Calculemus Igitur

Lambert Meertens
Kestrel Institute \& Utrecht University

$I \otimes \oplus / \cdot f *$

Lambert Meertens

Kestrel Institute \& Utrecht University

1986: Theory of Lists

$$
\begin{aligned}
f * \cdot+/ & =+/ \cdot f_{* *} \\
\oplus / \cdot+/ & =\oplus / \cdot \oplus / *
\end{aligned}
$$

1997: Algebra of Programming

$$
\begin{aligned}
& \Lambda R=(\epsilon \backslash R) \cap(R \backslash \epsilon)^{\circ} \\
& (R) \cdot\left(S^{\circ}\right)^{\circ} \cdot\left(S^{\circ}\right) \cdot(R) \cdot(R)^{\circ} \subseteq i d
\end{aligned}
$$

Binary Structures over A

Two formative operations:

$$
\begin{array}{lr}
\text { Tip }:: \\
\text { Fork }:: S_{A} \times S_{A} & \rightarrow S_{A} \\
S_{A}
\end{array}
$$

possibly with algebraic laws

The Boom Hierarchy

Laws for Fork

Inhabitants of S_{A}

(none)
Assoc
Assoc+Comm
Assoc+Comm+Idemp

But what about ...

Laws for Fork
Comm

Inhabitants of S_{A}

Mobiles
?

For example,

Notation for Mobiles

Tip a \longrightarrow [a]
Fork $(s, t) \longrightarrow s _t$

The usual homomorphisms

$$
\begin{array}{ll}
f_{*}[a] & =[f a] \\
f_{*}\left(s^{\wedge} t\right) & =\left(f_{*} s\right)^{\wedge}\left(f_{*} t\right)
\end{array}
$$

For symmetric operator \oplus :
$\oplus /[a]=a$
$\oplus /\left(s^{\wedge} t\right)=(\oplus / S) \oplus(\oplus / t)$

Examples

shape $\hat{=}!*$, where ! :: $A \rightarrow 1$
sum $\hat{=}+/$
(for a mobile with numeric tips)

Catamorphisms

The general catamorphism on mobiles: $\oplus / \cdot f *$
For example, if function tipweight :: $A \rightarrow \mathbb{R}_{+}$ gives the weights of the tree tips, function treeweight $\hat{=}+/ \cdot$ tipweight $_{*}$
returns the total weight of a mobile

Weight-balanced mobiles

A mobile is called (weight-)balanced when in each sibling pair of subtrees the siblings have the same treeweight
(Note. No relationship to depth-balanced unless all tips have the same weight)

Weight-balanced mobiles (2)

$$
\begin{aligned}
& \text { balanced }[a]=\text { True } \\
& \text { balanced }\left(s^{\wedge} t\right)= \\
& \quad \text { balanced } s \\
& \wedge \text { balanced } t \\
& \wedge \text { treeweight } s=\text { treeweight } t
\end{aligned}
$$

Zygomorphism

(Malcolm, 1990) Yet another origami pattern having both paramorphisms and "banana split" as special instances
(balanced, treeweight) $=\oplus / \cdot f_{*}$
for some \oplus and f
How to find \oplus and f ? Calculate!

Finding f

Since $\left(\oplus / \cdot f_{*}\right)[a]=f a$,
$f a$
$=$ \{above, zygo\}
(balanced, treeweight)[a]
$=\quad$ \{commatics\}
(balanced [a], treeweight [a])
$=\quad$ \{definitions\}
(True, tipweight a)

Finding \oplus

Given
balanced $s=p$ treeweight $s=u$
balanced $t=q$ treeweight $t=v$
balanced $\left(s^{\wedge} t\right)=r \quad \operatorname{treeweight}\left(s^{\wedge} t\right)=w$ solve for

$$
(p, u) \oplus(q, v)=(r, w)
$$

Finding \oplus (2)

$$
\begin{aligned}
& r \\
& =\quad \text { \{given\} } \\
& \text { balanced (s^t) } \\
& =\quad \text { \{definition\} } \\
& \text { balanced s } \wedge \text { balanced } t \\
& \wedge \text { treeweight } s=\text { treeweight } t \\
& =\quad\{\text { given }\} \\
& p \wedge q \wedge u=v
\end{aligned}
$$

Finding \oplus (3)

Similarly, we find $w=u+v$, resulting in the definition

$$
(p, u) \oplus(q, v)=(p \wedge q \wedge u=v, u+v)
$$

Sanity check: \oplus is indeed symmetric

Balancing mobiles

Consider mobiles over \mathbb{R}_{+}, where the tip values are the tip weights
(i.e., tipweight is the identity function)

Given a weight (value) and a mobile, can we construct another mobile of the same shape that is balanced and has the given weight?

Balancing mobiles (2)

Abbreviate $(b a l, t w) \xlongequal{\wedge}$ (balanced, treeweight)
Find function mkbal satisfying
shape (w `mkbal` t) $=$ shape t
$(b a l, t w)(w ` m k b a l ` t)=($ True, $w)$

Finding mkbal

From the preservation of shape we have

$$
\begin{aligned}
& w ` m k b a l ` {[a] } \\
& w ` m k b a l ` \\
& w \wedge=[b] \\
&\left.s^{\wedge} t\right)=x^{\wedge} y
\end{aligned}
$$

for some b, x and y such that shape $x=$ shape s and shape $y=$ shape t

For which values? Calculemus!

Finding b

$$
\begin{aligned}
& (b a l, t w)[b]=(\text { True, } w) \\
& \text { \{definition\} } \\
& (\text { True, } b)=(\text { True, } w) \\
& \equiv \quad\{c o m m a t i c s\} \\
& b=w
\end{aligned}
$$

Finding x and y

$$
\begin{aligned}
& (b a l, t w)\left(x^{\wedge} y\right)=(\text { True, } w) \\
& \equiv \quad\{d e f i n i t i o n\} \\
& (b a l x \wedge b a l y \wedge t w x=\operatorname{tw} y, t w x+\operatorname{tw} y)= \\
& \text { (True, w) } \\
& \equiv \quad\{c o m m a t i c s, \text { logic }\} \\
& \text { bal } x \wedge b a l y \wedge t w x=t w y \wedge \\
& t w x+t w y=w
\end{aligned}
$$

Finding x and y (continued)

$$
\begin{aligned}
& \text { bal } x \wedge \text { bal } y \wedge t w x=t w y \wedge \\
& t w x+t w y=w \\
& \equiv \quad \text { aalgebra\} } \\
& \text { bal } x \wedge \text { bal } y \wedge t w x=t w y=w / 2 \\
& \text { \{commatics\} } \\
& \text { (bal, tw }) x=(\text { True, } w / 2) \wedge \\
& \text { (bal, tw) y = (True, w/2) } \\
& \text { \{constructive hypothesis\} } \\
& x=(w / 2) \text { 'mkbal } s \wedge \\
& y=(w / 2) \cdot m k b a l \cdot t
\end{aligned}
$$

Conclusion

Pattern ingredients can often be constructed by simple and straightforward calculation

So Let Us Calculate

Conclusion

Pattern ingredients can often be constructed by simple and straightforward calculation

Calculemus Igitur

