate([n,n],�[i,j]�reduce([n],
�[k]�(if ([i,k] 	 tridiagonal(n)) then A[i,k] else 0)*B[k,j],+,0))

4.3.2 Simplification Step

The simplification of expressions is based mainly upon properties of real numbers such as

x� 0�x and x � 0�0 .

These lead immediately to transformations:6

.sd. x+0 ==> x .sc. and .sd. x*0 ==> 0 .sc. .

Further simplifications are more specific to sparse sub-derivations. In this section, the simplification of matrix
product is illustrated.

The expression produced by the marking step is:

generate([n,n],�[i,j]�reduce([n],
�[k]�(if ([i,k] 	 tridiagonal(n)) then A[i,k] else 0)*B[k,j],+,0))

This is simplified as follows:

� The application of * is propagated into the conditional expression by the transformation

.sd.
f(if ([i,j] 	 tridiagonal(n)) then T else F)
==>
if ([i,j] 	 tridiagonal(n)) then f(T) else f(F)

.sc.

to give

==> generate([n,n],�[i,j]�reduce([n],
�[k]�if ([i,k] 	 tridiagonal(n)) then A[i,k]*B[k,j] else 0*B[k,j],
+,0))

� The resulting multiplication by 0 (0*B[k,j]) is simplified:

6All function applications are in prefix form by this stage of the derivation but we use infix operator notation to enhance the readability
of examples.
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4.3 Tridiagonal Sub-derivation

generate([n,n],�[i,j]�reduce([n],
�[k]�if ([i,k] 	 tridiagonal(n)) then A[i,k]*B[k,j] else 0,
+,0))

� For a particular value of i, the predicate ([i,k] 	 tridiagonal(n)) is satisfied for, at most, only three values
of k: �i� 1�, i and �i� 1�. Since the generating function returns the identity (0) of the reducing function
(+) for those values of k for which the predicate fails, the reduction can be simplified into a pair of
additions:

generate([n,n],�[i,j]�
(if (i=1) then 0 else A[i,i-1]*B[i-1,j])

+ A[i,i]*B[i,j]
+ (if (i=n) then 0 else A[i,i+1]*B[i+1,j]))

4.3.3 Mapping Step

The marking and simplification steps have restricted element expressions to involve only elements in the non-
zero region, and have optimized operations by restricting them to the tridiagonal region, but the tridiagonal
matrices are still sparse (i.e. they are still n�n matrices with most of their elements zero). The final step of the
sub-derivation maps the non-zero region onto the primary store, a dense matrix with 3 columns.

The conversion to compact form is based on the following two mappings:

Shapes: tridiagonal�n���n� 3�;

Indices: �i� j���i� j � i� 2� and the inverse �i�� j����i�� i� � j� � 2�.

For transformations, only element access and reductions need be considered (generations need not be considered
since it is assumed that tridiagonal matrices are not constructed; the transformation of generations is, however,
similar to the transformation of the generating functions of reductions).

Mapping element accesses is a straightforward application of the above identities:

.sd.
A[i,j] ==> Ap[i,j-i+2]
where A is an order n tridiagonal matrix
and where Ap is the n � 3 primary store for A

.sc.

The mapping of reductions is more complex. A reduction is evaluated by applying a reducing function to a set
of values that is produced by applying a generating function to the indices in some set. Suppose a reduction
is over a tridiagonal region. The mapping step has to convert this region into a rectangular region. The
generating function must be altered so that, when applied to the rectangular region, it produces the same values
as it originally produced when applied to the tridiagonal region. That is, if an index �i�� j�� in the set �n� 3�
corresponds to index �i� j� in the set tridiagonal�n�, then it is required that g��i�� j���g�i� j�, where g� is the
altered generating function and g is the original generating function.

The altered generating function can be formed from the original generating function by applying the inverse
index mapping. However, the invalid locations ([1� 1� and �n� 3�) in the �n� 3� index set must be excluded
from the reduction; this is achieved by having the altered generating function return an identity element of the
reducing function for these indices. Later transformations may be able to incorporate the invalid indices if the
generating function returns the identity element when applied to the invalid indices.

Thus, the transformation for reductions is:
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Symmetric Tridiagonal Matrices

.sd.
reduce(tridiagonal(n),�[i,j]�g,r,init)
==>
reduce([n,3],
�[i�,j�]�if (valid([i�,j�])) then �i,j�g (i,j-i+2) else r0,r,init)

where valid checks if an index is not one of the invalid locations,
and where r0 is an identity of r

.sc.

Figure 9 traces the application of the above transformations to the matrix product expression. (Some further
transformations are applied to simplify arithmetic expressions in indices.) The final expression is the desired
expression for the tridiagonal-optimized matrix product. As pointed out earlier, this expression is processed by
other sub-derivations to produce imperative implementations (see figures 7 and 8 ).

generate([n,n],�[i,j]�
(if (i=1) then 0 else A[i,i-1]*B[i-1,j])

+ A[i,i]*B[i,j]
+ (if (i=n) then 0 else A[i,i+1]*B[i+1,j]))

==> Application of the element access transformation to A
generate([n,n],�[i,j]�

(if (i=1) then 0 else Ap[i,(i-1)-i+2]*B[i-1,j])
+ Ap[i,i-i+2]*B[i,j]
+ (if (i=n) then 0 else Ap[i,(i+1)-i+2]*B[i+1,j]))

==> Arithmetic simplification of index expressions
generate([n,n],�[i,j]�

(if (i=1) then 0 else Ap[i,1]*B[i-1,j])
+ Ap[i,2]*B[i,j]
+ (if (i=n) then 0 else Ap[i,3]*B[i+1,j]))

Figure 9: Mapping onto primary store for matrix product

5 Symmetric Tridiagonal Matrices

In this section, the tridiagonal sub-derivation is modified for symmetric tridiagonal matrices. A symmetric
matrix possesses symmetry about the main diagonal: i.e. Aij � Aji. For a tridiagonal matrix, symmetry
implies that the elements in the sub-diagonal are the same as the elements in the super-diagonal. Storage
requirements can thus be reduced by storing only the sub-diagonal and main diagonal, as illustrated in figure
10. �

�����
1 2 0 0 0
2 3 4 0 0
0 4 5 6 0
0 0 6 7 8
0 0 0 8 9

�
�����

The sparse matrix

�

�
�����
� 1
2 3
4 5
6 7
8 9

�
�����

The primary store

Figure 10: Storage for a symmetric tridiagonal matrix

This storage scheme is characterized by the mappings:

Shape: symtridiag�n���n� 2�;

Indices: �i� j��

�
�i� j � i � 2� for j 
 i

�i� 1� 2� �j � i�� for j � i.
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5.1 The Symmetric Tridiagonal Sub-derivation

Since this mapping is not 1-1, the ‘inverse’ is more complex than for the tridiagonal case; it is discussed
below in the context of converting reductions.

5.1 The Symmetric Tridiagonal Sub-derivation

The symmetric tridiagonal sub-derivation is similar to the tridiagonal sub-derivation. It proceeds through three
main steps: marking, simplification and mapping.

� As in the tridiagonal sub-derivation, the marking step distinguishes the non-zero region from the zero
region. However, the symmetric tridiagonal marking step also restricts all element accesses to the lower
triangle.

� The simplification step is the same as for the tridiagonal sub-derivation.

� The mapping step is similar in form to the tridiagonal mapping step, though of course it differs in details.

5.1.1 Marking Step

The marking step introduces conditional expressions to distinguish elements in the zero region from those in
the non-zero region.

.sd.
A[i,j] ==> if ([i,j] 	 symtridiag(n)) then A[i,j] else 0
where A is marked as being symmetric tridiagonal

.sc.

It then introduces conditional expressions to restrict all element accesses to the lower triangle.

.sd.
A[i,j] ==> if (j>i) then A[j,i] else A[i,j]
where A is marked as being symmetric

.sc.

As before, each step of the derivation is illustrated using matrix product. The expression for matrix product
after conversion to �-calculus and unfolding is:

generate([n,n],�[i,j]�reduce([n],�[k]�A[i,k]*B[k,j],+,0))

After the marking step, the expression is

generate([n,n],�[i,j]�reduce([n],�[k]�
(if ([i,k] 	 symtridiag(n))
then if (j>i) then A[k,i] else A[i,k]
else 0
)*B[k,j],+,0))

5.1.2 Simplification Step

The rules for simplification are similar to those for the tridiagonal sub-derivation; the simplification of matrix
product is shown in figure 11. The conditional expressions, introduced in the previous step to restrict element
access to the lower triangle, are simplified using the identities: i � 1 � i�false, i � i�false, and i � 1 �

i�true.

5.1.3 Mapping Step

As in the tridiagonal sub-derivation, the mapping step of the symmetric tridiagonal sub-derivation must convert
element access and reductions.
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5.1 The Symmetric Tridiagonal Sub-derivation

generate([n,n],�[i,j]�reduce([n],�[k]�
(if ([i,k] 	 symtridiag(n))
then if (k>i) then A[k,i] else A[i,k]
else 0
)*B[k,j],+,0))

==> Propagation through conditionals and multiplication by 0
generate([n,n],�[i,j]�reduce([n],�[k]�

if ([i,k] 	 symtridiag(n))
then if (k>i) then A[k,i]*B[k,j] else A[i,k]*B[k,j]
else 0,
+,0))

==> Restriction of the reduction to non-zeros (k�(i-1), i, (i+1))
generate([n,n],�[i,j]�

(if (i=1) then 0
else if (i-1>i) then A[i-1,i]*B[i-1,j] else A[i,i-1]*B[i-1,j])

+ if (i>i) then A[i,i]*B[i,j] else A[i,i]*B[i,j]
+ (if (i=n) then 0

else if (i+1>i) then A[i+1,i]*B[i+1,j] else A[i,i+1]*B[i+1,j])
)

==> Simplification
generate([n,n],�[i,j]�

(if (i=1) then 0 else A[i,i-1]*B[i-1,j])
+ A[i,i]*B[i,j]
+ (if (i=n) then 0 else A[i+1,i]*B[i+1,j])
)

Figure 11: Simplification of matrix product for symmetric tridiagonal matrix
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Band Matrices

The conversion of element access is based on the index mapping presented earlier:

�i� j��

�
�i� j � i� 2� for j 
 i

�i � 1� 2� �j � i�� for j � i.

Because the marking stage of the sub-derivation restricts all element accesses to the lower triangle, the condition
j 
 i always holds, so the transformation is a straightforward application of the corresponding mapping:

.sd.
A[i,j] ==> A[i,j-i+2]
where A is marked as being symmetric tridiagonal

.sc.

A reduction over the order n symmetric tridiagonal region is converted into a reduction over the rectangular
shape n�2. However, each index in the first column of this shape corresponds to two indices in the symmetric
tridiagonal shape: one in the lower triangle and one, corresponding by reflection in the main diagonal, in the
upper triangle.

j� � 1 : �i�� j���

�
�i�� i� � j� � 2� in the lower triangle

�i� � j� � 2� i�� in the upper triangle

Thus, a reduction over the symmetric tridiagonal region is converted into three reductions: two over the first
column of the primary store (for which j� is 1), and one over the second column of the primary store (for
which j� is 2). One of the reductions over the first column uses the second of the two mappings above
(�i�� j����i� � j� � 2� i��); the other two reductions use the first mapping (�i�� j����i�� i� � j� � 2�).

.sd.
reduce(symtridiag(n),�[i,j]�g,r,init)
==>
r(init,
reduce([n],�[i�]�
�j��(if (i�=1) then r0 else �i,j�g (i�,i�+j�-2)) (1),r,r0),

r(reduce([n],�[i� ]��j���i,j�g (i�,i�+j�-2) (2),r,r0),
reduce([n],�[i�]�
�j��(if (i�=1) then r0 else �i,j�g (i�+j�-2,i�)) (1),r,r0)

)
)
where r0 is an identity of r

.sc.

The matrix product example requires only the element access transformation: see figure 12. The expression
produced is the final form for matrix product produced by the symmetric tridiagonal sub-derivation. Further
sub-derivations convert this expression into imperative form. For example, figures 13 and 14 show sequential
and DAP implementations.

6 Band Matrices

An obvious generalization of tridiagonal matrices are matrices having arbitrary numbers of sub- and super-
diagonals; an order n matrix with l sub-diagonals and u super-diagonals may be denoted band�n� l� u�.7

One storage scheme for such a matrix is to map each diagonal onto a column of a matrix, of width l � u� 1:

� column l � 1 stores the main diagonal;

� columns to the left store the sub-diagonals in order, with column l storing the first, column �l�1� storing

7The extension of the symmetric tridiagonal sub-derivation for symmetric band matrices has not yet been attempted, though no serious
technical problems are anticipated. It is likely that the transformations relating to symmetry can be separated into a distinct sub-derivation,
which can then be combined with the sub-derivation discussed in this section.
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Band Matrices

generate([n,n],�[i,j]�
(if (i=1) then 0 else A[i,i-1]*B[i-1,j])

+ A[i,i]*B[i,j]
+ (if (i=n) then 0 else A[i+1,i]*B[i+1,j])
)

==> Element access mapping
generate([n,n],�[i,j]�

(if (i=1) then 0 else A[i,(i-1)-i+2]*B[i-1,j])
+ A[i,i-i+2]*B[i,j]
+ (if (i=n) then 0 else A[i+1,i-(i+1)+2]*B[i+1,j])
)

==> Arithmetic simplification
generate([n,n],�[i,j]�

(if (i=1) then 0 else A[i,1]*B[i-1,j])
+ A[i,2]*B[i,j]
+ (if (i=n) then 0 else A[i+1,1]*B[i+1,j])
)

Figure 12: The mapping step applied to matrix product for symmetric tridiagonal matrix

REAL A(n,2),B(n,n),P(n,n)
do 1 j = 1,n,1
P(n,j) = A(n,1)*B(n- 1,j)+A(n,2)*B(n,j)

1 continue
do 2 j = 1,n,1
P(1,j) = A(1,2)*B(1,j)+A(2,1)*B(2,j)

2 continue
do 3 i = 2,n- 1,1
do 3 j = 1,n,1
P(i,j) = A(i,1)*B(i-1,j)+A(i,2)*B(i,j)+A(i+1,1)*B(i+1,j)

3 continue

Figure 13: Sequential implementation of matrix product for symmetric tridiagonal

REAL A(*n,*2),B(*n,*n),P(*n,*n)
P = matc(A( ,1),n)*shsp(B)
. +matc(A( ,2),n)*B
. +matc(shlp(A( ,1),1 )n)*shnp(B)

Figure 14: DAP implementation of matrix product for symmetric tridiagonal
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Row-wise Sparse Matrices

the second, etc.;

� columns to the right store the super-diagonals in order, with column �l � 2� storing the first, column
�l � 3� storing the second, etc.

Figure 15 shows a band(9,3,2) matrix and its primary store.�
�������������

1 2 3 0 0 0 0 0 0
4 5 6 7 0 0 0 0 0
8 9 10 11 12 0 0 0 0

13 14 15 16 17 18 0 0 0
0 19 20 21 22 23 24 0 0
0 0 25 26 27 28 29 30 0
0 0 0 31 32 33 34 35 36
0 0 0 0 37 38 39 40 41
0 0 0 0 0 42 43 44 45

�
�������������

The sparse matrix

�

�
�������������

� � � 1 2 3
� � 4 5 6 7
� 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41 �
42 43 44 45 � �

�
�������������

The primary store

Figure 15: A band(9,3,2) sparse matrix; the elements on the main diagonal are highlighted

The mappings defining this storage scheme are:

Shape: band�n� l� u���n� l � u� 1�;

Indices : �i� j���i� j � i� l � 1� and the inverse �i�� j����i�� i� � j� � �l� 1��.

The transformations discussed previously for tridiagonal matrices can be extended to use the above mappings
to optimize specifications to operate on banded matrices. The optimized form of matrix product is shown in
figure 16.

generate([n,n],�[i,j]�
if (i<l) then reduce([(1,i+u,1)],�[k]�Ap[i,k-i+l+1]*B[k,j],+,0)
else if (i>n-u) then reduce([(i-l,n,1)],�[k]�Ap[i,k-i+l+1]*B[k,j],+,0)
else reduce([(i-l,i+u,1)],�[k]�Ap[i,k-i+l+1]*B[k,j],+,0))

Figure 16: Matrix product A*B; A has l lower and u upper diagonals

7 Row-wise Sparse Matrices

‘Row-wise sparse’ is the term used here for a matrix which has a fixed number of non-zeros in each row [9]
and where the locations of the non-zeros do not correspond to any pattern (the positions are not known until
execution time and are specified using a lookup table).8

An n�m row-wise sparse matrix A having w non-zeros per row (w is called the ‘width’ of the matrix) is
denoted rowwise��n�m�� w�. Such a matrix can be compactly represented using an n�w primary store Ap —
containing the non-zero elements — and an n�w secondary store As — containing the column indices for the
non-zero elements.

Figure 17 illustrates a row-wise sparse matrix. Note that the second row contains one non-zero fewer than
the the other rows; one of that row’s zero elements is included in the compact stores to give a uniform width
throughout the matrix.

The relationship between the sparse matrix A and the compact stores is formally given by the mappings:

Shapes: rowwise��n�m�� w���n�w�;

8A band matrix could be represented as a row-wise matrix, but it is not desirable to do so as advantage could not be taken of the regular
pattern characterizing the band matrix.
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7.1 Row-wise Sub-derivation

Sparse matrix
A�

�����
0 1 0 0 2
3 0 0 0 0
0 4 5 0 0
0 0 0 6 7
8 0 9 0 0

�
�����
�

Primary store
Ap�

�����
1 2
3 0
4 5
6 7
8 9

�
�����

Secondary store
As�

�����
2 5
1 2
2 3
4 5
1 3

�
�����

Figure 17: Storing a row-wise sparse matrix

Indices �i� j���i� search��i� j��� and the inverse �i� j���i� lookup��i� j���.

Given a sparse index �i� j�, search returns the column index of the element in row i of the primary store that
contains the value for element �i� j�. It is assumed that locating this element requires a scan of the corresponding
row of the secondary store and is thus a relatively expensive operation.

Given a primary index, lookup returns the corresponding sparse index. This can be implemented as a simple
array index of the secondary store, and so is a relatively inexpensive operation.

The two functions are related by the identity

search��i� lookup��i� j�����j

which states that the sparse index corresponding to the primary index which corresponds to a sparse index j, is
j.

7.1 Row-wise Sub-derivation

The sub-derivation to optimize expressions containing operations on row-wise sparse matrices is similar in
structure to that for tri-diagonal matrices; specifically, the row-wise sub-derivation has the same three steps:
marking, simplification and mapping. These steps are discussed below. Matrix product is used as an example;
the expression for matrix-product before application of the row-wise sub-derivation is:

generate([n,n],�[i,j]�reduce([n],�[k]�A[i,k]*B[k,j],+,0))

Matrix A is assumed to have been specified as being row-wise sparse, of order n�n and width w.

7.1.1 Marking Step

Conditional expressions are introduced in place of array indexing applied to row-wise sparse matrices.

==> generate([n,n],�[i,j]�reduce([n],
�[k]�(if ([i,k] 	 rowwise([n,n],w)) then A[i,k] else 0)*B[k,j],+,0))

7.1.2 Simplification Step

The application of real multiplication is propagated through the conditional expression, producing a multipli-
cation by zero, which is simplified:

==> generate([n,n],�[i,j]�reduce([n],
�[k]�if ([i,k] 	 rowwise([n,n],w)) then A[i,k]*B[k,j] else 0,+,0))

As with the tridiagonal sub-derivation, the reduction over k contains a conditional expression whose predicate is
satisfied for only a distinct subset of the values assumed by k — those values for which the index [i,k] corresponds
to a non-zero. The notation row(i,rowwise([n,n],w)) is used to indicate this subset. The expression for matrix
product then becomes:

22



Results

==> generate([n,n],�[i,j]�
reduce(row(i,rowwise([n,n],w)),�[k]�A[i,k]*B[k,j],+,0))

7.1.3 Mapping Step

The mapping step converts operations on the n�n sparse matrix A into equivalent operations on the compact
stores Ap and As. The general identities underlying this conversion were given above; an additional identity is
required to specify the mapping for the row(i,rowwise(� � � )) notation:

row�i� rowwise��n� n�� w����w�

that is, the w column indices corresponding to the non-zeros in a given row are mapped onto the indices
fk : 1 
 k 
 wg.

==> generate([n,n],�[i,j]�reduce([w],
�[k�]��[k]�Ap[i,search([i,k])]*B[k,j] (lookup([i,k�])),+,0))

Applying these identities to matrix product produces an expression that would be very inefficient if implemented
directly, since it requires searching the secondary store for indices. However, the expression can be simplified
using the identity

search��i� lookup��i� j�����j .

==> �-reduce the binding for k
generate([n,n]�[i,j]�reduce([w],
�[k�]�Ap[i,search([i,lookup([i,kË])])]*B[lookup([i,k� ]),j],+,0))

==> apply above identity
generate([n,n]�[i,j]�reduce([w],
�[k�]�Ap[i,k�]*B[lookup([i,k�]),j],+,0))

The presence of lookup in the resulting expression is not as potentially detrimental to performance as the
presence of search would be, since lookup is implemented as a simple array index on the secondary store.

==> generate([n,n]�[i,j]�reduce([w],
�[k�]�Ap[i,k�]*B[As[i,k�],j],+,0))

This is the final form of matrix product produced by the row-wise sub-derivation. Further sub-derivations are
applied to produce Fortran77 implementations suitable for execution on sequential and vector processors (see
figure 18 for the basic implementation). No implementation is produced for the DAP array processor, because
the indirect array indexing (B[As[i,k�],j]) is virtually impossible to implement efficiently on the DAP hardware.
Efficient implementation may, however, be possible on other array processors having more sophisticated
communication mechanisms.

do 20 i=1,n,1
do 20 j=1,n,1
res(i,j)=0.0
do 10 k=1,w,1
res(i,j)=res(i,j)+Ap[i,k]*B[As[i,k],j]

10 continue
20 continue

Figure 18: Matrix product A*B; A is row-wise sparse with width w

8 Results

The preceding sections of this paper have discussed sub-derivations that optimize expressions for various type
of sparse matrices. Further sub-derivations are then used to produce Fortran implementations suitable for
sequential, vector and array processors, as discussed in section 3.3.
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8.1 Two Examples

In this section, the derivations are assessed by comparing the execution performance of derived implementations
of two non-trivial algorithms, with the performance of manually constructed implementations.

8.1 Two Examples

The examples given above occur in many applications of numerical mathematics, and are simple enough to
serve as illustrations for the derivation process. However, the advantages of the derivational approach to
implementation is more evident when complex algorithms are considered.

Here, two algorithms are considered: POT [10], an algorithm for computing the eigensystem of real symmetric
matrices; and a Conjugate Gradient (CG [11]) algorithm, for computing the solution of a set of simultaneous
equations.

We present both the mathematical formulation and the functional specification of POT to allow comparison of
the two; we present only the functional specification of CG, partly for brevity, partly because the functional
specification has assumed the rôle of being the definition of the algorithm (the name "Conjugate Gradient"
refers more to a family of algorithms than to a single algorithm — the functional specification is the precise
definition of the particular member of the family considered in this paper).

Example 8.1-a: POT

The mathematical definition of POT is shown in figure 19 and the functional specification in figure 20.

This example exhibits several features of the specification language not previously mentioned:

� The notation

let definitions in expression � � � end

denotes a local expression. Local expressions are used to introduce definitions that are valid only
within the local expression itself. For example, POTstep defines the four values V, B, T and R�.
The value of a local expression is the value of the body expression occurring after the in keyword:
(A,orthonormalise(R�)).

� The expression (A,orthonormalise(R�)) is a pair, or a 2-tuple, of real matrices. Components of tuples are
extracted using the #n prefix operators, where n is an integer. For example, #1(A,orthonormalise(R�))
is A.

[???consider dropping this; if so, explain iterate function]

Comparing the mathematical definition of POT with the functional definition:

� The mathematical definition introduces a name, A, for the target matrix. While it would be possible to
introduce a corresponding global name in the functional definition, it is normally considered better style
to define a formal argument for each function, increasing the modularity of the definition.

� The mathematical definition states that the matrix is real, symmetric and of order N . In general, there
are various properties of the data sets an algorithm manipulates that may be useful in a definition. In the
above example, the type associated with matrix identifiers provides only the information that the elements
are real numbers.9 Other information can be introduced into a definition by assertions or by program
transformation.

� The mathematical definition states that the algorithm employs an "iterative cycle" and then defines

i. what is to be done on each iteration;

ii. an initial value with which to begin the cycle;

iii. a terminating condition.

The functional definition employs the function iterate to indicate repetition. The arguments for iterate
are:

9To include the size of a matrix in the type information would require dynamic typing; SML is statically typed.
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8.1 Two Examples

The POT algorithm for the computation of the eigensystem of a real symmetric matrix A, of order
N , consists essentially of the following iterative cycle. Given an N � N matrix R of orthonormal
approximations to the eigenvectors of A:

1. Form a transformed matrix B, of order N , using the sequence of algebraic operations:

V :� A �R�B :� RT � V�

2. Construct a transformation matrix T , of order N , whose columns form an approximation to the
set of right eigenvectors of the symmetric matrix B. This construction is described in [8].

3. Compute a new set of eigenvector approximations R, which is represented in matrix form by the
algebraic matrix product

R :� V � T�

4. Orthonormalise the set of vectors R.
The cycle ceases whenever the off-diagonal components of B are zero to a predetermined precision.
The diagonal of B then yields the required eigenvalues and the columns of the final matrix R yield the
required eigenvectors.

Figure 19: Definition of POT [10]

fun POTstep(A:real matrix,R:real matrix)
:(real matrix*real matrix)

= let
val V:real matrix = A*R
val B:real matrix = transpose(R)*V
val T:real matrix = transform(B)
val R�:real matrix = V*T

in
(A,orthonormalise(R�))

end

fun POT(A:real matrix):(real matrix*real matrix)
= iterate(POTstep,(A,UnitMatrix(shape(A))),IsOk)

Figure 20: Functional specification of POT
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i. the function, POTstep, that is to be repeatedly applied;

ii. the initial value (A,UnitMatrix(shape(A)));

iii. a boolean function, IsOK, which is applied after each iteration and which determines whether or
not another iteration is to be applied.

� In the mathematical definition, each iteration consists of the calculation of the four matrices V ,B,T and
R and the orthonormalization of R. In the functional definition, the iteration function POTstep calculates
these four matrices (as local values) and then performs the orthonormalization (by applying the function
orthonormalise).

Example 8.1-b: Conjugate Gradient

The Conjugate Gradient algorithm (CG) uses an iterative process to compute the vector x of order n satisfying
the equation Ax � b where A is a positive definite, symmetric matrix of order n�n and b is a vector of order
n. The functional specification of CG is shown in figure 21

type cgstate = real vector*real vector*real vector*real vector;
fun cgiters(a:real matrix,b:real vector):cgstate
= let
(* Terminating condition.*)
fun isok((x,r,p,q):cgstate):bool
= innerproduct(r,r)<epsilon;

(* One iteration.*)
fun cgiter((x,r,p,q):cgstate):cgstate
= let
val rr:real = innerproduct(r,r);
val alpha:real = rr/innerproduct(q,q);
val x�:real vector = x+p*alpha;
val atq:real vector = transpose(a)*q;
val r�:real vector = r-atq*alpha;
val beta:real = innerproduct(r�,r�)/rr;
val p�:real vector = r�+p*beta;
val q�:real vector = a*r�+q*beta
in
cgstate(x�,r�,p�,q�)
end

in
iterate(cgiter,cgstate(x0,r0,p0,q0),isok)
end

Figure 21: SML specification of bi-conjugate gradient

� The algorithm is based upon manipulation of a set of vectorsx,r,p and q (x being the current approximation
to the solution); the type cgstate is defined to represent the set of vectors, as a 4-tuple of real vectors.
Instances of the cgstate type are constructed using the function cgstate.

� The function cgiters takes A and b as arguments and returns a cgstate whose first component is the
approximate solution.

� The algorithm is iterative, thus cgiters is an application of the iterate library function.

– The first argument for iterate is a function defining the computation that is to be repeated: cgiter.

– The second argument is a value (an instance of cgstate) with which to begin the repetition.

– The third argument, isok, is a function which determines when the repetition is to cease (i.e. when
the approximation to the solution is sufficiently accurate).

� The function defining the repeated computation, cgiter, takes one argument of type cgstate and returns
a value of the same type. In the specification, pattern matching is used to bind the names x,r,p and q to
the four components of the cgstate argument.
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� The body of cgiter computes the next set of vectors as local values x �, r�, p� and q� and returns these
values as an instance of cgstate.

� For brevity, the computation of the initial values x0, r0, p0 and q0 is not shown.

� The bulk of the computational costs are incurred by the two matrix-vector products, in the computation
of atq and q�.

8.2 Assessment of Derived Implementations

The effectiveness of derivations can be assessed by comparing the execution times of derived implementations
with those of manually constructed implementations.

� For POT, an independent implementation is available for symmetric triadiagonal matrices.

� For CG, an implementation can be constructed that makes use of the BLAS SGBMV routine [12]. This
routine performs the operation

y:=�Ax+�y

where A is a sparse matrix with an arbitrary number of contiguous sub- and super-diagonals, x and y are
dense vectors and� and � are scalars. There are two implementations of SGBMV available on the CRAY
vector computer, one provided by CRAY (referred to as the COS implementation) and one provided by
NAG. It is assumed that these implementations are highly efficient.

This routine can be used to perform the computation of r� and q�:

val atq:real vector = transpose(a)*q;
val r�:real vector = r-atq*alpha;
� � �

val q�:real vector = a*r�+q*beta

Since the computation of r� and q� consume the bulk of the execution costs [???check that’s true for
sparse], an implementation using SGBMV to perform these computations should provide a stringent
benchmark against which to test derived implementations.

8.2.1 POT on DAP
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Figure 22: Execution times for one iteration of derived and manually constructed DAP implementations of Pot
for symmetric tridiagonal matrix.
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8.2 Assessment of Derived Implementations

Figure 26 (in the appendix) shows the derived implementation of POT (including the orthogonalization step)
for a symmetric tridagonal matrix. Figure 22 compares the execution time for one iteration10 of the derived
and manually constructed implementations. The execution times for the two are virtually identical, with the
derived implementation being marginally slower. Analysis of the derived implementation reveals a few potential
optimizations that could be exploited by transformations.

8.2.2 Conjugate Gradient on CRAY

The derived implementation of CG for band matrices, optimized for the CRAY vector processor, is shown in
figure 25 (in the appendix). This implementation was compared over a range of band widths with one in which
the computation of r� and q� were performed using the CRAY implementation of the SGBMV BLAS routine.

If the band parameters are specified as ‘compile-time’ constants, then the loops terminated at lines 170 and
270 can be unrolled11 in the derived implementation; loop unrolling is unfeasible for the precompiled library
subroutines.

For the most commonly used cases — tridagonal and quindiagonal matrices — the BLAS implementation was
slower than the derived implementation by an average of 38% and 46%, respectively. Other band parameters
(various combinations having a total band width upto 32) were tested over a range of matrix sizes. In addition,
a sample of band widths up to 201 were tested with a fixed matrix size. The BLAS implementation was slower
by an average of from17% to 50%. For a given pair of band parameters, the ratio of execution times could vary
significantly as the order of the matrix was varied; for example, from 12% to 38%.

The NAG BLAS implementation faired worse than the COS BLAS implementation: for tridiagonal and
quindiagonal matrices, the NAG implementation was an average of, respectively, 67% and 95% slower than the
derived implementation (with loop unrolling).

Figure 23 shows typical execution times for the derived, COS BLAS and NAG BLAS implementations.
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Figure 23: Execution times for one iteration of derived and BLAS implementations of CG for tridiagonal matrix
on CRAY

8.2.3 Other Results

Other implementations have been derived, including a DAP implementation of CG for banded matrices, a
CRAY implementation of CG for row-wise matrices (the salient sections of which — the computations of r� and
q� — are shown in figure 24), and sequential implementations of CG for both banded and row-wise matrices
(the sequential implementations are similar to the CRAY implementations).

10One iteration corresponds to the computation of one approximation to the eigensystem. The time for successive iterations does not
change.

11Unrolling of loops was performed by the compiler, though it could be performed by transformations.
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val atq�real vector � transpose�a��q� �

do ��	 i � 
�n�

atq�j� � 	�	

��	 continue

do �	 i � 
�n�

do ��	 k � 
�w�

j � As�i�k�
atq�j� � atq�j��Ap�i�k��q�i�

��	 continue
�	 continue

val q��real vector � a�r��q�beta �

do ��	 i � 
�n�

g�� � 	�	
do ��	 k � 
�w�

g�� � g���Ap�i�k��r
�As�i� k��

��	 continue
q�i� � g���q�i��beta

��	 continue

Figure 24: The row-wise sparse versions of the matrix-vector product computations of CG

The derived forms appeared, upon examination, to be efficient — no significant inefficiency was apparent.
However, no independent implementations were available to provide a more objective assessment. Nevertheless,
the successful derivation of these forms supports the claim made in this paper that implementations can indeed
be derived for a variety of architectures from a single architecture-independent specification.

It should also be recalled that dense implementations of the algorithms have been derived for a number of
architectures. The sources for the dense and sparse implementations differ only in that the latter contains an
assertion of sparsity.12

9 Related Work

The underlying themes of the work reported here have been widely discussed in the literature: for example,
functional programming [13, 14, 15, 16] and formal program manipulation, transformation and derivation
[17, 18, 19, 20, 21, 22].

Wainright and Sexton [23] discuss various data structures that can be used to represent sparse matrices in
functional languages; they use a functional language as an implementation language in which a programmer
expresses a program explicitly designed for sparse matrices. In contrast, the work reported here uses a functional
language as a language for expressing specifications which are independent of implementation details such as
sparsity.

Standish et al [24] gave an example of optimizing an imperative implementation of matrix multiplication for
upper triangular matrices using an interactive transformation system — the programmer interactively instructs
the system as to which transformations should be applied to what parts of a program; though the system then
attends to the details of applying the transformations.

Bik and Wijshoff [25, 26] are developing a Fortran compiler that automatically optimizes operations on sparse
matrices. Their work has several similarities to that reported here:

� Their source is a standard, dense implementation of an algorithm.

� Their optimization begins with the introduction of guarded commands (similar to the introduction of
conditional expressions used here). They then manipulate programs, attempting to achieve the following:

– to determine when commands can be discarded (for example, a command that adds zero to a variable
can be discarded); this is similar to the simplification of expressions performed here;

– to attempt to reduce the number of iterations performed by loops (for example, by restricting
iterations only to those that involve non-null computations); this is similar to the restrictions of

12The specification containing the sparse assertion may be used to derive dense implementations since the dense derivations will ignore
the assertion.
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reductions performed here.

The fundamental differences between Bik’s and Wijshoff’s work and that reported here are:

� Their work assumes an imperative context (converting a Fortran program into object code) whereas
the work reported here assumes a pure, functional context; the simple semantics of a pure, functional
context makes transformation easier. However, their work is more ambitious, in some areas, than that
reported here — they consider algorithms which construct sparse matrices and which manipulate matrices
which have possibly dynamic structures (whilst still performing optimizations for matrices having static
structure). They do not, however, automatically optimize programs to take advantage of symmetry.

� The program manipulation that they perform includes selecting, for the compact storage of sparse matrices,
data structures appropriate for the operations to be performed on the matrices and to the architecture for
which the program is being compiled. Using the method reported here, a programmer is responsible
for choosing a compact data structure which is generally architecture neutral; operations on the compact
store are subsequently tailored to particular architectures.

� Their work targets vector processors and sequential processors; extending it to array processors may
prove difficult.

Their sparse compiler is still under development, so a direct comparison of the execution performance of the
object code produced by the sparse compiler with that of the object code produced by a standard compiler from
derived implementations is not possible.

10 Conclusions

A systematic method has been presented for tailoring high-level, abstract functional specifications of algorithms
(of a certain class) to use programming techniques optimized for sparse matrices. This method has been
encoded as sequences of program transformations which are applied entirely automatically. Variations of the
transformations tailor specifications for different types of sparsity.

The transformations are independent of any particular computational architecture. They can easily be combined
with other sequences of transformations that are designed to tailor specifications for execution on particular
architectures, and with transformations designed to perform other optimizations. Such combination has been
illustrated by the derivation of implementations for tridiagonal, symmetric tridiagonal, band and row-wise
sparse matrices for sequential, vector and array architectures.

The effectiveness of the derivational approach has been assessed by comparing the execution efficiency of derived
implementations of two non-trivial algorithms against manually constructed implementations (construction was
independently performed for at least the computationally significant sections of the implementations). The
derived implementations have been shown to be efficient, performing as well as the manual implementation in
one case and significantly outperforming a manual implementation in a second case. The sparse sub-derivations
are currently restricted to algorithms which do not construct sparse matrices. It is known that they can be
extended to algorithms which employ simple forms of construction; the range of algorithms for which they can
be extended needs to be investigated.

Currently, it is assumed when using the method that there is only a single form of sparsity in any implementation.
Technical details of the method may need to be altered if multiple forms of sparsity are combined.

In summary, this paper extends previous derivations in an important new direction. It adds to existing evidence
that programmers can employ high-level, abstract specifications of algorithms without sacrificing execution
efficiency, even when technically complex implementation methods are required to obtain the optimum perfor-
mance from an implementation.
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A Derived Implementations of POT and Conjugate Gradient

A.1 CRAY Implementation of Conjugate Gradient


		 continue
C Test for convergence

rr � 	�	
do 

	 i � 
�n�

rr � rr�r�i��r�i�



	 continue
if �sqrt�rr��lt�
�	E�
�� then
goto 		
endif

C Compute alpha
alpha � 	�	
do 
�	 k � 
�n�

alpha � alpha�q�k��q�k�


�	 continue
alpha � rr�alpha

C Compute r�

do 
�	 i � n�l�
�n�

t � 	�	
do 
�	 k � i�u�n�

t � t�Ap�k�i�l�
�k��q�k�


�	 continue
r
�i�� r�i��t�alpha


�	 continue

do 
�	 j � 
�u�

t � 	�	
do 
	 k � 
�j�l�

t � t�Ap�k�j�l�
�k��q�k�


	 continue
r
�j�� r�j��t�alpha


�	 continue

do 
�	 i � u�
�n�l�

t � 	�	
do 
�	 k � i�u�i�l�

t � t�Ap�k�i�l�
�k��q�k�


�	 continue
r
�i�� r�i��t�alpha


�	 continue

C Compute beta
t � 	�	
do 
�	 i � 
�n�

t � t�r
�i��r
�i�


�	 continue
beta � t�rr

C Compute x�

do �		 i � 
�n�

x�i�� x�i��p�i��alpha

�		 continue

C Compute p�

do �
	 i � 
�n�

p�i�� r
�i��p�i��beta

�
	 continue

do ��	 i�
�n�

r�i� � r
�i�

��	 continue

C Compute q�

do ��	 i � n�u�
�n�

g�� � 	�	
do ��	 k � i�l�n�

g�� � g���Ap�i�k�l�
�i��r
�k�

��	 continue
q�i�� g���q�i��beta

��	 continue

do ��	 i � 
�l�

g�� � 	�	
do �	 k � 
�i�u�

g�� � g���Ap�i�k�l�
�i��r
�k�

�	 continue
q�i�� g���q�i��beta

��	 continue

do ��	 i � l�
�n�u�

g�� � 	�	
do ��	 k � i�l�i�u�

g�� � g���Ap�i�k�l�
�i��r
�k�

��	 continue
q�i�� g���q�i��beta

��	 continue

goto 
		

		 continue

Figure 25: CRAY implementation of CG for band matrices

The following points should be noted:

� The comments have been manually inserted and variables manually renamed to enhance readability.

� The *s in array declarations indicate that the elements of the arrays are to be processed in parallel.

A.2 DAP Implementation of POT

� The symmetric tridiagonal matrix A whose eigensystem is to be computed is realized as a pair of vectors
Adiag and Asub, rather than as a matrix with 2 columns. The latter would not permit efficient use of the
DAP processor grid. (This realization was introduced by a sub-derivation that has not been discussed in
this paper.)
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A.2 DAP Implementation of POT

real U��n��n�� Asub��n�� Adiag��n�� B��n��n�
real Bdiag��n�� AU��n��n�� col��n�� GS��n��n�� project��n��n�
real bb� g

����n�
logical mask��n��n�� colmask��n��n�
integer order��n�


		 continue

C Compute B
AU � matc�Asub�n��shsp�U��matc�Adiag�n��U�matc�shlp�Asub�
��n��shnp�U�
B � 	�	
do 
	
 i � 
�n�

B � B�matc�U�i���n��matr�AU�i���n�


	
 continue

C Test for convergence
Bdiag � B�diagpat��
g

�� � abs�Bdiag�
bb � �sum�abs�B���sum�g

������n��n�
��
if �bb�lt�
�	E�
� then
goto 
�	
endif

C Compute transform�B�
call indexvec�g
����
GS � 	�	
D � matr�Bdiag�n��matc�Bdiag�n�
denom � D�merge��
�	�
�	�D�lt�	�	��sqrt�D�D���B�B�
T � merge�
�	���B�denom�abs�denom��lt�
�	E�
��
T�diagpat� � 
�	

C Compute A�U�transform�B�
do 
	� i � 
�n
GS � GS�matc�AU��i��n��matr�T�i���n�


	� continue

C Sort eigenvalues
colmask � �true�
g
��	 � matr�g

���n�
g

�
 � matc�g

���n�
g
��	 � merge�
�

� merge�
�	��g
��	�eq�g

�
��and�patlowertri�n��and��not�diagpat��
� g
��	�gt�g

�
�

order � coln�matc�g
����n��eq�matr�sumc�g
��	��
�n��
j � 


C Orthogonalize


	 continue

if �j�gt�n� then
goto 
�	
else
col � GS� �order�j��
col � col�sqrt�sum�col�col��
if �j�eq�n� then
GS��order�j�� � col
j � j�

else
mask � colmask
mask�order�j�� � �false�
project � matc�col�n�
project � matr�sumr�GS�project��n��project
GS�mask� � GS�project
GS� �order�j�� � col
j � j�

colmask � mask
endif
goto 

	
endif


�	 continue
U � GS

goto 
		


�	 continue

Figure 26: DAP implementation of POT for matrix A symmetric tridiagonal
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