
Category Theory
for

Program Construction by Calculation

Lambert Meertens
CWI, Amsterdam and Department of Computing Science, Utrecht University

September 5, 1995

c© Lambert Meertens, 1995.

Contents

1 Notation 3

2 Basic Definitions 9
2.1 Categories . 9
2.2 Examples of Concrete Categories . 15
2.3 Examples of Derived Categories . 19
2.4 Initial and Terminal Objects . 21

2.4.1 Initial Objects . 21
2.4.2 Terminal Objects . 24

2.5 Functors . 25
2.6 Natural Transformations . 32

3 Sum and Product 35
3.1 Lattices . 35
3.2 Sum . 36

3.2.1 From suprema to sums . 36
3.2.2 Definition of sum . 37
3.2.3 Properties of sum . 38

3.3 Product . 43
3.4 Examples of sums and products . 44

3.4.1 POset.A . 44
3.4.2 Fun . 44
3.4.3 Rel . 46

4 Adjunctions 49
4.1 Galois connections . 49
4.2 The Hom bifunctor . 51
4.3 Definition of adjunction . 52
4.4 Properties of adjunctions . 53
4.5 Examples of adjunctions . 61

4.5.1 Rel and Fun . 61
4.5.2 Sum as adjoint functor . 63

4.6 Exponents . 65

i

ii CONTENTS

5 Cartesian Closed Categories 67
5.1 The exponent bifunctor . 67
5.2 Cartesian closed categories . 70
5.3 Bicartesian closed categories . 74

6 Algebras 77
6.1 Algebras . 77
6.2 Homomorphisms . 78
6.3 The category of F -algebras . 80
6.4 Initial algebras . 80

6.4.1 Definition and properties of initial algebras 81
6.4.2 Data types as initial algebras . 83
6.4.3 Applications . 85
6.4.4 Initial algebra as fixed point . 88

6.5 Lawful algebras . 90
6.6 Parametrised initial algebras . 93

6.6.1 The map functor . 93
6.6.2 Reduce . 97

6.7 Existence of initial algebras . 101

7 Monads 103
7.1 Definition of monad . 103
7.2 Examples of monads . 105
7.3 Kleisli composition . 107

Introduction

Category theory is the theory of structure-preserving transformations. This theory pro-
vides us with a language for describing complex problems in an elegant way, and tools
to give elegant, and above all simple, proofs. The language of category theory allows
us to consider the essence of some problem, without the burden of—often numerous and
complicated—non-essential aspects.

The constructive and universal character of category theory is an aid in finding these
proofs. In these lecture notes we emphasise a calculational proof style, to which category
theory lends itself well. Examples are drawn from functional programming—and to a
lesser extent from lattice theory—and in fact the applicability to calculational program
construction has influenced the choice of topics covered.

Those familiar with publications on category theory may be surprised that this text
doesn’t contain any diagrams (pictures of objects connected by labelled arrows). Diagrams
can be illuminating for small problems and save some writing—but it is nevertheless
advisable to avoid the use of diagrams as a substitute for proofs for the following reasons.
First, a diagram cannot make clear in which order the arrows were constructed and why
the construction is indeed correct. Furthermore, a diagram is drawn within one particular
category. We frequently deal with more than one category at once, and in such more
complicated situations diagrams are hardly helpful.

Exercises

The exercises included in the text are there because they are meant to be done by the
reader. They sometimes introduce concepts that are used later in the main text. Further,
many have been selected to help the rather abstract theory come to life by relating them
to concrete familiar structures. Finally, an important part of the course is to learn how to
construct elegant proofs. That is something that simply can not be learned by only reading
already constructed proofs, which afterwards look deceptively simple. Only by the effort
of trying to construct new proofs, as required by the exercises, can the proof technique be
mastered. None of the exercises is particularly difficult, although they gradually become
more advanced; but the reader who has done all previous exercises should be able to finish
each next one.

1

2 INTRODUCTION

Acknowledgement

For this text use was made of unpublished material produced by the Mathematics of
Programming group of Roland Backhouse at Eindhoven, much of which was written by
Marcel Bijsterveld. However, substantive changes were made in content and presentation,
and any shortcomings of the present text are the sole responsibility of the present author.
The treatment owes much to earlier work by Grant Malcolm and Maarten Fokkinga.

The document was prepared using the Math
∫

pad editing system developed by the
Mathematics of Programming group at Eindhoven.

Chapter 1

Notation

Proof style

Proofs are generally given in the Feijen-Dijkstra style. To show that proposition P follows
from Q, a proof may look like this:

P

⇐ { hint why P ⇐ R }
R

≡ { hint why R ≡ S }
S

⇐ { hint why S ⇐ T }
T

⇐ { hint why T ⇐ U }
U

≡ { hint why U ≡ Q }
Q .

We use this proof style also to solve equations for unknowns. Then hints of the form
‘x := E’ may occur. The meaning is: this proof step is valid if we substitute E for the
unknown x. The expression E may introduce further unknowns, which must be solved
for subsequently. By collecting and performing all these substitutions, an expression for
the unknown results. For example,

z2 = 2i

⇐ { z := x+ iy }
(x+ iy)2 = 2i

3

4 CHAPTER 1. NOTATION

≡ { algebra; i2= − 1 }
(x2 − y2)+2ixy = 2i

⇐ { y := x }
2ix 2 = 2i

⇐ { Leibniz }
x2 = 1

⇐ { x := 1 }
true

is a proof of (1 + i)2 = 2i.
The hint ‘Leibniz’ explains proof steps of the form ‘Ex = Ey ⇐ x = y’, in which Ey is

the same expression as Ex except for replacing one or more occurrences of a sub-expression
x by the expression y—of course while respecting the usual restrictions on introducing a
free variable in a context with a different binding for that variable. (Rule names to be
used in hints are given in small capitals.)

Typing notation

All expressions, functions and other values are assumed to have some well-defined type
(or possibly a polymorphic type). Even if some type is not explicitly given, it is assumed
to be known.

Instead of the conventional f : s→t we write f ∈ t ← s to denote the typing of a
function. So we give the target type first, and only then the source type. A function
typed this way is total on s, unless we explicitly state that it is partial.

We let f.x denote the application of the function f to an argument x, which for
f ∈ t ← s implies that x has type s. (Function application has a high priority: f.x + y
means (f.x)+y.)

Whenever convenient, we identify a type with the set of values of that type.

Lambda forms

Instead of λx∈a • x2+1 we write (x : x∈a : x2+1). In general, the form is (dummies :
range : result), in which dummies is a list of variables, range is a propositional expression
that depends on the dummies , while result is an expression that also may depend on the
dummies . We continue to call these lambda-less expressions lambda forms. The source
type of a lambda form is basically the set of values for which the range evaluates to true,
while the target type is the type of result .

Often pure typing information in the range part is omitted, as in (dummies :: result).
We do this with typing information that can be inferred from the context. For example,
in the context of functions on the naturals, (n :: 3×n+1) is supposed to stand for (n :
n∈IN : 3×n+1) and has typing IN←IN.

5

The meaning of lambda forms follows from the following characterisation rule:

f = (x :: E) ≡ ∀(x :: f.x = E) , Lambda-char

so if f ∈ t ← s, the ranges are understood to be as in f = (x : x∈s : E) ≡ ∀(x :
x∈s : f.x = E). (Generally, rules involve an implicit universal quantification over the free
variables: for all f)

Although the rule Lambda-char will not be used directly, we show now, also as an
illustration of the general proof style, how it implies a number of (well-known) rules that
are used. The first rule can be used to introduce or eliminate lambda forms:

f = (x :: f.x) . Lambda-abstraction

It is derived as follows:

f = (x :: f.x)

≡ { Lambda-char }
∀(x :: f.x = f.x)

≡ { reflexivity of = }
∀(x :: true)

≡ { rules for ∀ }
true .

The next rule is:

f = g ≡ ∀(x :: f.x = g.x) . Extensionality

The proof is easy:

f = g

≡ { Lambda-abstraction applied to g }
f = (x :: g.x)

≡ { Lambda-char }
∀(x :: f.x = g.x) .

The special computation rule for lambda-application:

(x :: E).x = E Lambda-comp

follows immediately from Lambda-char. (Recall that the rule is understood to be
universally quantified over the free variable x.) The general computation rule for lambda-
application:

6 CHAPTER 1. NOTATION

(x :: E).y = E[x := y] Lambda-comp

(in which E[x := y] denotes substitution of y for all free occurrences of x in E) can then
be derived using elementary substitution rules:

(x :: E).y = E[x := y]

≡ { substitution rules }
((x :: E).x = E)[x := y]

≡ { (special) Lambda-comp }
true[x := y]

≡ { substitution rules }
true .

This gives us the rule for dummy renaming (also known as alpha-conversion):

(x :: E) = (y :: E[x := y]) . Dummy-renaming

The proof is left to the reader as an exercise.
From the definition of function composition:

f ◦g = (x :: f.(g.x)) , Fun-◦-def

we obtain immediately by Lambda-char the following computation rule:

(f ◦g).x = f.(g.x) . Fun-◦-comp

(The composition operation has a low priority: f ◦ g+h means f ◦(g+h).)
Finally, we mention, without proof, three fusion rules for lambda forms:

f ◦(y :: U) = (y :: f.U) ; Lambda-left-fusion

(x :: E)◦g = (y :: E[x := g.y]) . Lambda-right-fusion

(x :: E)◦(y :: U) = (y :: E[x := U]) . Lambda-lambda-fusion

Quantifier notation

A lambda form may be preceded by a quantifier. We have used this already above
with ∀. For the quantifiers ∀ and ∃ the result expression has to be propositional, as in
∀(n :: ∃(m :: m > n)). The quantifier may also be an associative operator, with a neutral
element if the range may be empty. For example, the meaning of ∩(x : x ⊇ s : convex .x)
is: the intersection of all convex supersets of s. With this convention we could also have
used ∧ and ∨ instead of ∀ and ∃.

7

Set comprehension

The notation $(dummies : range : result), again with a propositional result expression,
stands for a set comprehension. For example, $(x : x ⊇ s : convex .x) is the set of all
convex supersets of s. Using the section notation introduced below we can characterise
the meaning by:

s = $(x :: E) ≡ (∈s) = (x :: E) . Compr-char

From this rule, which demonstrates the well-known correspondence between sets and
predicates, it is easy to derive:

s = $(x :: x∈s) . Compr-abstraction

Relations

As for functions, we assume that relations are typed. We shall usually consider a relation
R between two sets s and t as a subset of the Cartesian product s×t, but often step
silently to the corresponding binary-predicate view and use an infix notation then, so
xRy ≡ (x, y)∈R. The Compr-abstraction rule specialised to relations is then:

R = $(x, y :: xRy) . Rel-abstraction

Relational composition is defined by:

R◦S = $(x, z :: ∃(y :: xRy ∧ ySz)) , Rel-◦-def

from which we easily obtain:

x (R◦S) z ≡ ∃(y :: xRy ∧ ySz) . Rel-◦-comp

Section notation

If ⊕ is a binary infix operation, the presection x⊕ denotes the function (y :: x⊕y),
while the postsection ⊕y denotes the function (x :: x⊕y). Used by itself, often between
parentheses to avoid confusion, ⊕ stands for the function (x, y :: x⊕y) — and not for the
curry’d version (x :: (y :: x⊕y)). So, rather than being a function of some type (a←c)←b,
it has some type a← b×c.

Exercise 1.1 Suppose that instead of the Leibniz rule as given we only have the
following ‘safe’ rule:

f.x = f.y ⇐ x = y Fun-Leibniz

(‘safe’ in the sense that the rule can be applied blindly—no care is required for variable
bindings). Show that the rule E[z := x] = E[z := y] ⇐ x = y, which is very close to the
original Leibniz rule, is a consequence of the rule Fun-Leibniz.

8 CHAPTER 1. NOTATION

2

Exercise 1.2 Prove the rule Dummy renaming.

2

Exercise 1.3 Prove the three lambda-fusion rules.

2

Exercise 1.4 Prove the rule Compr-abstraction.

2

Exercise 1.5 Prove the rule Rel-◦-comp.

2

Chapter 2

Basic Definitions

In this chapter we give an introduction to the basic concepts of category theory. The
concept of a category corresponds in lattice theory to the concept of a pre-ordered set,
i.e., a set with a binary relation w which is reflexive and transitive. (Here, x w y means
‘x contains y′, i.e. the relationship between the ordering w and the binary infimum
operator u is as follows: xuy = y ≡ x w y.) In lattice theory, we write x w y; in category
theory we write f ∈ x← y. Here f is considered to be a witness of the ordering relation
between x and y. In this sense, category theory is constructive: it is a theory how to
construct such witnesses rather than a theory about the existence of the witnesses. So,
reflexivity corresponds in category theory to the existence for all objects of an identity
arrow and transitivity corresponds to the existence of a composition operator.

2.1 Categories

We start by giving the definition of a category.

Definition 2.1 (Category) A category comprises:
(a) A class of objects. We use the notation x∈C to denote that x is an object of the
category C.
(b) A class of arrows.
(c) Two mappings to the class of objects from the class of arrows, called codomain and
domain, denoted by cod and dom, respectively. We say that an arrow f is to x and from
y if cod.f=x and dom.f=y. With x←y we denote the collection of all arrows to x from
y, and so we also often write f ∈ x← y.
(d) A composition operator ◦ which is a partial function defined for all pairs of arrows
f and g with dom.f = cod.g and assigning to such an f and g an arrow f ◦g ∈ cod.f ←
dom.g, satisfying: for all arrows f ∈ w ← x, g ∈ x← y and h ∈ y ← z:

f ◦(g◦h) = (f ◦g)◦h .

(This associativity law allows us to drop the brackets and write ‘f ◦g◦h’.)

9

10 CHAPTER 2. BASIC DEFINITIONS

(e) For each object x an identity arrow idx ∈ x← x such that: for all arrows f ∈ x← y,

idx◦f = f = f ◦idy .

2

In the literature one also finds the term morphism instead of arrow .

Arrow typing

Instead of saying f ∈ x ← y, we also say: f has the typing x←y. To prevent confusion,
we sometimes mention explicitly in the typing to which category an arrow belongs. For

example, to make explicit that f is a C-arrow, we write f ∈ x C←− y.
The requirement ‘dom.f = cod.g’ in (c) above can also be expressed in the typing rule

f ◦g ∈ x← z ⇐ f ∈ x← y ∧ g ∈ y ← z . ◦-typing

In an expression ‘f ◦g’ the components are called suitably typed if their typing satisfies
dom.f = cod.g. This is a requirement for the definedness of the expression. We call
an expression suitably typed if its components are suitably typed. Applied to more
complicated expressions, such as ‘f ◦g◦h’, it applies to all component compositions; for
this case dom.f = cod.g ∧ dom.g = cod.h.

If two arrows are equal they have the same codomain and domain. For example, the
arrow equality idx = idy implies the equality of the objects x and y. An arrow equality
‘f = g’ is called suitably typed if, first, both f and g are suitably typed, and, moreover,
such that cod.f = cod.g ∧ dom.f = dom.g. Applied to ‘f ◦g = h◦k’, for example, suitable
typing means: there exist w, x, y and z such that f ∈ w ← x, g ∈ x ← z, h ∈ w ← y
and k ∈ y ← z. Throughout the following there will always be the assumption, whether
stated explicitly or not, that all arrow compositions and equalities are suitably typed.

We write ‘f = g ∈ x← y’ as a shorthand for: f ∈ x← y ∧ g ∈ x← y ∧ f = g.

Transformation

If we have a class of arrows αx, one for each object x of some category C—as for the
identity arrows—we call it a transformation on C. Sometimes it is useful to think of a
transformation as a mapping from objects of some category to arrows of some (possibly
other!) category, and to make that point of view explicit we use the notation [α] = (x ::
αx). So, applying this to id, we have [id].x = idx.

Subcategory

A category D is called a subcategory of a category C if: (a) the objects of D form a
subclass of the objects of C, (b) the arrows of D form a subclass of the arrows of C, (c)
the composition of arrows in D is the same as that in C, and (d) the identity arrows of D
form a subclass of the identity arrows of C.

2.1. CATEGORIES 11

If some object x∈C is not an object of a subcategory D, then clearly all arrows of C that
have x as their codomain or domain are not arrows of D. If that is the only restriction,
we have a ‘full’ subcategory; more precisely, a category D is called a full subcategory of

a category C if: D is a subcategory of C and, moreover, for all x, y∈D, x
D← y is the same

as x
C← y.

Precategory

Sometimes a structure is ‘almost’ a category: it satisfies all requirements of the definition,
except for the uniqueness of (co)domains. Such an almost-category is called a precategory .
For example, there might be a ‘polymorphic’ identity id ∈ x← x for all x, and in general
arrows may admit several typings. The following triple trick is a standard construction
that will turn any precategory into a category: Replace each arrow f that admits the
typing f ∈ x← y by a triple (x,f,y) ∈ x← y. So, for example, a polymorphic identity is
turned into as many arrows as there are objects. This construction is usually performed
‘virtually’: we continue to write f instead of the more proper (x,f,y), so as to keep the
notation light. Extra care must be taken then, though, to ensure suitable typing in
compositions. Further, in a category the following is valid:

u = x ∧ v = y ⇐ f ∈ u← v ∧ f ∈ x← y ,

since f ∈ u ← v means cod.f = u ∧ dom.f = v, but if the triple trick has been applied
virtually, this rule is nonsensical: the two occurrences of f are short-hand for different
arrows (u,f,v) and (x,f,y).

Derived categories; base category

It is often the case in category theory that one category is defined in terms of another.
More precisely, there are general constructions to create a new category from a given
category. We call such a newly created category a derived category and the category on
which it is based the base category . For example, given a category C, we can define the
objects of a category D to be some subclass of the arrows of C. So, in the derived category
D we have arrows to arrows of C from arrows of C.To prevent confusion, we sometimes
mention explicitly in the typing to which category an arrow belongs. For example, if f
and g are arrows in the base category C, then we denote the arrow ϕ in D to f from g by

ϕ ∈ f D←− g .

Witnesses

From the definition of a category it should be obvious that one way of looking at it is
as a directed graph with some additional structure, in which the objects are the vertices
(nodes) and the arrows the arcs. It often makes sense to interpret f ∈ x ← y as the
statement: ‘f is a way to reach the destination x from the starting point y’. We can

12 CHAPTER 2. BASIC DEFINITIONS

also give a propositional interpretation to x←y, namely: ‘x is reachable from y’. This is
true if the arrow collection x←y contains at least one arrow; otherwise it is false. This
interpretation gives rise to the term ‘witness’: we call an arrow f a witness of x←y (the
reachability of x from y) whenever f ∈ x← y.

Coherence conditions

In the definition of a category the requirement

f ◦(g◦h) = (f ◦g)◦h

is a so-called coherence condition. In general, a rule is called a coherence condition if it
has the form of one or more equalities between arrow-valued expressions that state that
the different ways in which the basic rules of category theory can be applied to establish
the reachability of some object from some other object—given a bunch of ingredients that
are as generally typed as allowed by suitability—has no effect on the witnesses obtained.

For example, consider the typing of the identity arrows. Given an f ∈ x← y we can
show the reachability of x from y in (at least) three different ways: immediately by saying
we have an arrow f ∈ x ← y; by arguing that we have (i) an arrow idx ∈ x ← x, and
(ii) the arrow f ∈ x ← y, so we can use composition to construct idx◦f ∈ x ← y; or by
arguing that we have (i) the arrow f ∈ x ← y, and (ii) an arrow idy ∈ y ← y, so we can
use composition to construct f ◦idy ∈ x ← y. The identity axiom: the requirement that
idx◦f = f = f ◦idy whenever f ∈ x ← y, states that these three witnesses are the same.
So this axiom is a coherence condition.

Likewise, the associativity axiom expresses that the two ways of constructing an arrow
with typing w←z, given arrows with typings w←x, x←y and y←z, are equivalent.

Note. Coherence conditions should never be automatically assumed, but are in each
case rules that are explicitly given as part of a definition. For example, given f ∈ x← x
we have two ways of reaching x from x: by using f , and by using idx. But it would be an
error to conclude from this that f = idx.

1

Monomorphic categories

In general there is no requirement whatsoever that the arrows between two given objects
are unique. A category in which they are, so each class x←y contains at most one arrow,
is called monomorphic. In a monomorphic category all conceivable coherence conditions
are automatically fulfilled: it is generally valid to conclude f = g from f ∈ x ← y and
g ∈ x← y.

1For a more advanced counterexample, jumping wildly ahead: in monads, which will defined in the
last chapter, µM = Mµ ∈MM←̇MMM has the right form to be a coherence condition, but this arrow
equality between the two natural transformations does in general not hold

2.1. CATEGORIES 13

Small categories

In the definition of category we used the term ‘class’ for the collections of objects and of
arrows, and not the term ‘set’. The reason is that in the general case these collections
may be too ‘large’ to be sets in the sense of standard axiomatised set theory. Set theory
may be modelled within category theory and vice versa, and with the assumption that all
classes are sets it would be possible to obtain inconsistencies like Russell’s paradox.

A category is said to be small if the class of objects and the class of arrows are both
sets. A category is said to be locally small if for all objects x and y the collection of
all arrows to x from y, i.e. x←y, is a set. If a category is locally small x←y is called a
hom-set.

Monomorphic categories are locally small.

Isomorphic objects

Definition 2.2 (Isomorphism) Objects x and y in the same category are said to be
isomorphic if: there exist two arrows f ∈ x ← y and g ∈ y ← x such that f ◦g = idx and
g◦f = idy (in which case we also say that f and g are each others’ inverse). If this is the
case we write x ∼= y.

The pair (f, g) is called an isomorphism between x and y, or a witness of the isomorphy
x ∼= y. Sometimes we omit the g component—which is uniquely determined by f—and
say that f is an isomorphism (between x and y).

2

If C is some category with isomorphic objects x and y, with witness (f, g), we obtain
an automorphism on C as follows: (a) Map x to y, y to x, and each other object z∈C to
itself. (b) Map each arrow h ∈ u ← v to δu◦h◦εv, where δx = g, δy = f and δz = idz for
each other object z∈C, while εx = f , εy = g and εz = idz for each other object z∈C.

Note that this mapping respects the typing of arrows and preserves compositions and
identities: if we denote it (both for objects and for arrows) by F , then h ∈ u ← v is
mapped to Fh ∈ Fu ← Fv, and for all suitably typed C-arrows h and k and all z∈C we
have: F (h◦k) = Fh ◦ Fk and F idz = idFz. It is also an involution: F ◦F is the identity
mapping. Any statement that can be made about C is invariant under this mapping. In
other words, there is a symmetry between isomorphic objects; they are interchangeable
in the sense that they cannot be distinguished by their ‘categorical’ properties, just as in
the (undirected) graph below there is a symmetry between the vertices B and G: they are
indistinguishable by their graph-theoretical properties. (In contrast, A, for example, can
be distinguished from B by the property: ‘has a neighbour of degree 3’.)

14 CHAPTER 2. BASIC DEFINITIONS

��
��
a ��

��
b

��
��
c ��

��
d ��

��
e

��
��

f ��
��
g

�
�
��

T
T
TT

T
T
TT �

�
��

T
T
TT

T
T
TT

�
�
��

For another example, define in the complex numbers j=− i. Any property of i is true of
j as well, and vice versa. For example, | 3+4i | =5, so | 3+4j | =5. Likewise, eiπ=− 1, so
ejπ=− 1. (If we define f.x=ix , then f.i=− 1 while f.j=1. This is not a counterexample;
the issue is that the replacement of i by j has not been systematic enough: there is a
hidden dependency on i in the definition of f . It is made clear in: (x :: ix).i= − 1;
and indeed, (x :: jx).j= − 1.) One way of looking at this is that i is—by definition—an
‘implementation’ of the specification (x :: x2+1=0). But for any i that satisfies that
specification, −i is an equally valid implementation.

Uniqueness up to isomorphism; ‘the’

In category theory it is usual to define notions by giving the categorical property they
have to satisfy. In general there may be many solutions, but if all solutions are necessarily
isomorphic this is, nevertheless, considered a proper definitional mechanism. The reason
is that different solutions, although different, are categorically indistinguishable, so any
solution is precisely as good as any other solution. Take, for concreteness, the notion
‘initial object’, which will be defined later. A category may have many initial objects, but
if so they are all isomorphic. This situation is usually described by saying: initial objects
are unique up to isomorphism. Further, since all are equally good, we may arbitrarily
pick one (assuming there is at least one solution) and call it ‘the’ initial object. When
we do this, we need not mention the arbitrarily picking a solution any more, but instead
may say something like: ‘Let 0 denote ‘the’ initial object.’.

Note. The converse statement that two categorically indistinguishable objects are
isomorphic is, in general, false.

Exercise 2.3 Show that ∼= is an equivalence relation.

2

Exercise 2.4 Show that if both (f, g0) and (f, g1) are isomorphisms, g0 = g1.

2

2.2. EXAMPLES OF CONCRETE CATEGORIES 15

2.2 Examples of Concrete Categories

Definition 2.5 (Pre-ordered set) A pre-ordered set is: a structure (A,w), in which
A is a set and w is a relation on A that is reflexive and transitive.

2

Definition 2.6 (PreOset.A) Given a pre-ordered setA = (A,w), the category PreOset.A
is defined as follows:

Objects: The elements of A.

Arrows: The elements of w viewed as a subset of A×A, i.e., (x, y) is an arrow if:
x w y, and it then has the typing (x, y) ∈ x← y.

Composition: (x, y)◦(y, z) = (x, z).

Identities: All pairs (x, x) for x∈A.

2

Note that the definitions of composition and identities were forced. The existence of
the identity arrows follows from the reflexivity of w, and that the set of arrows is closed
under composition follows from the transitivity of w. (In fact, the statement that this
construction applied to (A,w) gives a category is equivalent to the statement that (A,w)
is a pre-ordered set.) Composition is associative because associativity is a coherence
condition, and this category is monomorphic.

Definition 2.7 (Partially ordered set) A partially ordered set is: a structure (A,w),
in which A is a set and w is a relation on A that is reflexive, transitive and anti-
symmetric—that is, x w y ∧ y w x ≡ x = y.

2

Definition 2.8 (POset.A) Given a partially ordered set A, the category POset.A is:
PreOset.A.

2

The introduction of a different name, POSet rather than PreOSet, is strictly speaking
superfluous, but serves to make the restriction of anti-symmetry on the order relation of
A explicit.

16 CHAPTER 2. BASIC DEFINITIONS

Definition 2.9 (Fun) The category Fun is defined as follows:

Objects: Types.

Arrows: Typed total functions, where the codomain of a function is its target type,
and the domain its source type.

Composition: Function composition.

Identities: The identity mappings, one for each type.

2

Remark 2.10 It is conventional to name this category Set, after its objects (recall
that we identify types and sets), but it makes more sense to name it after its arrows, as
it has the same objects as Par and Rel defined below.

2

Remark 2.11 Depending on the details of the typing discipline, we may only obtain a
precategory. For example, if there is a ‘coercion’ (implicit type conversion) to reals from
integers, we may as well type floor ∈ ZZ ← IR as floor ∈ IR ← IR. So the triple trick is
supposed to have been used here. For example, to be precise, one might name the first
version floorZZ and the second floorIR.

2

Remark 2.12 A fine point is whether there is only one empty set, or many: the empty
set of integers, the empty set of lists of integers, and so on. The reader may freely adopt
either point of view. Categorically it hardly makes a difference, since all empty sets are
isomorphic.

2

Remark 2.13 We shall sometimes give examples using a functional programming no-
tation, in a dialect of Haskell or Gofer2. However, for this to be a model of Fun we must
take care that all functions are total, and consider a polymorphic function definition as an
abbreviation for a whole collection of monomorphic function definitions. Unfortunately,
these languages have a typing discipline that is still too weak to express many interest-
ing concepts properly, such as the polytypic map functor introduced in the chapter on
Algebras.

2We do not adhere to the requirement that constructor functions begin with a capital letter.

2.2. EXAMPLES OF CONCRETE CATEGORIES 17

2

Remark 2.14 Fun is not a small category, since there is no ‘set of sets’.

2

Definition 2.15 (Par) The category Par is just like Fun, except that we also allow
partial functions.

2

Definition 2.16 (Rel) The category Rel is defined as follows:

Objects: Sets.

Arrows: Relations, where R ∈ x← y if: R is a relation between x and y.

Composition: Relation composition.

Identities: The equality relations, one for each set.

2

(This is, again, actually only a precategory.)

Definition 2.17 (Monoid) A monoid is: a structure (A,⊕,e), in which A is a set,
⊕ ∈ A← A×A and e∈A, satisfying the monoid laws: ⊕ is an associative operation, and
e is a neutral (or identity) element for ⊕.

2

(Note that a group is a monoid equipped with yet another operation, inverse, giving
rise to additional laws.)

Definition 2.18 (Mon.M) Given a monoid M = (A,⊕,e), the category Mon.M is
defined as follows:

Objects: Some (further irrelevant) set with one element.

Arrows: A.

Composition: ⊕.

Identities: {e}.

18 CHAPTER 2. BASIC DEFINITIONS

2

So a monoid corresponds to a one-object category; conversely, each one-object category
corresponds to a monoid.

Definition 2.19 (Discr.S) Given a set S, the discrete category Discr.S is defined as
follows:

Objects: S.

Arrows: S, where for each x∈S : x ∈ x← x.

Composition: Forced by the arrows and the identity law: x◦x = x.

Identities: Forced by the arrows: idx = x.

2

This is the categorical counterpart of a discrete graph. Note that composition and identi-
ties are forced by the definition of the arrows. Through the lack of structure this kind of
category is not very exciting, but it can be a helpful tool in some categorical construction
work, as well in providing counterexamples.

Definition 2.20 (Paths.G) Given a directed graph G = (V,E), in which V is a set of
vertices and E a set of arcs (each having a target vertex and a source vertex, both from
V), the category Paths.G is defined as follows:

Objects: V .

Arrows: The set x←y consists of the paths on G ending in x and starting from y,
where a path is a finite (possibly empty) sequence of arcs, such that the source of
each is the target of the next.

Composition: Concatenation.

Identities: The empty paths.

2

To make this completely correct, the triple trick for turning a precategory into a cat-
egory must be applied, since we need a separate identity arrow for each object, while it
might be argued that there is only one empty sequence and therefore only one empty
path.

Definition 2.21 (Nat) The category Nat is defined as follows:

Objects: IN.

2.3. EXAMPLES OF DERIVED CATEGORIES 19

Arrows: The set m
Nat← n consists of $(k :: k < m)

Fun← $(k :: k < n).

Composition: As in Fun.

Identities: The identity arrows of Fun.

2

Remark 2.22 But for the notation used for the objects, Nat is the full subcategory of
Fun whose objects are $(k :: k < n) for n∈IN.

2

Exercise 2.23 Which category-theoretic statement about PreOset.A corresponds to
the statement that A is a partially ordered set?

2

Exercise 2.24 When are two objects of Fun isomorphic? Answer the same question
for the other examples of concrete categories.

2

Exercise 2.25 Compare Discr.S with POset.(S,=) and Paths.(S, ∅).

2

Exercise 2.26 How many arrows are there in the set m
Nat← n?

2

2.3 Examples of Derived Categories

Definition 2.27 (Opposite category Cop) Given a category C, the so-called opposite
category Cop is: the category obtained by switching the roles of domain and codomain, so
that Cop is defined by:

Objects: The objects of C.

Arrows: The arrows of C, where f ∈ x Cop←− y ≡ f ∈ y C←− x.

20 CHAPTER 2. BASIC DEFINITIONS

Composition: To avoid confusion, we denote composition in Cop by the symbol ‘;’,
where, by definition, f ;g = g◦f , in which the symbol ‘◦’ is the composition of C.

Identities: Those of C.

2

It follows from this definition that -
op is a convolution, that is, (Cop)op = C.

Dual; co-

From a definition involving a category we can make another definition for that same
category, called its dual, by applying the original definition to the opposite category. To
give an imaginary simple example, suppose we define an object x of a category C to be
a ‘black hole’ if the only arrow with domain x is idx. Then an object x satisfies the
dual property if the only arrow with codomain x is idx . So we can simply define some
categorical notions by saying that they are the dual of some earlier defined notion.

If a notion is dualised we can invent some new term if we wish, as in ‘white hole’,
but we can also use the common convention of reusing the term for the original notion
preceded by ‘co’, as in ‘coblack hole’. So the ‘coblack holes’ of C are the ‘black holes’
of Cop. Similarly, the dual of ‘domain’ is ‘codomain’, and indeed, cod.f in C is the same
object as dom.f in Cop.

We shall sometimes directly define some cothing without first defining the notion thing ;
the thing is then its dual. Which is the original and which the dual notion (why not call
a ‘black hole’ a ‘cowhite hole’?) is a matter of tradition, but there is also some system to
it that would lead too far to explain it already here.

Definition 2.28 (Product category) Given two categories C and D, the product
category C×D is defined by:

Objects: The class of all pairs (v, x) with v∈C and x∈D.

Arrows: The class of arrows (v, x)
C×D← (w, y) consists of all pairs (f, g) such that f ∈

v
C←− w and g ∈ x D←− y.

Composition: Componentwise: (f, g)◦(h, k) = (f ◦h, g◦k), in which the composition
of ‘f ◦h’ is that of C and the composition of ‘g◦k’ is that of D.

Identities: The identity arrow id(v,x) = (idv, idx).

2

Exercise 2.29 What would be the co-opposite of a category?

2.4. INITIAL AND TERMINAL OBJECTS 21

2

Exercise 2.30 What is Relop? And what is (PreOset.A)op?

2

Exercise 2.31 Show that -
op distributes through ×, i.e., (C×D)op = Cop×Dop

2

Exercise 2.32 What is Discr.S × Discr.T?

2

2.4 Initial and Terminal Objects

2.4.1 Initial Objects

Definition 2.33 (Initial object) An initial object of a category C is: an object a of
C such that, for each object x in the category, there is a unique arrow to x from a—that
is, there is precisely one arrow in x←a.

2

We use ([x← a]) to denote the unique arrow to an arbitrary object x of C from an initial
object a, which is characterised by:

([x← a]) = f ≡ f ∈ x← a . ([-])-char

(Note that the ⇒ direction is the requirement of suitable typing, while the ⇐ direction
expresses uniqueness and is a coherence condition.)

Definition 2.34 (Catamorphism; initiality) Given an initial object a, we call these
unique arrows ([x← a]) catamorphisms, and the pair (a, ([-← a]))—in which the second
component denotes the mapping (x :: ([x← a]))—an initiality .

2

22 CHAPTER 2. BASIC DEFINITIONS

Example 2.35 Recall that there is an arrow with typing x←y in POset.A, where
A = (A,w), if x w y. For an initial object a of POset.A there is an arrow with typing
x←a for all x∈A, which means: x w a for all a∈A. A partially ordered set A can have
at most one element with that property, which is then called the bottom of A and often
denoted by ⊥. If A has a bottom, it is an initial object of POset.A, since there is an
arrow to each object, which by the monomorphicity of this category is unique.

2

Example 2.36 We show that Fun has an initial object. First we show that it is empty.
Next we verify that any empty set is indeed initial.

Suppose that the set s is an initial object of Fun. Below (x : x∈s : 0) and (x : x∈s : 1)
stand for two functions with the typing {0,1}←s. Then:

¬∃(x :: x∈s)
≡ { Quantification rules }

∀(x : x∈s : false)

≡ { 0 6= 1 }
∀(x : x∈s : 0 = 1)

≡ { Extensionality }
(x : x∈s : 0) = (x : x∈s : 1)

⇐ { symmetry and transitivity of = }
([{0,1} ← s]) = (x : x∈s : 0) ∧ ([{0,1} ← s]) = (x : x∈s : 1)

⇐ { ([-])-char }
(x : x∈s : 0) ∈ {0,1} ← s ∧ (x : x∈s : 1) ∈ {0,1} ← s ,

where the latter typings are those assumed.
Next,

f = g ∈ t← s

≡ { Extensionality }
∀(x : x∈s : f.x = g.x)

⇐ { f.x = g.x ⇐ false; quantification rules }
∀(x : x∈s : false)

≡ { quantification rules }
¬∃(x :: x∈s) ,

2.4. INITIAL AND TERMINAL OBJECTS 23

which shows that arrows to any t from an empty s are unique.

2

Example 2.37 A directed graph is called a rooted tree if: there is a vertex, called the
root of the tree, such that there is a unique path to any vertex of the graph from the root.
This corresponds directly to the definition of initial object in Paths.G.

2

In the remainder of this section we present some elementary properties and theorems
concerning catamorphisms.

It is easy to show that initial objects are unique up to isomorphism. Assume that we
are working in a category C which has an initial object, and let 0 stand for ‘the’ initial
object. Fixing the initial object has the advantage that we can drop the parameter a in
the notation ([x← a]) and simply write ([x]). So we get for the characterisation rule:

([x]) = f ≡ f ∈ x← 0 . ([-])-char

By instantiating f := ([x]) we obtain:

([x]) ∈ x← 0 . ([-])-typing

By instantiating f,x := id0,0 we obtain:

([0]) = id0 . ([-])-id

Theorem 2.38

f ◦([y]) = ([x]) ⇐ f ∈ x← y . ([-])-fusion

Proof

f ◦([y]) = ([x])

≡ { ([-])-char }
f ◦([y]) ∈ x← 0

⇐ { ([-])-typing, ◦-typing }
f ∈ x← y .

2

Note that the condition f ∈ x← y is in fact nothing but the requirement that f ◦([y]) = ([x])
is suitably typed. Note, further, that the last two rules have the form of a coherence con-
dition.

24 CHAPTER 2. BASIC DEFINITIONS

Exercise 2.39 Rewrite the ([-]) rules given above for an arbitrary, not fixed initial
object, using the notation ([-← -]). Then prove, by using these rules, that initial objects
in the same category are unique up to isomorphism.

2

Exercise 2.40 Which of the further categories given as examples have initial objects,
and what are they?.

2

2.4.2 Terminal Objects

Definition 2.41 (Terminal object) An terminal object of a category C is: an initial
object of Cop.

2

It is customary to use 1 for ‘the’ terminal object. We call the unique arrows to the
terminal object anamorphisms, and use the notation bd(-)ce. By dualisation of ([-])-char we
obtain:

bd(x)ce = f ≡ f ∈ 1← x . bd(-)ce-char

Example 2.42 We show that Fun has a terminal object. First we show that it is a
one-element set. Next we verify that any one-element set is indeed terminal.

Suppose that the set 1 is a terminal object of Fun. Let z stand for the set {0}.
Because bd(z)ce ∈ 1← z and 0∈z, bd(z)ce.0 ∈ 1, 1 has at least one element. We show now that
a = b ⇐ a∈1 ∧ b∈1, so that 1 has at most one element. So assume that a∈1 and b∈1.
Define f ∈ 1← z by f.0 = a, and g ∈ 1← z by g.0 = b. Then:

a = b

≡ { Definition of f and g }
f.0 = g.0

⇐ { Leibniz }
f = g

⇐ { symmetry and transitivity of = }
bd(z)ce = f ∧ bd(z)ce = g

⇐ { bd(-)ce-char }
f ∈ 1← z ∧ g ∈ 1← z ,

2.5. FUNCTORS 25

where the latter typing is the one assumed.
Next, assume that 1 is some one-element set, say {e}. Then:

f = g ∈ 1← s

≡ { Extensionality }
∀(x : x∈s : f.x = g.x)

⇐ { symmetry and transitivity of = }
∀(x : x∈s : f.x = e ∧ g.x = e)

≡ { quantification rules }
∀(x : x∈s : f.x = e) ∧ ∀(x : x∈s : g.x = e)

≡ { membership of one-element set }
∀(x : x∈s : f.x ∈ {e}) ∧ ∀(x : x∈s : g.x ∈ {e})

≡ { 1 = {e}; Leibniz }
∀(x : x∈s : f.x ∈ 1) ∧ ∀(x : x∈s : g.x ∈ 1)

⇐ { typing in Fun }
f ∈ 1← s ∧ g ∈ 1← s ,

which shows that arrows to a one-element set from any s are unique.

2

Exercise 2.43 Dualise the other ([-]) rules.

2

Exercise 2.44 Which of the further categories given as examples have terminal objects,
and what are they?.

2

2.5 Functors

Definition 2.45 (Functor) Given two categories C and D, a functor to C from D is:
a pair of mappings F = (Fobj , Farr) such that the object mapping Fobj maps objects of D
to objects of C and the arrow mapping Farr arrows of D to arrows of C, satisfying, first,
the following typing requirement: for all arrows f in D:

Farr .f ∈ Fobj .x
C←− Fobj .y ⇐ f ∈ x D←− y ;

26 CHAPTER 2. BASIC DEFINITIONS

and, second, the following two coherence conditions: for all D-arrows f and g with
dom.f = cod.g:

Farr .(f ◦g) = Farr .f ◦ Farr .g ;

and for each object x in D :

Farr .idx = idFobj .x .

2

It is convention not to write subscripts -obj and -arr but to use the same symbol for
denoting the object and the arrow mapping of a functor. Moreover, we will use juxtaposi-
tion to denote functor application. With that convention the above functor requirements
become:

Ff ∈ Fx C←− Fy ⇐ f ∈ x D←− y ;

F (f ◦g) = Ff ◦ Fg ;

F idx = idFx .

So a functor respects typing, distributes over composition and preserves identities.

Remark 2.46 Using F×F to denote the mapping (f, g :: (Ff, Fg)), a concise way of
expressing these requirements is

cod◦F = F ◦cod ∧ dom◦F = F ◦dom ;

F ◦(◦) = (◦) ◦ F×F ;

F ◦[id] = [id]◦F .

So a functor commutes with the basic ingredients of categorical structure.

2

We write, more concisely, F ∈ C ← D instead of: F is a functor to C from D. For functors
we use capitalised identifiers or non-alphabetic symbols.

Example 2.47 What is a functor F ∈ POset.A ← POset.B? Put A = (A,w) and
B = (B,⊇). Then F is, as far as its object mapping is concerned, a function F ∈ A← B.
An arrow with typing x←y in POset.B, which means that x and y are elements of B
with x ⊇ y, is mapped by F to an arrow with typing Fx← Fy in POset.A, which is only
possible if there is such an arrow, i.e., if Fx w Fy. So F satisfies Fx w Fy ⇐ x ⊇ y;
in other words, it is a monotonic function between the two partially ordered sets. It
is easy to see that, conversely, any such monotonic function gives a functor: the typing
requirements are satisfied, and because of monomorphicity the coherence conditions are
trivially true.

2.5. FUNCTORS 27

2

Example 2.48 (Identity functor) If C is a category, then IdC denotes the identity
functor on C. It maps objects and arrows of C to themselves. The subscript C is usually
omitted.

2

Example 2.49 (map; square) In Fun, let L map a type x to the type ‘list of x’. Take
for the arrow mapping of L the well-known higher-order function map from functional
languages. Then L is a functor. The reader should check that the requirements are
fulfilled.

Similarly, define in some functional language:

type Square x = (x, x)

square f (a, b) = (f a, f b)

This also defines an endofunctor.

2

Example 2.50 (Constant functor) As a final example, given an object a in some
category C, the constant functor K.a ∈ C ← D maps each object of some category D to
a. For the arrow mapping we must make sure that (K.a)f ∈ a ← a for all D-arrows f ,
which we accomplish by mapping all D-arrows to ida.

2

Extending an object mapping to a functor

It is often the case that we have an object mapping and want to extend it to a functor.
Typically, we first construct a candidate for the arrow mapping that satisfies the typing
requirement, and then check that it meets the coherence conditions.

The converse is never necessary: given an arrow mapping Farr that preserves composi-
tion and identities, there is always a unique way of extending it to a full-fledged functor,
namely by defining: Fobj = cod◦Farr ◦[id].

28 CHAPTER 2. BASIC DEFINITIONS

Functor composition

Since functors are (pairs of) mappings, we can compose these mappings, and the result
is again a functor. We denote functor composition also by juxtaposition. This introduces
a harmless ambiguity in a case like FGh, since the two interpretations, (F ◦G).h and
F.(G.h), denote the same arrow.

We have, apparently, the ingredients for introducing yet another category.

Definition 2.51 (Cat) The category of small categories, denoted by Cat, is defined
as follows:

Objects: The small categories.

Arrows: The functors between small categories.

Composition: Functor composition.

Identities: The identity functors.

Strictly speaking this is a precategory, so the triple trick is assumed to have been applied.
The restriction to small categories serves to avoid Russell’s paradox. (Note that Cat itself
is, like Fun, not a small category.)

2

Theorem 2.52 A functor between two categories is also a functor between their
opposites; more precisely, F ∈ C ← D ≡ F ∈ Cop ← Dop.

2

The proof is left as an exercise to the reader.

Definition 2.53 (Contravariant) In a context in which we are discussing categories
C and D, a functor F is called contravariant if it has the typing: F ∈ C ← Dop (or,
equivalently, F ∈ Cop ← D) .

2

(Note that this is not an intrinsic property of the functor, but depends on the context.)

Example 2.54 Given a relation R ∈ x ← y, its converse R∪ ∈ y ← x is defined by:
R∪ = $(v, u :: uRv). Then (R◦S)∪ = S∪ ◦ R∪, and identity relations are unchanged, so
the arrow mapping -

∪ determines a contravariant functor (to Relop from Rel). For the

object mapping we pattern-match R∪ ∈ x∪ Relop←− y∪ against R∪ ∈ y Rel←− x, giving x∪ = x.

2.5. FUNCTORS 29

2

To emphasize that some functor is ‘normal’, that is, not contravariant (in the context of
two given categories), it may be called covariant. Endofunctors are necessarily covari-
ant. In a composition FG, the result is contravariant if one of the two components is
contravariant and the other covariant. The result is covariant if both components are
covariant, or if both are contravariant. Note in particular that for F ∈ C ← Cop the
composition FF is an endofunctor.

Definition 2.55 (Endofunctor) A functor F is called an endofunctor on C if: F ∈
C ← C .

2

Definition 2.56 (Bifunctor) A functor ⊕ is called a bifunctor (or binary functor) if:
its source category is a product category, i.e., it has typing ⊕ ∈ C ← D×E for some C, D
and E .

2

As suggested by the symbol, we will often use an infix notation for bifunctors, as in
x⊕y. The functorial properties, worked out for a bifunctor, give us:

f⊕g ∈ u⊕x C←− v⊕y ⇐ f ∈ u D←− v ∧ g ∈ x E←− y ;

(f ◦h)⊕(g◦k) = f⊕g ◦ h⊕k ;

idx⊕idy = idx⊕y .

Given a bifunctor, we can take a section by freezing one of its arguments to an object,
as in ‘x⊕’ for x∈D. For the object mapping of ⊕ the meaning is clear. For the arrow
mapping, this section should be understood to stand for idx⊕. We shall often appeal
implicitly to the following theorem:

Theorem 2.57 Given a bifunctor ⊕ ∈ C ← D×E , both of the sections x⊕ and ⊕y are
functors for all x∈D and y∈E , with typing: x⊕ ∈ C ← E and ⊕y ∈ C ← D.

2

The functoriality requirements give us this commutation rule for suitably typed arrows f
and g to which sectioned bifunctors have been applied:

f⊕id ◦ id⊕g = id⊕g ◦ f⊕id . Section-commute

30 CHAPTER 2. BASIC DEFINITIONS

Here we have omitted the subscripts to id, which can be reconstructed from a typing for
f and g.

A counterpart to the last rule is given by the following theorem, which as it were
allows us to ‘reconstruct’ a bifunctor from its left and right sections.

Theorem 2.58 Given an object mapping ⊕ to the objects of C from the objects of
D×E , and two collections of functors, Fx ∈ C ← D for each x∈E , and Gu ∈ C ← E for
each u∈D, if together they satisfy, first, for all x∈E and u∈D, the typing conditions:

Fxu = u⊕x = Gux ,

and, moreover, for all f ∈ u D←− v and g ∈ x E←− y, the commutation property:

Fxf ◦ Gvg = Gug ◦ Fyf ,

then: ⊕ can be extended to a bifunctor ⊕ ∈ C ← D×E by defining its arrow mapping for
f and g typed as above by: f⊕g = Fxf ◦ Gvg.

Proof For the typing conditions on ⊕ we have:

f⊕g ∈ u⊕x← v⊕y
≡ { definition of arrow mapping ⊕ }

Fxf ◦ Gvg ∈ u⊕x← v⊕y
⇐ { ◦-typing }

Fxf ∈ u⊕x← v⊕x ∧ Gvg ∈ v⊕x← v⊕y
≡ { typing conditions on F and G }

Fxf ∈ Fxu← Fxv ∧ Gvg ∈ Gvx← Gvy

⇐ { Fx and Gv are functors }
f ∈ u← v ∧ g ∈ x← y .

In verifying the coherence conditions we omit the subscripts to F and G. For all suitably
typed f , g, h and k:

(f ◦h)⊕(g◦k)

= { definition of arrow mapping ⊕ }
F (f ◦h) ◦ G(g◦k)

= { F and G are functors }
Ff ◦ Fh ◦ Gg ◦ Gk

= { given commutation property }

2.5. FUNCTORS 31

Ff ◦ Gg ◦ Fh ◦ Gk

= { definition of arrow mapping ⊕ }
f⊕g ◦ h⊕k .

Further:

id⊕id

= { definition of arrow mapping ⊕ }
F id ◦ Gid

= { F and G are functors }
id .

2

Exercise 2.59 Define the arrow mapping � by: x � = K.x for all x∈C. Show that
� can be extended to a bifunctor �∈ C ← C×D.

2

Exercise 2.60 Give a simple example of an object mapping that can be extended
in two different ways to a functor. (Hint. Take the monoid B≡ = (IB,≡,true), where
IB = {true,false}, and consider the endofunctors of Mon.B≡.)

2

Exercise 2.61 Prove Theorem 2.52.

2

Exercise 2.62 Prove Theorem 2.57.

2

Exercise 2.63 Prove the rule Section-commute.

2

32 CHAPTER 2. BASIC DEFINITIONS

2.6 Natural Transformations

Definition 2.64 (Natural transformation) Given two categories C and D and two
functors F ,G ∈ C ← D, a natural transformation to F from G is: a transformation η on
D such that for all x∈D:

ηx ∈ Fx
C←− Gx

and for each arrow f ∈ x← y in D
Ff ◦ ηy = ηx ◦ Gf .

We abbreviate this naturality condition on η to: η ∈ F←̇G.

2

The coherence condition above corresponds to the fact that an arrow to Fx from Gy
can be constructed in two different ways. The simplest example of a natural transforma-
tion is id ∈ Id←̇Id.

Definition 2.65 (Composition of natural transformations) Given two natural
transformations η ∈ F←̇G and τ ∈ G←̇H, where F ,G,H ∈ C ← D, we define their
composition η◦τ ∈ F←̇H by:

(η◦τ)x = ηx◦τx for all x∈D.(2.66)

2

The reader should check that η◦τ , thus defined, is indeed a natural transformation and
has typing η◦τ ∈ F←̇H.

We define next two ways to combine a functor with a natural transformation.

Definition 2.67 (Fη; ηF) Given a functor F and a natural transformation η ∈ G←̇H,
where F ∈ C ← D and G,H ∈ D ← E , we define Fη ∈ FG←̇FH by:

[Fη] = F ◦[η] .(2.68)

Further, given a natural transformation η ∈ G←̇H and a functor F , where G,H ∈ C ← D
and F ∈ D ← E , we define ηF ∈ GF←̇HF by:

[ηF] = [η]◦F .(2.69)

2

So (Fη)x = F (ηx) and (ηF)x = η(Fx). This shows we can omit the brackets and write
Fηx and ηFx without ambiguity.

For an arrow ηx ∈ Fx ← Gx we shall often drop the subscript x and rely on
available type information for its reconstruction. In this way we mimic in a sense—
typographically—what is standard in some polymorphic-typing contexts. The dot over
the arrow in η ∈ F←̇G may serve to stress that we mean the transformation, and not
just some suitably typed member of the family.

2.6. NATURAL TRANSFORMATIONS 33

Exercise 2.70 Another notation for ([x]) that one finds in the literature is ¡x. Show
that ¡ is a natural transformation.

2

Exercise 2.71 Given categories C and D, define their so-called functor category , whose
objects are the functors to C from D and whose arrows are natural transformations.

2

Exercise 2.72 A natural isomorphism is: an isomorphism between two functors. Work
out the consequences of this definition, using the result of the previous exercise.

2

34 CHAPTER 2. BASIC DEFINITIONS

Chapter 3

Sum and Product

3.1 Lattices

Definition 3.1 (Join) In a partially ordered set (A,w) an element j of A is called the
join of two elements x and y of A if: ∀(z :: z w j ≡ z w x ∧ z w y).

2

By the substitution z := j we obtain j w x ∧ j w y, so the join is a common upper
bound of x and y. Further, if z is any upper bound of x and y, we see that z w j, so
j is the least upper bound. The antisymmetry of w tells us now that the join of x and
y, if it exists, is unique, and we denote it by xty. Using this notation we have as the
characterisation of join:

z w xty ≡ z w x ∧ z w y .

Definition 3.2 (Join semilattice) A partially ordered set is called a join semilattice
if: any pair of elements has a join.

2

It is easy to see from the characterisation that x w y ≡ x = xty, and that the binary
operation t is symmetric: xty = ytx, associative: xt(ytz) = (xty)tz, and idempotent:
xtx = x. (Conversely, given any symmetric, associative and idempotent operation on a
set, the set can be partially ordered by defining x w y ≡ x = xty.)

Definition 3.3 (Meet, meet semilattice) Dually, the meet of x and y is charac-
terised by: ∀(z :: xuy w z ≡ x w z ∧ y w z). (The meet in (A,w) is the join in (A,w∪).)
A meet semilattice is: a partially ordered set in which each pair of elements has a meet.

2

35

36 CHAPTER 3. SUM AND PRODUCT

Definition 3.4 (Lattice) A lattice is: a partially ordered set that is both a join and
a meet semilattice.

2

Join and meet interact in the absorption laws : xt(xuy) = x = xu(xty).
The most familiar example of a lattice is probably that of the subsets of a set, ordered

by ⊇ (‘contains’), in which join is set union, and meet set intersection. Another example
is given by the naturals partially ordered by the divisibility relation; join is then lcm (least
common multiple), and meet is gcd (greatest common divisor). (Note that in this lattice
0 is on top, since it is divisible by any natural—including itself since we need to have
reflexivity of the relation.)

The concepts of join and meet in lattice theory are captured in category theory by the
concepts of sum and product. We present a detailed treatment of the notion of sum, and
then introduce products as the dual notion.

3.2 Sum

3.2.1 From suprema to sums

Recall that in lattice theory the join xty of x and y (if it exists) is characterised by:

∀(z :: z w xty ≡ z w x ∧ z w y) .

A first attempt towards a categorical generalisation looks like this:

h ∈ z ← x+y ≡ f ∈ z ← x ∧ g ∈ z ← y .

We have replaced xty by x+y, and introduced ‘witnessing’ arrows. A question is how to
universally quantify them. Quantifying over all h, f and g is clearly too strong in general;
there has to be some ‘organic’ relationship between these three. Here we only sketch,
informally, the nature of this relationship. Below we give a precise definition—which,
however, is highly abstract. Apart from the elegance of this abstract definition, it is also
paradigmatic for the general style of categorical definitions, and thus paves the way for
the introduction of more advanced concepts.

A major ingredient of the relationship between h, f and g is that there is a one-to-one
correspondence between—on the lhs of the equivalence—the arrows h whose typing is
given by h ∈ z ← x+y, and—on the rhs of the equivalence—the pairs of arrows (f, g)
whose typing is f ∈ z ← x and g ∈ z ← y. If h and (f, g) are in that correspondence,
each is determined by the other. This can be expressed by introducing names for the
translations in both directions, thus:

h = f 5 g and (f, g) = (h◦inl, h◦inr) ,

3.2. SUM 37

in which the fact that the translation from h to (f, g) has this particular form is suggested
by typing considerations. Furthermore, these two translations have to be each others’
inverse, which can be expressed by:

h = f 5 g ≡ (f, g) = (h◦inl, h◦inr) .

So the categorical concept of sum consists of three ingredients: a binary object mapping
+, a pair of arrows (inl, inr), and a binary operation 5 on certain pairs of arrows, namely:
those having the same codomain (called z above). In the categorical definition in the
next chapter we transform the lattice-theoretical notion that a supremum is a least upper
bound into a statement involving initiality .

3.2.2 Definition of sum

Assume that we have some category C. On top of this base category we construct new
categories, so-called cocone categories.

Definition 3.5 (Cocone) Given x, y∈C, a cocone for x and y is: a triple (z,f ,g) in
which z∈C, f ∈ z ← x and g ∈ z ← y (so f and g have the same codomain).

2

Definition 3.6 (Cocone category) Given x, y∈C, the cocone category for x and y,
denoted x ⇑ y, is defined as follows:

Objects: The cocones for x and y.

Arrows: The arrows in (z,f ,g)
x⇑y← (s,p,q) are arrows of C as restricted by the following

condition:

h ∈ (z,f ,g)
x⇑y←− (s,p,q) ≡ h ∈ z C←− s ∧ f = h◦p ∧ g = h◦q .

Composition: That of C.

Identities: Those of C, where id(z,f,g) in x ⇑ y is idz in C.

(To be precise, this is a precategory, which can be turned into a category with the triple
trick.)

2

Associativity of composition and neutrality of identities are met because they are inher-
ited from the base category. It must be checked, though, that arrow composition preserves
the restriction on arrows (in which the arrow equalities are the coherence condition for
the two ways of constructing arrows with typings z←x and z←y). The verification is as
follows:

38 CHAPTER 3. SUM AND PRODUCT

h◦k ∈ (z,f ,g)
x⇑y←− (t,u,v)

≡ { definition of
x⇑y← }

h◦k ∈ z C←− t ∧ f = h◦k◦u ∧ g = h◦k◦v

⇐ { properties of ◦ }
h ∈ z C←− s ∧ f = h◦p ∧ g = h◦q ∧ k ∈ s C←− t ∧ p = k◦u ∧ q = k◦v

≡ { definition of
x⇑y← }

h ∈ (z,f ,g)
x⇑y←− (s,p,q) ∧ k ∈ (s,p,q)

x⇑y←− (t,u,v) .

Now we can define the notion of sum:

Definition 3.7 (Sum) A sum of two objects x and y is: an initiality of x ⇑ y.

2

As in all categorical definitions based on initiality, sums are unique ‘up to isomorphism’.
Another name for ‘sum’ that occurs in the literature is: coproduct.

Definition 3.8 (Has sums) A category has sums if: all pairs of objects have a sum.

2

An example of a category that has no sums is the discrete category with at least two
objects. For recall that in a discrete category all arrows are identities. So all cocones are
of the form (z,idz,idz) , which is a cocone of z and z. So if x 6= y, there are no cocones of
x and y; in other word, x ⇑ y has no objects and a fortiori no initial objects.

3.2.3 Properties of sum

Throughout the following we assume that C has sums. Moreover, we assume that for each
pair of objects (x, y), from among the —possibly many— sums of x and y , one is chosen
to be ‘the’ sum. Which one is chosen is entirely irrelevant, since all are isomorphic and so
have the same categorical properties. As defined, the sum of x and y is a pair, consisting
of an initial object a of x ⇑ y (by itself a triple) and the ([-]) mapping from the objects of
x ⇑ y to arrows of x ⇑ y . Let us first give new names to the components of a, so that a
equals

(x+y , inlx,y , inrx,y) .

The fact that a is an object of x ⇑ y gives us:

x+y ∈ C ,

inlx,y ∈ x+y ← x , inl-typing

3.2. SUM 39

inrx,y ∈ x+y ← y . inr-typing

Remark 3.9 It is general usage also to say ‘the sum of x and y’ when referring to the
object x+y; in practice this does not lead to confusion.

2

Next, from ([-])-char, we have, for f ∈ z ← x and g ∈ z ← y:

([(z,f ,g)]) = h ≡ h ∈ (z,f ,g)
x⇑y←− (x+y , inlx,y , inrx,y) .

Before we look into the detailed consequences of this proposition, we introduce a more
pleasant notation for ([(z,f ,g)]). Note that z is in fact redundant, since it is equal to cod.f
(and also to cod.g). Thus we can convey the same information using only f and g as
arguments, which means that we can use a binary operator, and we define:

f 5 g = ([(z,f ,g)]) where z = cod.f = cod.g .

Using this notation and unfolding the definition of
x⇑y← , we obtain (still under the typing

assumption f ∈ z ← x ∧ g ∈ z ← y):

f 5 g = h ≡ h ∈ z ← x+y ∧ f = h◦inlx,y ∧ g = h◦inrx,y .

By the substitution h := f 5 g, and making the typing assumption explicit, we find this
typing rule for 5 :

f 5 g ∈ z ← x+y ⇐ f ∈ z ← x ∧ g ∈ z ← y . 5 -typing

Recall that, when writing an arrow equality like f 5 g = h, we imply that both sides can
be typed and have the same type. The conjunct ‘h ∈ z ← x+y’ in the unfolded definition

of
x⇑y← may therefore be omitted, giving the characterisation rule:

f 5 g = h ≡ f = h◦inlx,y ∧ g = h◦inrx,y . 5 -char

Up to now, all we have done is to rephrase the abstract definition of sum in a concrete
but equivalent way. Thus, we can give the following alternative definition of sum:

Theorem 3.10 ((x+y , inlx,y , inrx,y), 5) is a sum of x and y if inl-typing, inr-typing,
5 -typing and 5 -char are satisfied.

2

Just as for initiality in general, we obtain a number of useful rules from the characterisa-
tion rule by simple substitutions. The substitution h := f 5 g gives us the computation
rule:

f = f 5 g ◦ inlx,y ∧ g = f 5 g ◦ inrx,y . 5 -comp

40 CHAPTER 3. SUM AND PRODUCT

The substitution f,g,h := inlx,y,inrx,y,idx+y gives us the identity rule:

inlx,y 5 inrx,y = idx+y . 5 -id

Finally, we derive the fusion rule:

p 5 q = h ◦ f 5 g

≡ { 5 -char with f,g,h := p , q , h ◦ f 5 g }
p = h ◦ f 5 g ◦ inlx,y ∧ q = h ◦ f 5 g ◦ inrx,y

≡ { 5 -comp }
p = h◦f ∧ q = h◦g

⇐ { p,q := h◦f , h◦g }
true ,

which proves:

(h◦f) 5 (h◦g) = h ◦ f 5 g . 5 -fusion

By the substitution f,g := inlx,y,inrx,y, and using 5 -id, we get an additional rule

h = (h◦inlx,y) 5 (h◦inrx,y) . 5 -form

Note that the implicit typing requirement here is that h ∈ z ← x+y for some z: not all
arrows can be brought into 5 -form, but only those having a sum object as their domain.

The following lemma is often useful, either by itself or in combination with 5 -form,
for rewriting an arrow equality involving 5 to a pair of simpler equations:

Lemma 3.11 5 is injective, that is, for all suitably typed f , g, h and k:

f 5 g = h 5 k ≡ f = h ∧ g = k .

Proof By cyclic implication.

f 5 g = h 5 k

⇐ { Leibniz }
f = h ∧ g = k

⇐ { 5 -comp }
f 5 g ◦ inl = h 5 k ◦ inl ∧ f 5 g ◦ inr = h 5 k ◦ inr

⇐ { Leibniz }
f 5 g = h 5 k .

3.2. SUM 41

2 There is more to sums. The operation + takes pairs of C-objects to C-objects, and so
behaves like the object part of a (bi)functor. Can we extend it to a full-fledged functor?
The typing requirement is:

f+g ∈ x+y ← u+v ⇐ f ∈ x← u ∧ g ∈ y ← v .

Can we construct an arrow of this type? Let us calculate:

f+g ∈ x+y ← u+v

⇐ { arrow has a sum domain, so try f+g := p 5 q }
p 5 q ∈ x+y ← u+v

⇐ { 5 -typing }
p ∈ x+y ← u ∧ q ∈ x+y ← v

⇐ { p,q := inl◦f , inr◦g; inl-typing, inr-typing; ◦-typing }
f ∈ x← u ∧ g ∈ y ← v .

So we find as a candidate for the arrow part:

f+g = (inl◦f) 5 (inr◦g) . +-def

(In the last calculation we dropped the subscripts to inl and inr, and we shall generally
omit them when they can be inferred from the context.)

Is +, thus defined, a functor? The typing requirement is met, since that is how we
constructed the candidate definition. The preservation of identities is immediate from
5 -id. For the distribution over composition, we verify:

f+g ◦ h+k

= { +-def }
(inl◦f) 5 (inr◦g) ◦ (inl◦h) 5 (inr◦k)

= { 5 -fusion }
((inl◦f) 5 (inr◦g) ◦ inl ◦ h) 5 ((inl◦f) 5 (inr◦g) ◦ inr ◦ k)

= { 5 -comp }
(inl◦f ◦h) 5 (inr◦g◦k)

= { +-def }
(f ◦h)+(g◦k) .

Further properties of the functor + are the following isomorphisms, for all objects x, y
and z of C:

x+y ∼= y+x ,

42 CHAPTER 3. SUM AND PRODUCT

(x+y)+z ∼= x+(y+z) .

For the first one, we may argue that this is obvious in view of the fact that, due to
symmetries in the definition, y+x is a (although perhaps not the) sum of x and y. We can
also give the isomorphism explicitly, which in both directions is inr 5 inl—with different
subscripts. The proof that this is an isomorphism, as well as the proof of the ‘associativity’
isomorphism, are left to the reader as an exercise. Finally, if C has some initial object 0,

x+0 ∼= x .

Implicit in the proof above that + distributes over composition is another fusion rule,
namely:

(f ◦h) 5 (g◦k) = f 5 g ◦ h+k . 5 -+-fusion

The following two rules tell us that inl and inr are natural transformations:

f+g ◦ inl = inl◦f . inl-leap

f+g ◦ inr = inr◦g . inr-leap

The (easy) proofs are left to the reader.
To conclude this section, we summarise all the rules derived. In using these rules,

remember that they are only valid when the arrow equalities are suitably typed. This
warning applies in particular to 5 -id and 5 -form.

inl ∈ x+y ← x . inl-typing

inr ∈ x+y ← y . inr-typing

f 5 g ∈ z ← x+y ⇐ f ∈ z ← x ∧ g ∈ z ← y . 5 -typing

f 5 g = h ≡ f = h◦inl ∧ g = h◦inr . 5 -char

f = f 5 g ◦ inl . 5 -comp

g = f 5 g ◦ inr . 5 -comp

inl 5 inr = id . 5 -id

(h◦f) 5 (h◦g) = h ◦ f 5 g . 5 -fusion

h = (h◦inl) 5 (h◦inr) . 5 -form

f+g = (inl◦f) 5 (inr◦g) . +-def

(f ◦h) 5 (g◦k) = f 5 g ◦ h+k . 5 -+-fusion

f+g ◦ inl = inl◦f . inl-leap

f+g ◦ inr = inr◦g . inr-leap

3.3. PRODUCT 43

3.3 Product

Products are the dual construction of sums (and conversely; hence the name coproduct for
sum). The components of the product of x and y are named thus: (x×y , exlx,y , exrx,y),
and for bd((z,f ,g))ce we write f 4 g.

Here we confine ourselves to listing the rules, which can be derived mechanically from
those for sum by substituting the new names, and changing the order of all arrows and
compositions:

exl ∈ x← x×y . exl-typing

exr ∈ y ← x×y . exr-typing

f 4 g ∈ x×y ← z ⇐ f ∈ x← z ∧ g ∈ y ← z . 4 -typing

f 4 g = h ≡ f = exl◦h ∧ g = exr◦h . 4 -char

f = exl ◦ f 4 g . 4 -comp

g = exr ◦ f 4 g . 4 -comp

exl 4 exr = id . 4 -id

(f ◦h) 4 (g◦h) = f 4 g ◦ h . 4 -fusion

h = (exl◦h) 4 (exr◦h) . 4 -form

f×g = (f ◦exl) 4 (g◦exr) . ×-def

(h◦f) 4 (k◦g) = h×k ◦ f 4 g . ×- 4 -fusion

exl ◦ f×g = f ◦exl . exl-leap

exr ◦ f×g = g◦exr . exr-leap

44 CHAPTER 3. SUM AND PRODUCT

3.4 Examples of sums and products

3.4.1 POset.A
Assume that A is a partially ordered set. We have already seen that the sum corresponds
to t; the product corresponds of course, dually, to u. Since this category is monomorphic,
the other ingredients of categorical sum and product are thereby fixed.

3.4.2 Fun

Sum in Fun corresponds to disjoint union] (and not to normal set union ∪!).
A possible implementation of disjoint union in terms of sets is to add a ‘tag bit’ to the

values involved, to keep track of the component from which they originated:

x]y = $(c, t : t∈{0,1} : c∈x if t=0 else c∈y) ,

inl = (a :: (a, 0)) ,

inr = (b :: (b, 1)) ,

f 5 g = (c, t : t∈{0,1} : f.c if t=0 else g.c) .

We verify 5 -char, using the (implicit) typing, and thus establish the condition for
Theorem 3.10:

f 5 g = h

≡ { Extensionality }
∀(c, t : t∈{0,1} : (f 5 g).(c,t) = h.(c,t))

≡ { range split: t∈{0,1} }
∀(c :: (f 5 g).(c,0) = h.(c,0)) ∧ ∀(c :: (f 5 g).(c,1) = h.(c,1))

≡ { definition of f 5 g }
∀(c :: f.c = h.(c,0)) ∧ ∀(c :: g.c = h.(c,1))

≡ { definition of inl and inr }
∀(c :: f.c = h.(inl.c)) ∧ ∀(c :: g.c = h.(inr.c))

≡ { Fun-◦-comp }
∀(c :: f.c = (h◦inl).c) ∧ ∀(c :: g.c = (h◦inr).c)

≡ { Extensionality }
f = h◦inl ∧ g = h◦inr .

3.4. EXAMPLES OF SUMS AND PRODUCTS 45

The sum type can be implemented in modern functional languages by using a variant
that is used in pattern matches, as in:

data Sum x y = inl x | inr y

In this context it is easy to understand why sums are only unique ‘up to isomorphism’,
for surely

data Choice x y = one x | other y

is an equally valid implementation. The operation 5 can be implemented by:

case f g = h where

h (inl a) = f a

h (inr b) = g b

Why is normal set union not a sum? A direct answer is that in Fun the objects x]y and
x∪y are in general not isomorphic, and since we have proved one to be the sum, the other
is not. But here is a concrete counterexample.

Take for x and y both the same singleton set, say {0}, take for z the two-element
set {1,2}, and choose for f the constant function K.1 ∈ z ← x and for g the constant
function K.2 ∈ z ← y. Now assume that sum is implemented as set union, which in this
case implies that x+y = {0}. Then we obtain the following contradiction:

1 = 2

≡ { definition of K }
(K.1).0 = (K.2).0

≡ { definition of f and g }
f.0 = g.0

≡ { 5 -comp }
(f 5 g ◦ inl).0 = (f 5 g ◦ inr).0

≡ { Fun-◦-comp }
(f 5 g).(inl.0) = (f 5 g).(inr.0)

⇐ { Leibniz }
inl.0 = inr.0

⇐ { symmetry and transitivity of = }
inl.0 = 0 ∧ inr.0 = 0

≡ { membership of singleton set }

46 CHAPTER 3. SUM AND PRODUCT

inl.0 ∈ {0} ∧ inr.0 ∈ {0}
≡ { assumption about x+y }

inl.0 ∈ x+y ∧ inr.0 ∈ x+y

⇐ { inl-typing and inr-typing }
0∈x ∧ 0∈y

≡ { x = y = {0} }
true .

Product in Fun corresponds to the well-known Cartesian product:

x×y = $(a, b :: a∈x ∧ b∈y) ,

exl = (a, b :: a) ,

exr = (a, b :: b) ,

f 4 g = (c :: (f.c, g.c)) .

The verification of 4 -char is left to the reader.
Products are also simple to implement in a functional language:

data Product x y = pair x y

exl (pair a b) = a

exr (pair a b) = b

split f g = h where

h c = pair (f c) (g c)

3.4.3 Rel

In the category of relations sum is as in Fun, where inl and inr are the relations obtained by
the standard embedding from functions to relations. The operation 5 has to be extended
to relations, which, expressed at the point level, can be done as follows:

d (R 5 S) (c, t) ≡ (d R c) if t=0 else (d S c) .

The verification that this defines a sum is essentially the same as for Fun.
When it comes to products, there is a surprise: Rel has products, but . . . they are

the same as the sums. In fact, it is easy to see why this must need be so. The category
Rel is self-dual, and so any categorical ‘thing’ coincides with the co-‘thing’, as was also
the case for initiality and terminality in Rel.

So why does the obvious extension to relations of the product construction in Fun not
yield a product here? The problem is, concisely, that this extension gives R4∅ = ∅, which
is incompatible with 4 -comp, according to which exl ◦ R 4 ∅ = R.

3.4. EXAMPLES OF SUMS AND PRODUCTS 47

Exercise 3.12 Show that Cat has products. (Hint: consider the object mapping
(C,D::C×D), taking two categories to a product category.)

2

48 CHAPTER 3. SUM AND PRODUCT

Chapter 4

Adjunctions

4.1 Galois connections

Recall the characterisation of join in lattice theory: z w xty ≡ z w x ∧ z w y. We can
reformulate this as follows. Given a partially ordered set (A,w), we define the relation
w2 on A2 = A×A by: (u, x)w2(v, y) ≡ u w v ∧ x w y. Then (A2,w2) is also a partially
ordered set. We have now: z w xty ≡ (z, z)w2(x, y). Writing further t.(x, y) for xty
and ∆.z for (z, z), we obtain:

z w t.(x, y) ≡ ∆.z w2 (x, y) .

This is an example of a so-called Galois connection, in this case between (A,w) and
(A2,w2).

Definition 4.1 (Galois connection) A pair of monotonic functions F ∈ C ← D and
G ∈ D ← C forms a Galois connection between the partially ordered sets (C,wC) and
(D,wD) if: the following equivalence holds for all x∈C and y∈D:

x wC F.y ≡ G.x wD y .(4.2)

2

The function F is called the lower adjoint and the function G is called the upper ad-
joint of the Galois connection.

Using extensionality, we can express (4.2) in a slightly different way, thereby making
it more similar to the definition that will be given below for adjunctions:

∀(x, y : x∈C ∧ y∈D : x wC F.y ≡ G.x wD y)

≡ { Lambda-comp }
∀(x, y : x∈C ∧ y∈D : (x, y :: x wC F.y).(x, y) = (x, y :: G.x wD y).(x, y))

≡ { Extensionality }
(x, y :: x wC F.y) = (x, y :: G.x wD y) .

49

50 CHAPTER 4. ADJUNCTIONS

So F and G form a Galois connection if the function (in this case, a predicate) mapping
the pair x,y to x wC F.y is equal to the function mapping the pair x,y to G.x wD y .
In other words, an alternative definition of Galois connection is:

(F,G) forms a Galois connection if: the following functional equality holds:

(x, y :: x wC F.y) = (x, y :: G.x wD y) .(4.3)

Galois connections are interesting for a number of reasons. First, we saw that t was
characterised by a Galois connection. More generally, if one of F and G is given, the
other is characterised by a Galois connection. Galois connections are further interesting
because, as soon as we recognise one, we can immediately deduce a number of useful
properties of the adjoints. In particular, if we instantiate (4.2) in such a way that one
side becomes true, we obtain two cancellation properties. We can express these properties
point-free as follows:

G◦F ẇD Id ,(4.4)

Id ẇC F ◦G ,(4.5)

where ẇA denotes the partial ordering relation obtained by lifting wA on A to a relation
on A-valued functions by: F ẇA G ≡ ∀(x :: F.x wA G.x), and Id denotes the identity
function. Furthermore, from these cancellation properties it is straightforward to prove
that both adjoints of a Galois connection are monotonic.

These properties of a Galois connection can be used to give an alternative definition
of a Galois connection, equivalent to our previous formulation:

(F,G) forms a Galois connection if the following two clauses hold:

G◦F ẇD I and I ẇC F ◦G ,

F and G are monotonic.

Example 4.6 Using the total (and therefore partial) order ≥ on numbers, both the
integers ZZ and the reals IR are partially ordered sets. Using float ∈ IR ← ZZ for the
standard embedding of the integers into the reals, we have:

r ≥ float.i ≡ floor.r ≥ i .

This characterises floor.

2

Example 4.7 For another example, take propositional logic, in which⇐ (follows from)
is a partial order. Denoting the logical connective ‘if’ (the converse of ‘implies’) by ←,
we have:

p ⇐ q ∧ r ≡ p←r ⇐ q .

(Here F = (∧ r) and G = (←r).) All properties of ← follow from this, given the prop-
erties of ∧, and vice versa. For example, p ⇐ (p←r) ∧ r is one of the two cancellation
properties, expressed at the point level.

4.2. THE HOM BIFUNCTOR 51

2

The concept of a Galois connection in lattice theory is captured in category theory by
the concept of an adjunction. We saw several alternative, but equivalent, definitions of
a Galois connection. We can likewise give several alternative equivalent definitions of an
adjunction.

4.2 The Hom bifunctor

Before turning to the definition of the notion of adjunction, we introduce a concept that
has many applications, and that we will use to give an elegant definition of adjunctions.

Given some category C, consider the function mapping a pair of objects x∈C and y∈C
to the set1 x

C← y consisting of the arrows in the category C to x from y . (The reason
why we denote the category explicitly over the arrow here, is that soon we are going
to consider several categories simultaneously.) Now a set is an object in the category
Fun (which has sets for objects, functions for arrows, and function composition as the

composition operator), and so the function
C← maps pairs of objects from C to objects of

Fun. This function can be extended to a binary functor. Sets of arrows between a pair of
objects from a category are called hom-sets, and accordingly this bifunctor is known as
the Hom (bi)functor. It is covariant in its first argument and contravariant in its second
argument. Its typing will thus be:

(
C←) ∈ Fun← C×Cop .

To make
C← indeed into a functor we have to define, for an arrow (f, g) ∈ (x, y)

C×Cop←− (u, v)

(so that f ∈ x
C←− u and g ∈ v

C←− y), a function result f
C← g ∈ x

C← y. Let us
construct a candidate:

f
C← g ∈ (x

C← y)←− (u
C←v)

⇐ { f
C← g := (h : h ∈ u C←− v : k); typing in Fun }

k ∈ x
C← y ⇐ h ∈ u C←− v

⇐ { k := f ◦ h ◦ g; ◦-typing }
f ∈ x C←− u ∧ g ∈ v C←− y ,

which gives us:

f
C← g = (h : h ∈ u C←− v : f ◦ h ◦ g) .

It is easily verified that:

idx
C← idy = id

(x
C← y)

,

and for all suitably typed f , g, h and k we have:

1For convenience we assume that the category is locally small. That is, the arrows between a pair of
objects form a set.

52 CHAPTER 4. ADJUNCTIONS

(f ◦h)
C← (g;k)

= { composition of Cop }
(f ◦h)

C← (k◦g)

= { candidate for
C← }

(q :: f ◦ h ◦ q ◦ k ◦ g)

= { Lambda-lambda-fusion }
(p :: f ◦ p ◦ g)◦(q :: h ◦ q ◦ k)

= { candidate for
C← }

(f
C← g)◦(h

C← k) .

Thus we have indeed defined a functor.
We will now use the Hom bifunctor to show that a slight generalisation is also a

functor. Let F ∈ C ← D and G ∈ C ← E be two functors to the same category

C. Consider the function (x, y :: Fx
C← Gy), which can be applied both to an object

(x, y) from the category D×Eop and to a suitably typed arrow (f, g) from that category.
This is again a bifunctor, now with typing Fun← D×Eop , since it can be rewritten as

the composition of two functors, (
C←) ∈ Fun ← C×Cop and F×G ∈ C×Cop ← D×Eop , as

follows:

(x, y :: Fx
C← Gy) = (

C←)(F×G) .

If F or G are identity functors, we can specialise the notation for this bifunctor to,

respectively, (x, y :: x
C← Gy) or (x, y :: Fx

C← y).

4.3 Definition of adjunction

The category-theoretic concept corresponding to the notion of a Galois connection is that
of an adjunction. There is a large number of equivalent definitions of an adjunction. The
one we give here is chosen as being the simplest and easiest to remember.

Recall that the categorical generalisation of a monotonic function is a functor. Sup-
pose, as at the end of the previous section, that F and G are functors, but this time with
typing C←D and D←C , respectively, so they go in each of the two directions between

two categories C and D. Then the two functors (x, y :: x
C← Fy) and (x, y :: Gx

D← y)
have the same typing, namely Fun ←− C×Dop . If they are isomorphic then F and G
are said to be adjoint functors. So we have the following definition.

Definition 4.8 (Adjunction) A pair of functors F ∈ C ← D and G ∈ D ← C forms
an adjunction between the categories C and D if: the following functor isomorphy holds:

(x, y :: x
C← Fy) ∼= (x, y :: Gx

D← y) .

The functor F is called the lower adjoint and functor G is called the upper adjoint.

4.4. PROPERTIES OF ADJUNCTIONS 53

2

(Compare this to Definition 4.3.)

Remark 4.9 In the literature one also finds the term left adjoint for F and right
adjoint for G.

2

Remark 4.10 It is immediate from the definition that, whenever (F,G) forms an
adjunction between C and D, dually (G,F) forms an adjunction between Dop and Cop .

2

4.4 Properties of adjunctions

Let us spell out some of the consequences of Definition 4.8. Throughout the remainder
of this section we assume that F and G are functors with typing F ∈ C ← D and
G ∈ D ← C. Expanding the definition of a natural isomorphism, we get that there are
two natural transformations d-e and b-c such that

d-e ∈ (x, y :: x
C← Fy)←̇(x, y :: Gx

D← y) ,(4.11)

b-c ∈ (x, y :: Gx
D← y)←̇(x, y :: x

C← Fy) ,(4.12)

which are each others’ inverse, i.e.,

db-ce = id ∧ bd-ec = id .(4.13)

The natural transformations d-e and b-c are called the upper adjungate and the lower
adjungate, respectively. Expanding next the definition of a natural transformation we get
from (4.11): for each x∈C and y∈D:

d-ex,y ∈ x
C← Fy ← Gx

D← y

and for each(f, g) ∈ (x, y)← (u, v) (an arrow in C×Dop):

(f
C← Fg)◦d-eu,v = d-ex,y◦(Gf

D← g) .

A similar result can be derived from (4.12).
We will usually omit the subscripts of d-e and b-c when they can be inferred from the

typings of the context.

Now, we can use extensionality and the definition of the functor (x, y :: Fx
C← Gy)

from the previous section—by which (Ff
C← Gg)h = Ff ◦ h ◦ Gg (for suitably typed f , g

and h)—to expand this as well as (4.13) further, thus obtaining an alternative presentation
of the definition of an adjunction.

54 CHAPTER 4. ADJUNCTIONS

Theorem 4.14 F and G form an adjunction if: there exist two transformations d-e
and b-c satisfying for all x∈C and y∈D, first, the typing requirements

(a) dge ∈ x C←− Fy ⇐ g ∈ Gx D←− y , d-e-typing

(b) bfc ∈ Gx D←− y ⇐ f ∈ x C←− Fy ; b-c-typing

furthermore, for each f ∈ x C←− u and g ∈ v D←− y, the following naturality equalities:

for each h ∈ Gu D←− v:

(c) f ◦ dhe ◦ Fg = dGf ◦ h ◦ ge ; d-e-fusion

for each h ∈ u C←− Fv:

(d) Gf ◦ bhc ◦ g = bf ◦ h ◦ Fgc ; b-c-fusion

and, finally, the inverse property, expressed as the equivalence:

for each f ∈ x C←− Fy and g ∈ Gx D←− y:

(e) dge = f ≡ g = bfc . Inverse

2

Actually, either one of d-e-fusion and b-c-fusion suffices, since the other one follows
from it by Inverse. Furthermore, the fusion laws above are two-sided, but each can be
decomposed into an equivalent pair of simpler one-sided fusion laws (where f ,g and h
are supposed to range over all suitably typed arrows):

f ◦dhe = dGf ◦ he ; d-e-left-fusion

dhe ◦ Fg = dh◦ge ; d-e-right-fusion

Gf ◦ bhc = bf ◦hc ; b-c-left-fusion

bhc◦g = bh ◦ Fgc . b-c-right-fusion

Under the assumption of Inverse, the two left-fusion laws are equivalent, and so are
the two right-fusion laws. Thus we have as yet another definition that is slightly easier
to verify:

4.4. PROPERTIES OF ADJUNCTIONS 55

Theorem 4.15 F and G form an adjunction if: we have two transformations d-e
and b-c satisfying the requirements d-e-typing, b-c-typing and Inverse as in Theorem
4.14, and moreover one of the two left-fusion laws above, as well as one of the two
right-fusion laws.

2

The following result shows that the arrow part of the functor F can be defined in terms
of the adjungates, thereby preparing the way for Theorem 4.17:

Corollary 4.16 Fg = dbidc◦ge.

Proof

Fg

= { d-e and b-c are each other’s inverse }
dbidce ◦ Fg

= { d-e-right-fusion }
dbidc◦ge .

2

The interesting thing is now that if we define F on arrows this way, we get functoriality
and right-fusion for free:

Theorem 4.17 Given an object mapping F to C from D, a functor G in the other
direction, and two transformations d-e and b-c satisfying the requirements d-e-typing, b-c-
typing and Inverse, and moreover one of the two left-fusion laws (as in Theorem
4.15), the object mapping F can (by Corollary 4.16 in a unique way) be extended to a
functor F ∈ C ← D such that (F,G) forms an adjunction.

Proof On arrows of D we define F by Fg = dbidc◦ge. Then, for the functorial typing
requirements, we argue:

Fg ∈ Fx C←− Fy

≡ { definition of F on arrows }
dbidc◦ge ∈ Fx C←− Fy

⇐ { d-e-typing }
bidc◦g ∈ GFx D←− y

≡ { bidc ∈ GFx D←− x (see below) }
g ∈ x D←− y .

56 CHAPTER 4. ADJUNCTIONS

In the last step above we used:

bidc ∈ GFx D←− x

⇐ { b-c-typing }
id ∈ Fx C←− Fx .

For the distribution over composition, we calculate:

Ff ◦ Fg = F (f ◦g)

≡ { definition of F on arrows }
dbidc◦fe ◦ dbidc◦ge = dbidc◦f ◦ge

≡ { d-e-left-fusion }
dGdbidc◦fe ◦ bidc ◦ ge = dbidc◦f ◦ge

≡ { Inverse }
Gdbidc◦fe ◦ bidc ◦ g = bidc◦f ◦g

⇐ { Leibniz }
Gdbidc◦fe ◦ bidc = bidc◦f

≡ { b-c-left-fusion }
bdbidc◦fec = bidc◦f

≡ { Inverse }
dbidc◦fe = dbidc◦fe

≡ { reflexivity of = }
true ,

and similarly F id = id.
Finally, for d-e-right-fusion, we calculate:

dhe ◦ Fg
= { definition of F on arrows }

dhe◦dbidc◦ge
= { d-e-left-fusion }

dGdhe ◦ bidc ◦ ge
= { b-c-left-fusion }

dbdhec◦ge

4.4. PROPERTIES OF ADJUNCTIONS 57

= { d-e and b-c are each other’s inverse }
dh◦ge

Now all conditions for applying Theorem 4.15 are satisfied.
2

Elementary consequences of a Galois connection are the cancellation properties. For
an adjunction a similar result can be derived. One of the two cancellation properties for
Galois connections is (4.4): G◦F ẇD I. The categorical generalisation is: there exists a
natural transformation

unit ∈ GF←̇IdD .

We construct such a natural transformation by calculation as follows:

unit ∈ GF←̇IdD

≡ { definition natural transformation }
∀(x :: unitx ∈ GFx← x) ∧ ∀(f : f ∈ x← y : GFf ◦ unity = unitx◦f)

⇐ { unitx := bidFxc }
∀(x :: bidFxc ∈ GFx← x) ∧ ∀(f : f ∈ x← y : GFf ◦ bidFyc = bidFxc◦f)

≡ { b-c-typing, b-c-fusion }
true .

This natural transformation unit is commonly known as the unit of the adjunction. So,
an immediate consequence of an adjunction is that we have a natural transformation unit,
such that

unit ∈ GF←̇IdD , where unitx = bidFxc for all x. unit-def

Dually, we also have a natural transformation counit, known as the co-unit of the adjunc-
tion, such that

counit ∈ IdC←̇FG , where counitx = didGxe for all x. counit-def

These two natural transformations correspond to the cancellation properties for Galois
connections, and give likewise rise to an alternative definition of adjunctions.

Theorem 4.18 F and G form an adjunction if we have two natural transformations
unit and counit such that

unit ∈ GF←̇IdD , unit-typing

counit ∈ IdC←̇FG , counit-typing

58 CHAPTER 4. ADJUNCTIONS

and satisfying the following two coherence conditions:

counitF ◦ Funit = idF , counit-inverse

Gcounit ◦ unitG = idG . unit-inverse

Proof We use Theorem 4.14, and have to construct a lower and upper adjungate. For

f ∈ x C←− Fy we construct a candidate for the lower adjungate (aiming at b-c-typing)
as follows:

bfc ∈ Gx D←− y

⇐ { bfc := h◦unity; ◦-typing }
h ∈ Gx D←− GFy

⇐ { h := Gf ; G is a functor }
f ∈ x C←− Fy .

Thus, we put

bfc = Gf ◦ unit ,

and, dually, for g ∈ Gx D←− y we put

dge = counit ◦ Fg .

We only verify b-c-fusion, the other fusion requirement being dual.

Gg ◦ bfc ◦ h
= { definition of candidate for b-c }

Gg ◦ (Gf ◦ unit) ◦ h

= { unit ∈ GF←̇Id }
Gg ◦ Gf ◦ GFh ◦ unit

= { G is a functor }
G(g ◦ f ◦ Fh) ◦ unit

= { our candidate for b-c }
bg ◦ f ◦ Fhc .

For Inverse we only verify the ⇐-direction, the other being dual.

4.4. PROPERTIES OF ADJUNCTIONS 59

dge = f

≡ { candidate for d-e }
counit ◦ Fg = f

≡ { counitF ◦ Funit = idF }
counit ◦ Fg = f ◦ counit ◦ Funit

≡ { counit ∈ Id←̇FG }
counit ◦ Fg = counit ◦ FGf ◦ Funit

≡ { F is a functor }
counit ◦ Fg = counit ◦ F (Gf ◦ unit)

⇐ { Leibniz }
g = Gf ◦ unit

≡ { candidate for b-c }
g = bfc

2

We have shown that, given a lower and upper adjungate, we can construct a unit and
co-unit, and vice versa. An adjunction does not determine the lower and upper adjungate
uniquely, nor the unit and co-unit. But the above constructions show that we can always
choose the lower and upper adjungate and the unit and co-unit together in such a way
that the following properties hold for all suitably typed arrows f and g:

bfc = Gf ◦ unit for f ∈ x C←− Fy , b-c-def

dge = counit ◦ Fg for g ∈ Gx D←− y . d-e-def

We’ll do this in the rest of this chapter so that we can always use this property.
In the above proof a valuable property is proved. Namely, for all suitably typed arrows

f and g:

Gf ◦ unit = g ≡ f = counit ◦ Fg . unit-counit-inverse

This property is an alternative for the two coherence conditions as stated in the above
theorem. That is, the two coherence conditions give rise to this property as shown in
the last proof, while conversely, by instantiating f,g := counit,id and f,g := id,unit in
unit-counit-inverse we obtain counit-inverse and unit-inverse. So we have as a last
alternative definition of an adjunction:

60 CHAPTER 4. ADJUNCTIONS

Theorem 4.19 F and G form an adjunction if: there exist two natural transformations
unit and counit such that unit-typing and counit-typing as in Theorem 4.18 hold, as
well as unit-counit-inverse.

2

We rephrase Corollary 4.16 using unit=bidc and add its dual:

Theorem 4.20 If (F,G) forms an adjunction,

Fg = dunit ◦ ge , Lower-adjoint-def

Gf = bf ◦ counitc , Upper-adjoint-def

2

To conclude this section, we show how adjunctions can be composed:

Theorem 4.21 If (F,G) forms an adjunction between categories C and D, and (H,K)
forms an adjunction between categories D and E , then: (FH,KG) forms an adjunction
between C and E .

2

Exercise 4.22 Show that for two isomorphic categories the witnesses of the isomorphy
form an adjunction. Compare the witnesses of the transitivity of ∼= (see Exercise 2.3) to
the statement of Theorem 4.21.

2

Exercise 4.23 Prove Theorem 4.21. Construct the unit and co-unit of the composite
adjunction.

2

4.5. EXAMPLES OF ADJUNCTIONS 61

4.5 Examples of adjunctions

4.5.1 Rel and Fun

We construct an adjunction between the categories Rel and Fun. Note that they have
the same objects. There is a well-known one-to-one correspondence between set-valued
functions and relations, and the translations forth and back will be the adjungates.

Let, for a set x, ∃x denote the powerset of x, so

∃x = $(s :: s ⊆ x) .

To turn a relation into a set-valued function, we can use:

bRc = (v :: $(u :: u R v)) ∈ ∃x Fun←− y ⇐ R ∈ x Rel←− y

(so, at the point level, u ∈ bRc.v ≡ u R v). To go the other way we construct its inverse:

dfe
= { Rel-abstraction }

$(u, v :: u dfe v)

= { definition of bRc at the point level }
$(u, v :: u ∈ bdfec.v)

= { inverse }
$(u, v :: u ∈ f.v)

(so u dfe v ≡ u ∈ f.v). It is easily checked that the typing is as required:

dfe = $(u, v :: u ∈ f.v) ∈ x Rel←− y ⇐ f ∈ ∃x Fun←− y .

The unexciting verification that these candidate adjungates are each others’ inverse also
in the other direction is omitted.

To make this fit the pattern of adjunctions, we have to extend ∃ to a functor to Fun
from Rel and to find some functor < ∈ Rel ← Fun that on objects is (semantically) the
identity function. We can use Theorem 4.20 for finding candidates. To apply that theorem
we first compute candidates for the unit and counit:

unit

= { unit-def }
bidc

= { candidate for b-c }

62 CHAPTER 4. ADJUNCTIONS

(v :: $(u :: u (id) v))

= { definition of id in Rel }
(v :: $(u :: u = v))

= { membership of singleton set }
(v :: $(u :: u∈{v}))

= { Compr-abstraction }
(v :: {v})

= { Lambda-abstraction }
{-} .

counit

= { counit-def }
dide

= { candidate for d-e }
$(u, v :: u ∈ v)

= { Rel-abstraction }
(∈) .

To obtain a candidate for the arrow part of < we compute:

<f
= { Lower-adjoint-def }

dunit◦fe
= { candidates for d-e and unit }

$(u, v :: u ∈ ({-}◦f).v)

= { Fun-◦-comp }
$(u, v :: u∈{f.v})

= { membership of singleton set }
$(u, v :: u = f.v) .

Expressed at the point level this amounts to

u (<f) v ≡ u = f.v .

4.5. EXAMPLES OF ADJUNCTIONS 63

This is the standard embedding of functions into relations, which preserves identities and
distributes over composition, so we have a functor, which is known as the graph functor.

As to ∃:

∃R
= { Upper-adjoint-def }

bR ◦ counitc
= { candidates for b-c and counit }

(v :: $(u :: u (R ◦ (∈)) v))

= { Rel-◦-comp }
(v :: $(u :: ∃(w :: u R w ∧ w∈v))) .

This amounts to:

u ∈ (∃R).v ≡ ∃(w :: u R w ∧ w∈v) .

We can save ourselves the task of verifying that ∃ is a functor (known as the existential
image functor) by applying Theorem 4.17. We already have all ingredients needed for
that except for one of the left-fusion laws. We show that b-c-left-fusion holds:

∃R ◦ bSc
= { candidate for ∃R }

(v :: $(u :: ∃(w :: u R w ∧ w∈v)))◦bSc
= { Lambda-right-fusion }

(v :: $(u :: ∃(w :: u R w ∧ w ∈ bSc.v)))

= { candidate for b-c (recall that u ∈ bRc.v ≡ u R v) }
(v :: $(u :: ∃(w :: u R w ∧ w S v)))

= { Rel-◦-comp }
(v :: $(u :: u (R◦S) v))

= { candidate for b-c }
bR◦Sc .

4.5.2 Sum as adjoint functor

We saw before that sum is the categorical generalisation of the lattice-theoretic concept of
join. Join is characterised by a Galois connection. It will then, perhaps, not be a surprise

64 CHAPTER 4. ADJUNCTIONS

that sum can be likewise characterised by an adjunction. In categories with sums, the
bifunctor + is the lower adjoint of the doubling functor ∆, where ∆ ∈ C×C ← C is defined
by:

∆x = (x, x) for x∈C ,

∆f = (f, f) for f ∈ x C←− y .

The trivial verification that ∆ is a functor is omitted.
Let us pretend that we do not know the definition of categorical sum, but instead

work out the claim that ∆ has some lower adjoint, which is required to have the typing
C ← C×C and so is some bifunctor ⊕, and verify the conditions needed for applying
Theorem 4.17.

The typing requirements of d-e, after unfolding the definition of ∆, amount to:

d(f, g)e ∈ z C←− x⊕y ⇐ (f, g) ∈ (z, z)
C×C←− (x, y) .

We use the more pleasant notation f♥g for d(f, g)e. Further, we express the arrows in
C×C as two arrows in C, and get:

f♥g ∈ z ← x⊕y ⇐ f ∈ z ← x ∧ g ∈ z ← y .

As all arrows here are arrows of C, the superscript has been omitted.
Instead of looking directly at b-c, we take a look at unit, which, by virtue of unit-def

and b-c-def, is interexpressible with b-c:

unit ∈ (x⊕y, x⊕y)
C×C←− (x, y) .

We see that unit is some pair of arrows (unl, unr), where

unl ∈ x⊕y ← x and unr ∈ x⊕y ← y .

Using b-c-def we then obtain, for h ∈ z ← x⊕y:

bhc = (h◦unl, h◦unr) ∈ ∆x
C×C←− (x, y) .

We can now formulate the further requirements.
For Inverse we obtain:

f♥g = h ≡ f = h◦unl ∧ g = h◦unr .

This is (but for using the symbols ♥, unl and unr instead of 5 , inl and inr) precisely
5 -char, the characterisation for categorical sum, and so ⊕ has to be isomorphic to +!

We still have to check d-e-left-fusion, though, which amounts to:

h ◦ f♥g = (h◦f)♥(h◦g) .

We already know this to be valid, given 5 -char: it is 5 -fusion.
Concluding: given the notion of adjunction, categorical sum can be defined rather

concisely by the following statement:

+ is the lower adjoint of ∆, with lower adjungate 5 and unit (inl, inr).

Categorical product can dually be defined as the upper adjoint of ∆.

4.6. EXPONENTS 65

4.6 Exponents

Definition 4.24 (Has exponents) Assume that C is a category with products. Then
we say that C has exponents if: for each z∈C the functor ×z has an upper adjoint.

2

We work out the consequences of this definition. Assume that C has exponents. Since ×z
is an endofunctor, the adjunction is apparently between C and itself, and so the upper
adjoint of ×z is also an endofunctor. It will in general depend on z. Denote the appli-
cation of ‘the’ upper adjoint of ×z to x by x↼z, so that (×z,↼z) forms an adjunction.
Anticipating the result of Section 5.1, we denote the application of ↼z to an arrow f as
f↼idz. We give names to the adjungates, calling the lower adjungate curry and the upper
adjungate uncurry. Further, we call the unit pair and the counit eval. The following are all
consequences, obtained by substituting these names in the rules for adjunctions (where,
again, we drop most of the subscripts):

uncurry.g ∈ x← y×z ⇐ g ∈ (x↼z)← y ;

curry.f ∈ (x↼z)← y ⇐ f ∈ x← y×z ;

uncurry.g = f ≡ curry.f = g ;

pair ∈ (x :: (x×z)↼z)←̇Id ;

pairx,z = curry.idx×z ;

eval ∈ Id←̇(x :: (x↼z)×z) ;

evalx,z = uncurry.idx↼z ;

uncurry.g = eval ◦ g×id ;

curry.f = f↼id ◦ pair ;

f ◦ uncurry.h = uncurry.(f↼id ◦ h) ;

uncurry.h ◦ g×id = uncurry.(h◦g) ;

f↼id ◦ curry.h = curry.(f ◦h) ;

curry.h ◦ g = curry.(h ◦ g×id) ;

g×id = uncurry.(pair ◦ g) ;

f↼id = curry.(f ◦ eval) .

66 CHAPTER 4. ADJUNCTIONS

An example of a category with exponents is Fun. Here is an implementation:

curry = (f :: (u :: (v :: f.(u, v)))) ;

uncurry = (g :: (u, v :: (g.u).v)) ;

pair = (u :: (v :: (u, v))) ;

eval = (f, u :: f.u) .

The names were chosen to be familiar, except that the function pair is not well-known
enough to have a common name. It is the curry’d ‘comma’ and pairs its argument.
Another common name for eval is ‘apply’.

Exercise 4.25 Show that Nat has exponents. What is m↼n?

2

Exercise 4.26 Consider the category POset.(subsets.S,⊆) for the subsets of a set S
ordered by the is-subset-of relation ⊆, which is the converse of the contains-ordering. So
the product in this category is set union ∪—and not intersection!—for it is the sum in
POset.(subsets.S,⊇). Show that this category has exponents.

2

Chapter 5

Cartesian Closed Categories

5.1 The exponent bifunctor

We show that in a category C with exponents ↼ can be extended to a bifunctor (↼) ∈
C ← C×Cop, called the exponent bifunctor.

As always, we first construct a candidate for the arrow mapping from the typing
requirements. We aim at the application of Theorem 2.58 and construct mappings for the
sections x↼, having already—by definition—that ↼z is a functor. So we need a collection

of mappings Gu such that Gug ∈ (u↼x)
C←− (u↼y)⇐ g ∈ x Cop

←− y. Here we go:

Gug ∈ (u↼x)
C←− (u↼y)

⇐ { Gug := curry.h }
curry.h ∈ (u↼x)

C←− (u↼y)

⇐ { typing rule for curry }
h ∈ u C←− (u↼y)×x

⇐ { h := eval ◦ k; ◦-typing }
evalu,y ◦ k ∈ u

C←− (u↼y)×x
⇐ { typing of eval }

k ∈ (u↼y)×y C←− (u↼y)×x
⇐ { k := idu↼y×g; × is a functor }

g ∈ y C←− x

≡ { definition of Cop }
g ∈ x Cop

←− y ,

giving Gug = curry.(evalu,y ◦ idu↼y×g).

67

68 CHAPTER 5. CARTESIAN CLOSED CATEGORIES

From here on we drop the subscripts. Before proceeding we derive an auxiliary result,
namely: eval ◦ Gg × id = eval ◦ id×g :

eval ◦ Gg × id = eval ◦ id×g
≡ { definition of uncurry }

uncurry . Gg = eval ◦ id×g
≡ { curry and uncurry are each others’ inverse }

Gg = curry.(eval ◦ id×g)

≡ { definition of G }
true .

To verify that each G is a functor, we check:

G(g;h)

= { definition of ; in Cop }
G(h◦g)

= { definition of G }
curry.(eval ◦ id×(h◦g))

= { × is bifunctor }
curry.(eval ◦ id×h ◦ id×g)

= { auxiliary result above }
curry.(eval ◦ Gh × id ◦ id×g)

= { Sectioned commute (for ×) }
curry.(eval ◦ id×g ◦ Gh × id)

= { curry fusion }
curry.(eval ◦ id×g) ◦ Gh

= { candidate definition for G }
Gg ◦ Gh .

Further,

Gid

= { definition of G }
curry.(eval ◦ id×id)

5.1. THE EXPONENT BIFUNCTOR 69

= { × is bifunctor }
curry.eval

= { definition of eval }
curry.(uncurry.id)

= { curry and uncurry are each others’ inverse }
id .

We may appeal now to Theorem 2.58 if we can show that Ff ◦ Gg = Gg ◦ Ff , where
Ff = f↼id = curry.(f ◦ eval), so that f ◦ eval = uncurry.(Ff) :

Ff ◦ Gg

= { definition of F }
curry.(f ◦ eval) ◦ Gg

= { curry fusion }
curry.(f ◦ eval ◦ Gg × id)

= { auxiliary result above }
curry.(f ◦ eval ◦ id×g)

= { f ◦ eval = uncurry.(Ff) }
curry.(uncurry.(Ff) ◦ id×g)

= { definition of uncurry }
curry.(eval ◦ Ff × id ◦ id×g)

= { Sectioned commute (for ×) }
curry.(eval ◦ id×g ◦ Ff × id)

= { curry fusion }
curry.(eval ◦ id×g) ◦ Ff

= { definition of G }
Gg ◦ Ff .

So by Theorem 2.58 we have a bifunctor indeed, where:

f↼g = curry.(f ◦ eval ◦ id×g) , ↼-def

in which the rhs is the fourth expression obtained in the preceding calculation.

Exercise 5.1 Work out what the bifunctor ↼ is in Fun. Compare this to the Hom

bifunctor
Fun← .

70 CHAPTER 5. CARTESIAN CLOSED CATEGORIES

2

Exercise 5.2 Show that for a category C with exponents for each x the pair (x↼, x↼)
forms an adjunction between Cop and C. Investigate the various rules for Fun. Note
that this adjunction is self-dual. (Warning. Be careful not to lose track because of the
contravariance, and carefully keep track of which category the various arrows belong to.
Note in particular that the counit of the adjunction is a family of arrows in Cop.)

2

5.2 Cartesian closed categories

Definition 5.3 (Cartesian closed category) A category is called a cartesian closed
category , or, for short, a ccc, if: it has products, a terminal object and exponents.

2

Remark 5.4 The presence of products is already implied by the presence of exponents.
Products, terminal object and exponents are all defined by so-called limit constructions
(which are performed by taking the terminal object in some category). In the literature
one sometimes encounters a different, non-equivalent definition for ccc, namely: the
category is required to have all finite limits.

2

The relevance of cccs is largely due to the fact that Fun is a ccc. We write ×, 1 and
↼ for ‘the’ product, terminal object and exponent. A collection of isomorphies that hold
then in all cccs is:

x×y ∼= y×x ;

x×(y×z) ∼= (x×y)×z ;

1×x ∼= x ;

x↼(y×z) ∼= (x↼y)↼z ;

(x×y)↼z ∼= (x↼z)×(y↼z) ;

x↼1 ∼= x ;

1↼x ∼= 1 .

Note that writing xy for x↼y gives these isomorphies a more familiar appearance; for
example xy×z ∼= (xy)z and (x×y)z ∼= xz×yz.

We construct witnesses for 1×x ∼= x:

5.2. CARTESIAN CLOSED CATEGORIES 71

f ∈ 1×x← x

⇐ { f := h 4 k; 4 -typing }
h ∈ 1← x ∧ k ∈ x← x

⇐ { h := bd(x)ce; bd(-)ce-typing; k := id }
true ,

and

g ∈ x← 1×x
⇐ { g := exr; exr-typing }

true ,

giving f = bd(x)ce 4 id and g = exr. The verification of the coherence conditions is then:

bd(x)ce 4 id ◦ exr = id

≡ { lhs: 4 -fusion; rhs: 4 -id }
(bd(x)ce◦exr) 4 exr = exl 4 exr

⇐ { Leibniz }
bd(x)ce◦exr = exl

⇐ { transitivity of = }
bd(x)ce◦exr = bd(1×x)ce ∧ bd(1×x)ce = exl

⇐ { left conjunct: bd(-)ce-fusion; right conjunct: bd(-)ce-char }
exr ∈ x← 1×x ∧ exl ∈ 1← 1×x ,

which is the correct typing in this context, and

exr ◦ bd(x)ce 4 id = id

≡ { exr-comp }
id .

Writing !x for bd(x)ce, we even have a natural isomorphism (!4 id, exr) witnessing the functor
isomorphy 1× ∼= Id .

Remark 5.5 The first two isomorphies above hold in any category with products, and
the third in any category with products and terminal object.

2

72 CHAPTER 5. CARTESIAN CLOSED CATEGORIES

Exercise 5.6 Show that a category with exponents and an initial object is a ccc.

2

Exercise 5.7 Show that Cat is a ccc.

2

Elementals, name

Definition 5.8 (Elemental) Given an object x of a ccc, an elemental of x is: an
arrow with typing x←1, and we abbreviate e ∈ x← 1 to e∈x.

2

There is a one-to-one correspondence between the elements of some type x and the el-
ementals of the object x in Fun. The extensionality property of functions can therefore
be expressed in terms of arrows: for two arrows f,g ∈ x ← y , we have f = g whenever
f ◦e = g◦e for all elementals e∈y. (This is true in Fun, but not in all cccs!)

The concept of ‘elemental’ makes it possible to handle functions—thus far exclusively
modelled as arrows— as elements of some ‘function space’, that is, as elementals of some
object x↼y. We introduce the abbreviation e!y for e◦!y (= e◦bd(y)ce), so e!y ∈ x← y ⇐ e∈x,
and—as usual—omit the subscript when convenient.

Definition 5.9 (Name) Given a ccc-arrow f ∈ x ← y, an elemental n ∈ x↼y is
called a name for f if: eval ◦ n! 4 id = f .

2

In Fun we can express this at the point level as: eval.(n, v) = f.v for all values v in the
domain of f 1. There is a one-to-one correspondence between the arrow class x←y and the
elementals of x↼y. We construct the correspondence in two steps. First, note that the
functor isomorphy 1× ∼= Id gives rise to an adjunction (1×, Id) between a ccc and itself.
For it implies, clearly: (x, y :: x ←− 1×y) ∼= (x, y :: Idx ←− y). The construction of
the adjungates is straightforward and gives:

dge = g◦exr ;

bfc = f ◦ ! 4 id .

1In Section 4.6 we saw an implementation of eval in Fun where eval = (f, u :: f.u). Indeed, if functions
are values, we can use them as their own names. However, we might also restrict our arrows to functions
definable in some formal language (e.g. typed lambda-calculus, or Haskell), and take the string defining
the function as its name. In that case eval is less trivial to implement.

5.2. CARTESIAN CLOSED CATEGORIES 73

Further, the adjunction (×y,↼y) establishes (x, y :: x ←− 1×y) ∼= (x, y :: (x↼y) ←−
1), with witnesses (uncurry, curry). Combining the two into (b-c◦uncurry, curry◦d-e) gives
a natural isomorphism for (x, y :: x ←− y) ∼= (x, y :: (x↼y) ←− 1). Defining
unname = b-c◦uncurry and name = curry◦d-e, we obtain:

unname ∈ (x, y :: x ←− y)←̇(x, y :: (x↼y) ←− 1) ;

unname.n = uncurry.n◦ ! 4 id ;

name ∈ (x, y :: (x↼y) ←− 1)←̇(x, y :: x ←− y) ;

name.f = curry.(f ◦exr) .

Next to the fact that name and unname are each others’ inverse, we have from the natu-
rality properties of the components:

f↼g ◦ name.h = name.(f ◦h◦g) name-fusion

for suitably typed f , g and h.

To conclude, we verify that name.f is indeed a name for f :

eval ◦ (name.f)! 4 id

= { definition of postfix ! }
eval ◦ (name.f ◦ !) 4 id

= { ×- 4 -fusion }
eval ◦ name.f × id ◦ ! 4 id

= { definition of uncurry }
uncurry.(name.f) ◦ ! 4 id

= { definition of name }
uncurry.(curry.(f ◦exr)) ◦ ! 4 id

= { curry and uncurry are each others’ inverse }
f ◦exr ◦ ! 4 id

= { exr-comp }
f .

74 CHAPTER 5. CARTESIAN CLOSED CATEGORIES

5.3 Bicartesian closed categories

Definition 5.10 (Bicartesian closed category) A category is called a bicartesian
closed category , or, for short, a bcc, if: it is a ccc, and in addition it has sums and an
initial object.

2

Remark 5.11 In view of the result of Exercise 5.6., it is sufficient to require sums, an
initial object and exponents.

2

The category Fun is also a bcc. We write + and 0 for ‘the’ sum and initial object. A
collection of isomorphies that hold then in all bccs—next to those mentioned already for
cccs—is:

x+y ∼= y+x ;

x+(y+z) ∼= (x+y)+z ;

x+0 ∼= x ;

x×(y+z) ∼= (x×y)+(x×z) ;

x↼(y+z) ∼= (x↼y)×(x↼z) ;

x↼0 ∼= 1 .

Remark 5.12 The first two hold in any category with sums, and the third in any
category with sums and initial object. The fourth isomorphy is stated using only +
and ×, and thus it may seem that it holds in any category with sums and products.
However, that is not the case. This is in fact easy to see: because + and × are dual, the
isomorphy—if universally true—would also hold when dualised. But, for example, in Nat
(see Exercise 5.15) it is definitely not the case that x+(y×z) ∼= (x+y)×(x+z). So the
presence of exponents is essential.

2

Exercise 5.13 Prove that x×(y+z) ∼= (x×y)+(x×z).

2

Exercise 5.14 Show that 0↼x ∼= 0 if there exists an elemental e∈x.

5.3. BICARTESIAN CLOSED CATEGORIES 75

2

Exercise 5.15 Show that Nat is a bcc.

2

76 CHAPTER 5. CARTESIAN CLOSED CATEGORIES

Chapter 6

Algebras

6.1 Algebras

Recall that a monoid is a structure (A,⊕,e),in which A is a set (or type), ⊕ ∈ A← A×A
and e∈A, satisfying the monoid laws: ⊕ is an associative operation, and e is a neutral
(or identity) element for ⊕. Actually, we are at the moment not interested in these laws.
Some concrete examples of monoids are:

(IN,+ ,0) , the naturals with addition ;

(IB,≡,true) , the booleans with equivalence ;

(IB,∨,false) , the booleans with disjunction ;

(IB,∧,true) , the booleans with conjunction ;

(IR,×,1) , the reals with multiplication ;

(IN, ↑ ,0) , the naturals with a maximum operation ;

(A? , ++ , ε) , the words over some alphabet with concatenation ;

and so on and so on.
Monoid are algebras in the traditional sense of algebraic theory: a set (the carrier),

together with a bunch of functions to that set. A monoid (A,⊕,e) can be modelled in
category theory as follows. First, we use the bijection between elements and elementals of
A in the ccc Fun to treat e as an arrow, so that e ∈ A← 1. Now ⊕ and e have the same
codomain, so we are allowed to combine them into a single arrow ⊕ 5 e ∈ A← A×A+1.
This arrow has the same information as the pair of ⊕ and e, since 5 is injective, so we
take the liberty to rewrite (A,⊕,e) as (A, f), where f = ⊕ 5 e.

Define M as the functor (x :: (x×x)+1), that is,

Mx = (x×x)+1 on objects ;

77

78 CHAPTER 6. ALGEBRAS

Mf = (f×f)+id1 on arrows .

Then each monoid is of the form (A, f), with f ∈ A←MA.
Generalizing this to other algebras in the traditional sense, in general they have

some form (A,f0 ∈ A ← F0A,f1 ∈ A ← F1A, . . . ,fn ∈ A ← FnA), and putting
f = f0 5 f1 5 . . . 5 fn and F = F0+F1+ . . .+Fn this can be combined into (A, f), with
f ∈ A← FA. This leads to the following definition.

Definition 6.1 (Algebra) Given an endofunctor F on a category C, an F -algebra is:

a pair (x, f) where x∈C and f ∈ x C←− Fx.

2

We will often use Greek letters like ϕ, χ and ψ as variables that stand for algebras.
For an algebra ϕ = (x, f) the object x is called its carrier, and we denote it by car.ϕ.
Note that actually the carrier component is redundant, since x = cod.f . In some in-
teresting generalisations of the notion of algebra, however, the carrier component is not
redundant, reason to keep it here as well. However, we shall freely apply the following
convention: In a context where a C-arrow is required, we can use the algebra ϕ = (x, f),
meaning its arrow component f ; conversely, where an algebra is required we can use a
C-arrow f , provided it has typing x ←− Fx for some x∈C, and we mean then (x, f).

6.2 Homomorphisms

Returning to algebras in the traditional sense, given two monoids ϕ = (A,⊕,e) and
ψ = (B,⊗,u), a function h ∈ A ← B is called a monoid homomorphism to ϕ from ψ
if it preserves the monoid structure; more precisely, if the following two rules hold:

(h.x)⊕(h.y) = h.(x⊗y) for all x, y∈B;

e = h.u .

Concrete examples of monoid homomorphisms are:

(n :: n > 0) ∈ (IB,∨,false)← (IN,+ ,0) ;

¬ ∈ (IB,∧,true)← (IB,∨,false) ;

¬◦(n :: n > 0) ∈ (IB,∧,true)← (IN,+ ,0) ;

(n :: n > 0) ∈ (IB,∨,false)← (IN, ↑ ,0) ;

exp ∈ (IR,×,1)← (IN,+ ,0) ;

length ∈ (IN,+ ,0)← (A? , ++ , ε) .

6.2. HOMOMORPHISMS 79

For example, length is a homomorphism because (length.x)+(length.y)=length.(x++y) and
0=length.ε.

In order to move to category theory, let us work out a point-free formulation of the
statement that h ∈ (A,⊕ 5 e) ← (B,⊗ 5 u). First, h has to be a function to A from B.
Furthermore,

∀(x, y :: (h.x)⊕(h.y) = h.(x⊗y)) ∧ e = h.u

≡ { Fun-◦-comp; definition of × }
∀(x, y :: ((⊕ ◦ h×h).(x, y) = (h◦⊗).(x, y))) ∧ e = h.u

≡ { Extensionality; interpreting e and u as elementals of A and B }
⊕ ◦ h×h = h◦⊗ ∧ e = h◦u

≡ { neutrality of id; injectivity of 5 }
(⊕ ◦ h×h) 5 (e◦id1) = (h◦⊗) 5 (h◦u)

≡ { lhs: 5 -+-fusion; rhs: 5 -fusion }
⊕ 5 e ◦ (h×h)+id1 = h ◦ ⊗ 5 u

≡ { definition of M }
⊕ 5 e ◦ Mh = h ◦ ⊗ 5 u .

It is clear now how we can give a categorical definition of the notion of homomorphism.

Definition 6.2 (Homomorphism) Given an endofunctor F on a category C, an
F -homomorphism to an F -algebra ϕ from an F -algebra ψ is: a C-arrow h such that:

h ∈ car.ϕ
C←− car.ψ ∧ ϕ ◦ Fh = h◦ψ .

Anticipating the definition of the category of F -algebras, we abbreviate this condition on
h to: h ∈ ϕ← ψ.

2

(The arrow equality ϕ ◦ Fh = h◦ψ is the coherence condition for the two ways avail-

able for constructing an arrow with typing car.ϕ
C← F (car.ψ).)

Example 6.3 Assume that A = (A,w) is a partially ordered set. An endofunctor F
on POset.A is a monotonic function on A. For this category an F -algebra is a pair (x, f)

where x∈A and f ∈ x
POset.A←− Fx. From the definition of POset.A we know that the

latter is true if: f = (x, F.x) and x w F.x. So f is completely determined by x, and the
F -algebras correspond precisely to the elements x∈A for which x w F.x. In lattice theory
these are known as pre-fixpoints.

2

80 CHAPTER 6. ALGEBRAS

6.3 The category of F -algebras

Definition 6.4 (Alg.F) Given an endofunctor F on a category C, the category Alg.F
is defined as follows:

Objects: The F -algebras.

Arrows: The F -homomorphisms.

Composition: That of C.

Identities: Those of C, where idϕ in Alg.F is idcar.ϕ in C.
(To be precise, this is a precategory, which can be turned into a category with the triple
trick.)

2

Associativity of composition and neutrality of identities are met because they are in-
herited from the base category. It must be checked, though, that arrow composition
preserves the restriction on arrows. The verification is as follows:

h◦k ∈ ϕ Alg.F←− ψ

≡ { definition of
Alg.F← }

h◦k ∈ car.ϕ
C←− car.ψ ∧ ϕ ◦ F (h◦k) = h◦k◦ψ

≡ { F is a functor }
h◦k ∈ car.ϕ

C←− car.ψ ∧ ϕ ◦ Fh ◦ Fk = h◦k◦ψ

⇐ { properties of ◦ }
h ∈ car.ϕ

C←− car.ψ ∧ ϕ◦Fh = h◦χ ∧ k ∈ car.ψ
C←− car.ψ ∧ χ◦Fk = k◦ψ

≡ { definition of
Alg.F← }

h ∈ ϕ Alg.F←− χ ∧ k ∈ χ Alg.F←− ψ .

A consequence of the convention to let an algebra ϕ = (x, f) also stand for its arrow
component f is the following typing rule:

ϕ ∈ car.ϕ
C←− F (car.ϕ) ≡ ϕ∈Alg.F . Algebra-typing

6.4 Initial algebras

In lattice theory we have the notion of a least pre-fixpoint of a monotonic endofunction
F , which, if it exists, coincides with the least fixpoint. ‘Translating’ all the concepts to
the corresponding concepts to category theory, we end up with the notion of an initial
algebra for an endofunctor F .

6.4. INITIAL ALGEBRAS 81

6.4.1 Definition and properties of initial algebras

Definition 6.5 (Initial F -algebra) Given an endofunctor F on a category C, an
initial algebra for F , or initial F -algebra, is: an initial object of Alg.F .

2

Let us work out the consequences of this definition in detail. Assume that F has an
initial algebra, and fix one which we will call ‘the’ initial F -algebra. In lattice theory we
denote the least prefix point of a function f by µf. We will denote the initial F -algebra
by inF , and its carrier will be denoted by µF . For the arrow typings in the base category
C, furthermore, the superscript C will be omitted. So, by Algebra-typing, the fact
that inF is an object of Alg.F gives us:

µF ∈ C ,

inF ∈ µF ← FµF . in-typing

The catamorphism mapping ([-]) of the initiality will be written as ([-])F here. Assume that
ϕ∈Alg.F , with car.ϕ = x (which, by Algebra-typing, equivales ϕ ∈ x ← Fx). The
([-])-char rule for initialities becomes:

([ϕ])F = h

≡ { ([-])-char }
h ∈ ϕ Alg.F←− inF

≡ { definition of
Alg.F← }

h ∈ x← µF ∧ ϕ ◦ Fh = h◦inF .

By the substitution h := ([ϕ])F , and making the typing assumption on ϕ explicit, we find
this typing rule for ([-])F :

([ϕ])F ∈ x← µF ⇐ ϕ ∈ x← Fx . ([-])F -typing

Recall that, when writing an arrow equality like ([ϕ])F = h, we imply that both sides can
be typed and have the same typing. The conjunct ‘h ∈ x← µF ’ in the unfolded definition

of
Alg.F← may therefore be omitted, giving the characterisation rule for initial algebras:

([ϕ])F = h ≡ ϕ ◦ Fh = h◦inF . ([-])F -char

Up to now, all we have done is to rephrase the abstract definition of initial algebra in
a concrete but equivalent way. Thus, we can give the following alternative definition of
initial algebra:

Theorem 6.6 ((µF, inF), ([-])F) is an initial F -algebra if in-typing, ([-])F -typing and
([-])F -char are satisfied.

82 CHAPTER 6. ALGEBRAS

2

Just as for initiality in general, we obtain a number of useful rules from the characterisa-
tion rule by simple substitutions. The substitution h := ([ϕ])F gives us the computation
rule:

ϕ ◦ F ([ϕ])F = ([ϕ])F ◦inF . ([-])F -comp

The substitution ϕ,h := inF ,idµF gives us the identity rule:

([inF])F = idµF . ([-])F -id

Finally, we derive the fusion rule:

([ϕ])F = h◦([ψ])F

≡ { ([-])F -char with h := h◦([ψ])F }
ϕ ◦ F (h◦([ψ])F) = h◦([ψ])F ◦inF

≡ { F is a functor }
ϕ ◦ Fh ◦ F ([ψ])F = h◦([ψ])F ◦inF

≡ { ([-])F -comp }
ϕ ◦ Fh ◦ F ([ψ])F = h ◦ ψ ◦ F ([ψ])F

⇐ { Leibniz }
ϕ ◦ Fh = h◦ψ ,

which proves:

([ϕ])F = h◦([ψ])F ⇐ ϕ ◦ Fh = h◦ψ . ([-])F -fusion

(These rules could, of course, have been directly obtained from the general ([-])-rules; for

example, the last rule is the concrete translation of ([ϕ])F = h◦([ψ])F ⇐ h ∈ ϕ Alg.F←− ψ.)
If if it is clear from the context, such as typing considerations, for which functor F

we have an initial algebra, the subscripts F are usually omitted. We repeat the concrete
rules here, omitting the subscripts:

in ∈ µF ← FµF . in-typing

([ϕ]) ∈ x← µF ⇐ ϕ ∈ x← Fx . ([-])-typing

([ϕ]) = h ≡ ϕ ◦ Fh = h◦in . ([-])-char

6.4. INITIAL ALGEBRAS 83

ϕ ◦ F ([ϕ]) = ([ϕ])◦in . ([-])-comp

([in]) = id . ([-])-id

([ϕ]) = h◦([ψ]) ⇐ ϕ ◦ Fh = h◦ψ . ([-])-fusion

The removal of the subscripts F has created a certain ambiguity, since the rule ([-])-char
may also stand for ([ϕ]) = h ≡ h ∈ ϕ ← in. However, this is a harmless ambiguity, and
in fact these rules are equivalent under the assumption of suitable typing.

6.4.2 Data types as initial algebras

Consider the following functional program:

data Nattree = join Nattree Nattree | leaf Nat

maxval (join t0 t1) = max (maxval t0) (maxval t1)

maxval (leaf i) = i

which defines a data type Nattree of binary trees with naturals at the leaf nodes, and a
function maxval to compute the maximum value occurring in the leaves of the tree. This
is a common way to define a function on a recursively defined data type.

Let us view this in algebraic terms, renaming for the sake of brevity Nat to IN, Nattree
to t, join and leaf to, respectively, ± and λ, maxval to h, and max to ↑. Then we have:

± ∈ t← t×t ,

λ ∈ t← IN ,

h ∈ IN← t ,

h◦(±) = (↑) ◦ h×h ,

h◦λ = id .

Putting T = (x :: (x×x)+IN), we see that

(±) 5 λ ∈ t← Tt ,

(↑) 5 id ∈ IN← T IN ,

so both are T -algebras. The defining equations for h can be combined into the equivalent
form

h ∈ (IN, (↑) 5 id)← (t, (±) 5 λ) ,

84 CHAPTER 6. ALGEBRAS

so h is a T -homomorphism. The interesting thing is that this typing of h is apparently
sufficient to define h.

This is so independent of the codomain algebra. For consider the general definitional
pattern

h (join t0 t1) = op (h t0) (h t1)

h (leaf i) = f i

for suitably typed functions f and op. Whatever the choice for these two functions, these
equations will define some function on our nattrees. And yet, the equations are equivalent
(with some renaming) to:

h ∈ ϕ← (t, (±) 5 λ) where ϕ = (x, (⊕) 5 f) for some type x.

So we see that, by virtue of 5 -form, for any ϕ this defines a function h, or, in other
words, there is a unique arrow to ϕ from (t, (±) 5 λ). That now was the definition of an
initiality, in this case for an initial algebra. Conclusion: (t, (±) 5 λ) is an initial T -algebra
(where the base category is Fun). If we agree that it is ‘the’ initial T -algebra, the rule
([-])-char tells us now how to solve for h; for the maxval example we obtain h = ([(↑) 5 id]).

The final conclusion is that a data type definition like that for Nattree apparently
defines an initial algebra. The notation implicitly determines the endofunctor, and gives
names to both the carrier and (the components of) the arrow part of the initial algebra.
Of course, there are many other isomorphic initial algebras, like the one defined by

data TreeNat = fork TreeNat TreeNat | tip Nat .

Here are the naturals as an initial algebra:

data Nat = succ Nat | zero .

The corresponding endofunctor is (x :: x+1). There are many isomorphic models of ‘the’
naturals, and yet we speak of ‘the naturals’, since no ‘naturally’ expressible property could
possibly distinguish between these models. Doing mathematics would become awkward
indeed if, instead of just referring to ‘IN’, ‘succ’ and ‘zero’ as if we knew and agreed which
particular algebra this stands for, we always had to say: ‘Let (IN, succ 5 zero) be some
initial (x :: x+1)-algebra.’ The use of ‘the’ as a useful fiction is thus by no means a
category-theoretical innovation, but general mathematical practice.

Exercise 6.7 Express the catamorphism ([f 5 e]) on the naturals in conventional math-
ematical notation. What do we get for ([-])-id then?

2

Exercise 6.8 Define the data type boolean (with constructors true and false) as an
initial algebra. What are the catamorphisms? Express the function ¬ as a catamorphism.

6.4. INITIAL ALGEBRAS 85

2

Exercise 6.9 What is the initial K.a-algebra?

2

Exercise 6.10 What is the initial IdC-algebra, if it exists?

2

6.4.3 Applications

Cons lists

The following application is based on Set, expressed in a functional language. The cons-
list-of-naturals data type can be defined by:

data Natlist = cons Nat Natlist | empty

where we usually write n:x instead of cons n x and [] instead of empty. The endofunctor
is L = (x :: (IN×x)+1), and we put Natlist = µL. Let us go the reverse way, from
the categorical treatment to functional programming language notation, to interpret the
catamorphisms for these cons-lists. The ([-])-comp rule for this type is:

ϕ ◦ (x :: (IN×x)+1)([ϕ]) = ([ϕ])◦in

≡ { working out the functor application }
ϕ ◦ (id×([ϕ]))+id = ([ϕ])◦in

≡ { using 5 -form to put ϕ = (⊕) 5 e and in = (:) 5 [] }
(⊕) 5 e ◦ (id×([(⊕) 5 e]))+id = ([(⊕) 5 e]) ◦ (:) 5 []

≡ { abbreviate ([(⊕) 5 e]) to f }
(⊕) 5 e ◦ (id×f)+id = f ◦ (:) 5 []

≡ { lhs: 5 -+-fusion, neutrality of id; rhs: 5 -fusion }
((⊕) ◦ id×f) 5 e = (f ◦(:)) 5 (f ◦[])

≡ { 5 is injective }
(⊕) ◦ id×f = f ◦(:) ∧ e = f ◦[]

≡ { Extensionality, swapping the arguments to = }
∀(n, x :: (f ◦(:)).(n, x) = ((⊕) ◦ id×f).(n, x)) ∧ f ◦[] = e

86 CHAPTER 6. ALGEBRAS

≡ { Fun-◦-comp }
∀(n, x :: f.(n : x) = (⊕).((id×f).(n, x))) ∧ f ◦[] = e

≡ { product for Set }
∀(n, x :: f.(n : x) = n ⊕ f.x) ∧ f ◦[] = e

Writing foldr op e for f = ([(⊕) 5 e]), and interpreting the functions [] ∈ Natlist ← 1
and e ∈ z ← 1 (for some z) as data values []∈Natlist and e∈z, we see that the defining
equations are:

foldr op e (n:x) = op n (foldr op e x)

foldr op e [] = e

This is, to functional programmers, a well-known function. For example, foldr (+) 0

sums the elements of a list, and if we define tri n y = (3×n):y, the function foldr

tri [] triples all elements. Note that the equations, written point-free, amount to these
specialisations of ([-])-comp for Natlist :

([(⊕) 5 e])◦(:) = (⊕) ◦ id×([(⊕) 5 e]) ,

([(⊕) 5 e])◦[] = e ,

which we shall use in a moment.
In a similar way we can work out the ([-])-fusion rule for this type, and obtain:

([(⊕) 5 e]) = h◦([(⊗) 5 u]) ⇐ (⊕) ◦ id×h = h◦(⊗) ∧ e = h◦u .

Let us see how we can use this to fuse foldr (+) 0 after foldr tri [] so as to obtain a
one-pass computation. So we want to fuse ([(+) 5 0])◦([(⊗) 5 []]), in which ⊗ is defined as
(x, xs :: (3×x) : xs), which we can write as (:) ◦ (3×)×id. We solve the fusion condition
for ⊕ and e. We start with ⊕:

(⊕) ◦ id×h = h◦(⊗)

≡ { h and ⊗ in this case }
(⊕) ◦ id×([(+) 5 0]) = ([(+) 5 0]) ◦ (:) ◦ (3×)×id

≡ { ([-])-comp for Natlist }
(⊕) ◦ id×([(+) 5 0]) = (+) ◦ id×([(+) 5 0]) ◦ (3×)×id

≡ { × is a functor }
(⊕) ◦ id×([(+) 5 0]) = (+) ◦ (3×)×id ◦ id×([(+) 5 0])

⇐ { Leibniz }
(⊕) = (+) ◦ (3×)×id

≡ { point-level }
(⊕) = (x, y :: 3×x+y) .

6.4. INITIAL ALGEBRAS 87

As to e:

e = h◦u

≡ { h and u in this case }
e = ([(+) 5 0])◦[]

≡ { ([-])-comp for Natlist }
e = 0 .

So we have derived this one-pass algorithm:

(foldr (+) 0) ◦ (foldr tri []) = foldr triplus 0

where triplus n z = 3×n + z .

Exercise 6.11 Prove that, slightly more generally, for Natlist we can fuse as follows:

([(⊕) 5 e])◦([((:) ◦ f×id) 5 []]) = ([((⊕) ◦ f×id) 5 e]) .

2

Banana split

If we tuple two recursive computations over the same data structure, can we express this
as a one-pass computation? The following result is generic; it applies in all categories of
algebras, as long as the base category has products.

Put formally, the problem is to find, given F -algebras ϕ and ψ, an F -algebra χ such
that ([χ]) = ([ϕ]) 4 ([ψ]). We solve this equation for χ:

([χ]) = ([ϕ]) 4 ([ψ])

≡ { 4 -char }
([ϕ]) = exl◦([χ]) ∧ ([ψ]) = exr◦([χ])

≡ { ([-])-char }
ϕ ◦ F (exl◦([χ])) = exl◦([χ])◦in ∧ ψ ◦ F (exr◦([χ])) = exr◦([χ])◦in

≡ { ([-])-comp }
ϕ ◦ F (exl◦([χ])) = exl ◦ χ ◦ F ([χ]) ∧ ψ ◦ F (exr◦([χ])) = exr ◦ χ ◦ F ([χ])

≡ { F is a functor }
ϕ ◦ F exl ◦ F ([χ]) = exl ◦ χ ◦ F ([χ]) ∧ ψ ◦ F exr ◦ F ([χ]) = exr ◦ χ ◦ F ([χ])

⇐ { Leibniz }

88 CHAPTER 6. ALGEBRAS

ϕ ◦ F exl = exl◦χ ∧ ψ ◦ F exr = exr◦χ

≡ { 4 -char }
χ = (ϕ ◦ F exl) 4 (ψ ◦ F exr)

≡ { ×- 4 -fusion }
χ = ϕ×ψ ◦ F exl 4 F exr .

We have proved:

Theorem 6.12 For all F -algebras ϕ and ψ, if the base category has products:

([ϕ×ψ ◦ F exl 4 F exr]) = ([ϕ]) 4 ([ψ]) .

2

Exercise 6.13 Show that F exl 4 F exr is a natural transformation with typing (x, y ::
Fx × Fy)←̇(x, y :: F (x×y)) (or, more succinctly, (×)(F×F) ←̇ F (×)).

2

6.4.4 Initial algebra as fixed point

In lattice theory, a least pre-fixpoint is a fixpoint. In category theory, an initial F -algebra
is also a fixpoint, in the following sense:

Theorem 6.14 If in is an initial F -algebra, then F in is also an F -algebra, and
in ∼= F in.

Proof In general, if ϕ is an F -algebra with carrier x, we have in the base category
ϕ ∈ x ← Fx, and so Fϕ ∈ Fx ← FFx is also an F -algebra, this time with carrier
Fx; so, first, we see that car.(Fϕ) = F (car.ϕ), and, second, that F in is indeed an F -
algebra. The typings of the witnesses h and k required for an isomorphism are given by

h ∈ in
Alg.F←− F in and k ∈ F in

Alg.F←− in.
As to h, we have:

h ∈ in
Alg.F←− F in

≡ { definition of
Alg.F← ; car.in = µF }

h ∈ µF ← FµF ∧ in ◦ Fh = h ◦ F in

⇐ { both conjuncts suggest trying h := in }
in ∈ µF ← FµF ∧ in ◦ F in = in ◦ F in

≡ { in-typing; reflexivity of = }
true .

6.4. INITIAL ALGEBRAS 89

For k:

k ∈ F in
Alg.F←− in

≡ { ([-])-char }
([F in]) = k

⇐ { k := ([F in]) }
true .

It thus suffices to prove that in◦([F in]) = id and ([F in])◦in = id. We have, first,

in◦([F in]) = id

≡ { ([-])-id }
in◦([F in]) = ([in])

⇐ { ([-])-fusion }
in ∈ in

Alg.F←− F in

≡ { shown above }
true ,

and next,

([F in])◦in

= { ([-])-comp }
F in ◦ F ([F in])

= { F is a functor }
F (in◦([F in]))

= { proved immediately above }
F id

= { F is a functor }
id .

This completes the proof.
2

90 CHAPTER 6. ALGEBRAS

6.5 Lawful algebras

In monoid algebras we have not only the signature—expressed by the functor M = (x ::
(x×x)+1)—but also the monoid laws. An algebra ⊕ 5 e is only a monoid algebra if
it satisfies the monoid laws. Using α to denote the natural isomorphism witnessing
(x, y, z :: (x×y)×z) ∼= (x, y, z :: x×(y×z)), these laws are expressed by the arrow equal-
ities assoc.(⊕) for the associativity of ⊕ and neutral.((⊕),e) for e being neutral to ⊕,
where:

assoc.(⊕) ≡ (⊕) ◦ (⊕) 4 id ◦ α = (⊕) ◦ id 4 (⊕)

and

neutral.((⊕),e) ≡ (⊕) ◦ e 4 id = id = (⊕) ◦ id 4 e .

For an arbitrary M -algebra ϕ we can obtain the laws in terms of ϕ by the substitution
((⊕),e) := (ϕ◦inl, ϕ◦inr). So the predicate testing an M -algebra for being a monoid
algebra is:

(ϕ :: assoc.(⊕) ∧ neutral.((⊕),e) where ((⊕),e) = (ϕ◦inl, ϕ◦inr)) .

In general, a class of algebras may be restricted by a collection of laws, which can be
expressed as some predicate. The predicate above is an example of anM -law. Generalising
this, we have:

Definition 6.15 (F -law) Given an endofunctor F on a category C, an F -law is: a
predicate whose domain is the class of F -algebras.

2

Definition 6.16 (L-lawful) Given an F -law L, an L-lawful algebra is: an F -algebra
satisfying L.

2

We define now the category of lawful algebras:

Definition 6.17 (Alg.(F,L)) Given an endofunctor F on a category C and an F -law
L, the category Alg.(F,L) is: the full subcategory of Alg.F whose objects are the L-lawful
algebras.

2

If Alg.(F,L) has an initial object, we denote it by (µ(F,L), in(F,L)). (A true but somewhat
useless theorem is: if inF is L-lawful, then (µ(F,L), in(F,L)) ∼= (µF, inF). The problem is

6.5. LAWFUL ALGEBRAS 91

that if L, as is the intention, represents a collection of laws, the initial (lawless) F -algebra,
if it exist, is only L-lawful when all F -algebras are.)

In the definition of Alg.(F,L) we took a full subcategory of Alg.F . This means that
the definition of the arrows is as before; they are the F -homomorphisms. Of course, for

h ∈ ϕ Alg.F←− ψ to be an arrow in Alg.(F,L), ϕ and ψ have to be objects of Alg.(F,L), that
is, they have to satisfy L. But other than that, there is no restriction on h.

Example 6.18 (Join lists) In Section 6.4.2 we looked at binary trees of naturals,
being—based upon Fun—the initial T -algebra for T = (x :: (x×x)+IN). Let us impose
now a law L on the T -algebras, so that a T -algebra (⊕)5f is L-lawful if: ⊕ is associative.
Clearly, the join operation ± on trees is not associative. There is a data type for which
there is an associative join: lists with the operation ++. We shall argue now that (non-
empty) lists of naturals with the operations ++ and [-] (for forming singleton lists) are the
initial (T,L)-algebra.

The argument is in two parts. First we show that for any T -algebra there is at
most one arrow (i.e., T -homomorphism) to it from the proposed algebra by constructing
a catamorphism in another category of algebras, namely the (lawless) L-algebras for
L = (x :: (IN×x)+IN), giving rise to the data type of non-empty cons lists of naturals.
We use that for lists the cons operation (:) equals (++) ◦ [-] 4 id. Next we show that if the
target algebra is a (T,L)-algebra, that arrow is a T -homomorphism.

So assume that (⊕)5f is a T -algebra, and h ∈ (⊕)5f ← (++)5 [-] a T -homomorphism.
The homomorphic condition requires that h◦(++) = (⊕) ◦ h×h and h◦[-] = f . Then:

h◦(:)

= { cons operation }
h ◦ (++) ◦ [-] 4 id

= { homomorphic condition }
(⊕) ◦ h×h ◦ [-] 4 id

= { ×- 4 -fusion }
(⊕) ◦ (h◦[-]) 4 h

= { homomorphic condition }
(⊕) ◦ f 4 h

The combination of h◦(:) = (⊕) ◦ f4h and h◦[-] = f tells us that h is an L-homomorphism,
namely to ((⊕) ◦ f 4h)5f from (:)5[-]. Since the source algebra is initial, there is precisely
one such homomorphism: it is a catamorphism.

Is that L-homomorphism also a T -homomorphism? We have to show that the function
h defined by h◦(:) = (⊕) ◦ f 4h and h◦[-] = f satisfies h◦(++) = (⊕) ◦ h×h if ⊕ is asso-
ciative. We reason at the point-level and show that h.(x++y) = h.x ⊕ h.y by induction
on the length of x, with basis: h.([a]++y) = h.[a] ⊕ h.y, and step: h.((a : x)++y) = h.(a :
x) ⊕ h.y ⇐ h.(x++y) = h.x ⊕ h.y. For the basis:

92 CHAPTER 6. ALGEBRAS

h.([a]++y)

= { cons operation }
h.(a : y)

= { h is L-homomorphism }
f.a ⊕ h.y

= { h is L-homomorphism }
h.[a] ⊕ h.y .

For the step:

h.((a : x)++y)

= { (a : x)++y = a : (x++y) }
h.(a : (x++y))

= { as for the basis }
h.[a] ⊕ h.(x++y)

= { inductive hypothesis }
h.[a] ⊕ (h.x ⊕ h.y)

= { ⊕ is associative }
(h.[a] ⊕ h.x) ⊕ h.y

= { as for the basis }
h.(a : x) ⊕ h.y .

Using functional programming notation, we see that the same pattern that defined maxval

on binary trees defines a unique function on ‘join lists’, that is, using the associative
constructor ++ :

maxval (x++y) = max (maxval x) (maxval y)

maxval [i] = i

Unfortunately, a pattern like x++y is not allowed in existing functional languages. In-
terpreted as a computational prescription, the first equation can be read as: split the
argument list in any way into two parts, as long as both parts are simpler than the whole,
and recurse. The associativity of the operation max guarantees that the result is indepen-
dent of the way of splitting. Often, splitting into two parts that are about equally long is
more efficient.

To accommodate empty lists, we just have to introduce a third constructor [] for empty
lists, and impose the neutrality law. We leave it to the reader to verify that basically the
same argument as before applies.

6.6. PARAMETRISED INITIAL ALGEBRAS 93

2

Remark 6.19 Basically, all results for lawless algebras derived earlier apply equally
to lawful algebras, with one exception: Theorem 6.14 does not carry over. The problem
is in already in the first part: if in is an initial (F,L)-algebra, F in is as before an F -
algebra, but this algebra is in general not L-lawful. In that case it is also not an object
of Alg.(F,L). In Alg.F both in and F in are objects in any case, and so it is meaningful to
ask whether they are isomorphic in that category. But if F in is not L-lawful the answer
is no: in is L-lawful, so in and F in can be distinguished by L, which means that they are
not ‘categorically indistinguishable’1 and therefore not isomorphic.

2

6.6 Parametrised initial algebras

Above we have taken trees or list of naturals as example data types. However, a result
like ([-])-comp for Natlist is (as should be obvious from the proof) equally valid for lists of
booleans, or strings, or whatever. Let us examine—with categorical tools—parametrised
data types, such as defined by

data List x = cons x (List x) | empty

(so that the type Natlist from section 6.4.3 equals List Nat).
Throughout the remainder of this section ⊕ denotes a binary functor ⊕ ∈ C ← D×C.

The first argument of ⊕ will be the ‘parameter’. By fixing it to some x∈D we obtain an
endofunctor x⊕ ∈ C ← C, so we can consider the category of x⊕-algebras. For example,
for cons-lists we can take x⊕y = (x×y)+1, so that for the functor L = (x :: (IN×x)+1)
from section 6.4.3 we have L = IN⊕.

We assume furthermore in this section that for all objects x∈D the endofunctor x⊕
has an initial algebra, denoted as usual by inx⊕, with carrier µ(x⊕).

6.6.1 The map functor

Consider the mapping $ = (x :: µ(x⊕)) to objects of C from objects of D (the ‘param-
eters’). So, for the cons-list example, we have Natlist = µL = µ(IN⊕) = $IN. Note that
the typing of inx⊕ in C is given by inx⊕ ∈ $x ← x ⊕ $x. We will now prove that $
can be extended to a functor, which we call the map functor. Let us first construct a
candidate for the arrow mapping:

1The argument assumes that the predicate L is based upon arrow equalities, as in the monoid example
before.

94 CHAPTER 6. ALGEBRAS

$f ∈ $x← $y

≡ { definition of $ on objects }
$f ∈ $x← µ(y⊕)

⇐ { $f := ([ϕ])y⊕ }
([ϕ])y⊕ ∈ $x← µ(y⊕)

≡ { ([-])-typing }
ϕ ∈ $x← y ⊕ $x

⇐ { ϕ := inx⊕◦ψ; ◦-typing; in-typing }
ψ ∈ x ⊕ $x← y ⊕ $x

⇐ { ψ := f ⊕ $x }
f ⊕ $x ∈ x ⊕ $x← y ⊕ $x

⇐ { ⊕ $x is a functor }
f ∈ x D←− y .

So the candidate found is $f = ([inx⊕ ◦ f ⊕ $x])y⊕ for f ∈ x D←− y.
Before we proceed to show the functoriality of $, we first derive a useful rule that will

be used in the proof. It shows that any catamorphism can be fused with a map. In the
derivation of the rule we omit the subscripts—which can be easily reconstructed assuming
a suitable typing of the ingredients—and write ⊕id for the arrow mapping of ⊕ $x.

([ϕ]) ◦ $g = ([ψ])

≡ { definition of $ on arrows }
([ϕ])◦([in ◦ g⊕id]) = ([ψ])

⇐ { ([-])-fusion }
ψ ◦ id⊕([ϕ]) = ([ϕ]) ◦ in ◦ g⊕id

≡ { ([-])-comp }
ψ ◦ id⊕([ϕ]) = ϕ ◦ id⊕([ϕ]) ◦ g⊕id

≡ { Section-commute }
ψ ◦ id⊕([ϕ]) = ϕ ◦ g⊕id ◦ id⊕([ϕ])

⇐ { ψ := ϕ ◦ g⊕id }
true ,

which gives us:

([ϕ]) ◦ $g = ([ϕ ◦ g⊕id]) . $-fusion

6.6. PARAMETRISED INITIAL ALGEBRAS 95

Another rule that is easily derived is:

$f ◦ in = in ◦ f ⊕ $f . $-comp

Now we are ready to prove the theorem.

Theorem 6.20 Given a binary functor ⊕ ∈ C ← D×C such that for each object x∈D
the functor x⊕ has an initial algebra, we obtain a functor $ ∈ C ← D by defining:

$x = µ(x⊕) for x∈D ,(6.21)

$f = ([inx⊕ ◦ f ⊕ $x])y⊕ for f ∈ x D←− y .(6.22)

Proof For all f ∈ x D←− y and g ∈ y D←− z:

$f ◦ $g

= { definition of $ }
([inx⊕ ◦ f ⊕ $x])y⊕ ◦ $g

= { $-fusion }
([inx⊕ ◦ f ⊕ $x ◦ g ⊕ $x])z⊕

= { ⊕$x is a functor }
([inx⊕ ◦ (f ◦g) ⊕ $x])z⊕

= { definition of $ }
$(f ◦g) .

Furthermore,

$idx

= { definition of $ }
([inx⊕ ◦ idx ⊕ $x])x⊕

= { ⊕$x is a functor }
([inx⊕])x⊕

= { ([-])-id; µ(x⊕) = $x }
id$x .

2

96 CHAPTER 6. ALGEBRAS

Example 6.23 (maps in Fun) For arrows in Fun the object mapping of $ is a data
type constructor; for example, taking x⊕y = (x×y)+1, $ corresponds to List from the
beginning of this section, and $IN to List Nat. Working out the details of $-comp and
casting them in functional-programming style gives the defining equations for the arrow
mapping:

listmap f (x:xs) = (f x):(listmap f xs)

listmap f [] = []

This is, of course, the well-known standard map function on lists.
As is well known, the higher-order function map is a polymorphic function: it accepts

function arguments of any type. However, it is tied to lists for the next argument. In
contrast, $ is a generic construction giving a ‘map’ for any data type constructor that
can be obtained from the parametrised initial algebra construction. For example, we can
generalise the type Nattree from section 6.4.2 to

data Tree x = join (Tree x) (Tree x) | leaf x

(corresponding to $x for x⊕y = (y×y)+x), and obtain:

treemap f (join t0 t1) = join (treemap f t0) (treemap f t1)

treemap f (leaf i) = f i

Constructions like $ which stand for a whole class of algorithms, one for each data type
constructor, are called polytypic.

2

Exercise 6.24 Work out$-fusion specialised to the bifunctor x⊕y = (x×y)+1. Com-
pare this to Exercise 6.11.

2

Exercise 6.25 Prove the rule $-comp.

2

Exercise 6.26 Derive a $-char rule.

2

6.6. PARAMETRISED INITIAL ALGEBRAS 97

6.6.2 Reduce

Assume now that ⊕ is such that x⊕y = Fy + x for some endofunctor F ∈ C ← C, in
which x does not occur free in F. This is the case for the bifunctor x⊕y = (y×y)+x giving
rise to the Tree types, but not for that giving the cons-lists. The endofunctors x⊕ are
then called free endofunctors, and $x is called a free type over x.

We can then define a polytypic function %, called reduce, with the following typing
rule:

%.ϕ ∈ x← $x⇐ ϕ ∈ x← Fx . %-typing

We construct a definition:

%.ϕ ∈ x← $x

≡ { definition of $ on objects }
%.ϕ ∈ x← µ(x⊕)

⇐ { %.ϕ := ([ψ]) }
([ψ]) ∈ x← µ(x⊕)

≡ { ([-])-typing }
ψ ∈ x← x⊕x

≡ { x⊕y = Fy + x }
ψ ∈ x← Fx + x

⇐ { ψ := ϕ 5 id; 5 -typing }
ϕ ∈ x← Fx ,

so we obtain:

%.ϕ = ([ϕ 5 id]) .

(Note that the typing of % shows that the mapping cannot be extended to a functor.)
A catamorphism of the form %.ϕ is called a reduction. We examine $-fusion for a
reduction:

%.ψ ◦ $f

= { definition of % }
([ψ 5 id]) ◦ $f

= { $-fusion }
([ψ 5 id ◦ f⊕id])

= { x⊕y = Fy + x }

98 CHAPTER 6. ALGEBRAS

([ψ 5 id ◦ F id + f])

= { F is a functor; 5 -+fusion }
([ψ 5 f]) .

So we have:

%.ψ ◦ $f = ([ψ 5 f]) . %-$-fusion

Because of 5-form, this means that any catamorphism on a free type can be decomposed
into a reduce after a map:

([ϕ])

= { 5 -form }
([(ϕ◦inl) 5 (ϕ◦inr)])

= { %-$-fusion }
%.(ϕ◦inl) ◦ $(ϕ◦inr) .

Although this is essentially the same rule as %-$-fusion, we record it separately:

([ϕ]) = %.(ϕ◦inl) ◦ $(ϕ◦inr) . Free-([-])-decomp

We can use % to construct a natural transformation called flatten and denoted by µ2, with
typing µ ∈ $←̇$$:

µx ∈ $x← $$x

⇐ { µx := %.ϕ; }
%.ϕ ∈ $x← $$x

⇐ { %-typing }
ϕ ∈ $x← F$x

⇐ { ϕ := ψ◦inl; ◦-typing; inl-typing }
ψ ∈ $x← F$x + x

≡ { x⊕y = Fy + x }
ψ ∈ $x← x ⊕ $x

⇐ { ψ := inx⊕ }
true ,

2This µ has no relationship to the fixed-point operator µ

6.6. PARAMETRISED INITIAL ALGEBRAS 99

giving the definition:

µ = %.(in◦inl) .

That this is indeed a natural transformation will be shown later. First we give fusion
rules for µ, which we call promotion rules. The most general rule is for promoting an
arbitrary catamorphism. First:

([ϕ])◦µ = ([ψ])

≡ { definitions of µ and % }
([ϕ])◦([(in◦inl) 5 id]) = ([ψ])

⇐ { ([-])-fusion }
([ϕ]) ◦ (in◦inl) 5 id = ψ ◦ F ([ϕ]) + id .

We interrupt the derivation and first develop the last lhs:

([ϕ]) ◦ (in◦inl) 5 id

= { 5 -fusion }
(([ϕ])◦in◦inl) 5 ([ϕ])

= { ([-])-comp }
(ϕ ◦ F ([ϕ]) + id ◦ inl) 5 ([ϕ])

= { inl-leap }
(ϕ ◦ inl ◦ F ([ϕ])) 5 ([ϕ])

= { 5 -+-fusion }
ϕ◦inl 5 ([ϕ]) ◦ F ([ϕ]) + id .

Now we continue where we left off:

([ϕ]) ◦ (in◦inl) 5 id = ψ ◦ F ([ϕ]) + id

≡ { just derived }
ϕ◦inl 5 ([ϕ]) ◦ F ([ϕ]) + id = ψ ◦ F ([ϕ]) + id

⇐ { Leibniz }
ϕ◦inl 5 ([ϕ]) = ψ ,

giving ([ϕ])◦µ = ([ϕ◦inl 5 ([ϕ])]), which by virtue of Free-([-])-decomp can be expressed
as the rule:

([ϕ])◦µ = %.(ϕ◦inl) ◦ $([ϕ]) . ([-])-promo

100 CHAPTER 6. ALGEBRAS

Specialised promotion rules that follow easily from this general rule, and whose derivation
is left as an exercise to the reader,are:

$f ◦ µ = µ ◦ $$f ; $-promo

%.ϕ ◦ µ = %.ϕ ◦ $%.ϕ . %-promo

Conversely, general catamorphism promotion follows from map and reduce promotion
(using ([-])-decomp).

For the even more special case of µ = %.(in◦inl), the promotion rule obtained is:

µ◦µ = µ ◦ $µ . µ-promo

The $-promo rule is in fact the promised proof that µ is a natural transformation.
A kind of counterpart to µ is given by:

η = in◦inr ∈ $←̇Id .

We list its fusion properties: -

$f ◦ η = η◦f ; $-η-comp

%.ϕ ◦ η = id ; %-η-comp

µ◦η = id . µ-η-comp

The $-η-comp rule states that η is a natural transformation.
To conclude this investigation, we derive:

µ ◦ $η

= { definition of µ }
%.(in◦inl) ◦ $η

= { %-$-fusion }
([(in◦inl) 5 η])

= { definition of η }
([(in◦inl) 5 (in◦inr)])

= { 5 -fusion }
([in ◦ inl 5 inr])

= { 5 -id }
([in])

= { ([-])-id }
id .

6.7. EXISTENCE OF INITIAL ALGEBRAS 101

Typing shows that both this equality of natural transformations and the one in µ-η-comp
have the most general typing $←̇$, so that we can combine the two rules into:

µ◦η = id = µ ◦ $η .

Exercise 6.27 Prove the rules $-promo and %-promo.

2

Exercise 6.28 Work out a definition for the functions treereduce and treeflatten,
corresponding to % and µ, for the data type constructor Tree from the end of Section
6.6.1. Derive an expression for maxval from Section 6.4.2 using treereduce.

2

Exercise 6.29 Use promotion rules and the result of the previous exercise to derive a
more efficient way for computing maxval◦treeflatten.

2

6.7 Existence of initial algebras

This section is informal; it contains no proofs. We are concerned with the question when
an initial F -algebra exists in Fun. If F is such that it can be viewed as a ‘signature’, we
can construct a so-called term algebra, by taking the signature as defining a tree grammar,
and the terms are then the productions of the grammar. Together they form the carrier
of the algebra. This is in fact how data types (defined with data) are implemented in
functional programming languages. Further, previously defined parametrised data types
may be applied in such data definitions.

We introduce the concept of a rational endofunctor over an ‘alphabet’ A of objects
and ‘object variables’ to capture this categorically. We use +̇ to denote the functor
operation F +̇G = (x :: Fx + Gx), and likewise ×̇ for the lifted version of ×. The rational
endofunctors over A are the class of functors built inductively from Id, K.a for a∈A, +̇,
×̇, and $ = (x :: µ(x⊕)) provided that x⊕ is a rational endofunctor over A∪{x}. The
rational endofunctors over the objects of Fun all have initial algebras; they can in fact all
be expressed as defined data types in Haskell or Gofer.

If laws are imposed that can be expressed equationally, all rational endofunctors have
lawful initial algebras. The laws force certain terms to be identified; for example, the
terms (x++y)++z are different trees than the terms x++(y++z) but must represent the
same value and so be lumped together if associativity is imposed. Mathematically this
can be expressed by creating equivalence classes of terms that can be converted into each

102 CHAPTER 6. ALGEBRAS

other by using the laws as two-way rewrite rules. To obtain again an algebra, now with
these equivalence classes as the elements of the carrier, the constructors are defined to
operate on the equivalence classes by: (i) take representatives (which are terms) from the
classes; (ii) apply the constructor on the terms giving a new term; (iii) take the equivalence
class to which it belongs. The algebra obtained is then the desired lawful initial algebra.

As long as we do not use equality tests, we can compute efficiently on representatives.
For equality testing it may help to convert to some ‘normal form’, but in general no
efficient method is known.

Chapter 7

Monads

For µ and η in Section 6.6.2 we had the following situation:

µ ∈ $←̇$$;

η ∈ $←̇Id ;

µ◦µ = µ ◦ $µ ;

µ◦η = id = µ ◦ $η .

This is an example of a monad.

7.1 Definition of monad

Definition 7.1 (Monad) A monad over a category C is: a triple (M,µ,η), in which M
is an endofunctor on C and µ ∈M←̇MM and η ∈M←̇Id are two natural transformations,
satisfying the monad laws :

µ◦µM = µ ◦ Mµ ∈M←̇MMM ;

µ◦ηM = idM = µ ◦ Mη ∈M←̇M .

2

Remark 7.2 The monad laws are examples of coherence conditions.

2

We show that every adjunction gives rise to a monad.

103

104 CHAPTER 7. MONADS

Theorem 7.3 Assume that (F,G), for functors F ∈ C ← D and G ∈ D ← C, forms
an adjunction with unit unit ∈ GF←̇Id and counit counit ∈ Id←̇FG. Define M = GF ,
µ = GcounitF and η = unit. Then (M,µ,η) is a monad over D.

Proof We first check the typing of µ, the check for η being trivial.

µ ∈M←̇MM

≡ { definitions of µ and M }
GcounitF ∈ GF←̇GFGF

⇐ { G and F are functors; naturality }
counit ∈ Id←̇FG .

In checking the monad laws, we omit the subscripts. First,

µ◦µ = µ ◦ Mµ

≡ { definitions of µ and M }
Gcounit ◦ Gcounit = Gcounit ◦ GFGcounit

≡ { G is a functor }
G(counit◦counit) = G(counit ◦ FGcounit)

⇐ { Leibniz }
counit◦counit = counit ◦ FGcounit

≡ { counit ∈ Id←̇FG }
true .

Next,

µ◦η = id

≡ { definitions of µ and η }
Gcounit ◦ unit = id

≡ { unit-inverse }
true .

Finally,

µ ◦ Mη = id

≡ { definitions of µ, M and η }

7.2. EXAMPLES OF MONADS 105

Gcounit ◦ GFunit = id

⇐ { G is a functor }
counit ◦ Funit = id

≡ { counit-inverse }
true .

2

We shall see later that the reverse is also true: every monad gives rise to an adjunction.

7.2 Examples of monads

Example 7.4 (The effect monad) A really purely functional language can have no
side-effects; in particular it cannot have the side-effect of producing output on the screen
or otherwise. In practice this is not very useful for a programming language. So, while
pretending that some function has typing x←y, if it can have an effect on the screen its
typing is perhaps more appropriately given as (x×E)←y, in which the elements of the
object E are ‘effects’ (on the screen). We need a way to combine subsequent effects into
a cumulative effect, so assume that we have some monad (E,�,e). For example, for the
teletype model, E could be lists of lines, � append (s�t = t++s), and e the empty list
of lines. Or E could be a set of screen-transforming functions, with � being functional
composition and e the identity transformation.

Define the functor M by M = (x :: x×E), and take µ =((a, u),v::(a, u�v)) and
η = (a :: (a, e)). We verify that (M,µ,η) is a monad.

µ◦µM

= { definitions of µ and M }
((a, u),t::(a, u�t))◦(((a, u), v),w::((a, u), v�w))

= { Lambda-lambda-fusion }
(((a, u),v),w::(a, u�(v�w)))

= { operation � of monoid is associative }
(((a, u),v),w::(a, (u�v)�w))

= { Lambda-lambda-fusion }
((a, s),w::(a, s�w)) ◦ (((a, u),v),w::((a, u�v), w))

= { product in Fun }
((a, s),w::(a, s�w)) ◦ ((a, u),v::(a, u�v)) × id

106 CHAPTER 7. MONADS

= { definitions of µ and M }
µ ◦ Mµ .

and

µ◦ηM

= { definitions of µ, η and M }
((a, u),v::(a, u�v))◦(a,u::((a, u), e))

= { Lambda-lambda-fusion }
(a,u::(a, u�e))

= { � has neutral element e }
(a,u::(a, u))

= { idM in Fun }
idM

= { idem }
(a,u::(a, u))

= { � has neutral element e }
(a, u :: (a, e�u))

= { Lambda-lambda-fusion }
((a, v),u::(a, v�u)) ◦ (a, u :: ((a, e), u))

= { product in Fun }
((a, v),u::(a, v�u)) ◦ (a :: (a, e))×id

= { definitions of µ, η and M }
µ◦η .

2

Remark 7.5 The term monad originates from this particular monoid-based example.

2

Example 7.6 (The exception monad) A way of modelling partial functions in Fun
is to assume the existence of an object (set or type) E whose elements are ‘exceptions’ or
‘error messages’. A possible choice is E = 1. A partial function to x from y can then be
modelled as a total function f ∈ x+E ← y.

7.3. KLEISLI COMPOSITION 107

Define the functor M (for ‘Maybe’) by M = (x :: x+E), and take µ = id 5 inr and
η = inl. Then (M,µ,η) is a monad. The verification of the monad laws is left as an
exercise to the reader.

2

Example 7.7 (The state-transformer monad) Think of S as being a set of states.
In a category with exponents each pair (×S,↼S) forms an adjunction. The unit is
pair = (u :: (v :: (u, v))) and the counit is eval = (f, x :: f.x). So we obtain a monad
(M,µ,η) by defining

M = (↼S)◦(×S) = (x :: (x×S)↼S) ,

µ = eval↼id = (h :: (f, x :: f.x)◦h) ,

η = pair = (u :: (v :: (u, v))) .

This monad is useful for modelling state-transforming programs, as in imperative pro-
gramming, in a functional world. The idea is suggested by the following schematic repre-
sentation of a program as a function:

prog input starting state = (output, new state)

Note that if the type of output is x and that of input is y, the type of prog is Mx← y.

2

7.3 Kleisli composition

Given two functions f ∈Mx← y and g ∈My ← z for any of these monads, we would like
to be able to keep up the pretense that they have typings x←y and y←z, respectively, and
compose them accordingly. The ‘extra’ part given by M should then be silently connected
in the composition in an appropriate way: for the effect monad by combining the effects;
for the exception monad by transferring the first exception raised, if any; for the state-
transformer monad by feeding the new state as starting state into the next ‘program’.
There is a generic construction for accomplishing this.

Definition 7.8 (Kleisli arrow) A Kleisli arrow for a monad (M,µ,η) over a category
C is: a C-arrow with typing Mx← y for some x, y∈C.

2

108 CHAPTER 7. MONADS

Definition 7.9 (Kleisli composition) Given two Kleisli arrows f ∈ Mx ← y and
g ∈My ← z for some monad (M,µ,η) (so M(dom.f) = cod.g), the Kleisli composition of
f and g, denoted by f�g, is defined as:

f�g = µ ◦ Mf ◦ g ∈Mx← z .

2

Lemma 7.10 Kleisli composition is associative, and has η as neutral element.

Proof We show in fact that the claim of the lemma is equivalent to the monad laws.
First, for all suitably typed Kleisli arrows f , g and h:

(f�g)�h = f�(g�h)

≡ { definition of � }
µ ◦ M(µ ◦ Mf ◦ g) ◦ h = µ ◦ Mf ◦ µ ◦ Mg ◦ h

≡ { M is a functor }
µ ◦ Mµ ◦ MMf ◦ Mg ◦ h = µ ◦ Mf ◦ µ ◦ Mg ◦ h

≡ { µ ∈M←̇MM }
µ ◦ Mµ ◦ MMf ◦ Mg ◦ h = µ ◦ µ ◦ MMf ◦ Mg ◦ h

≡ { ⇐: Leibniz; ⇒: take f,g,h := id,id,id }
µ ◦ Mµ = µ◦µ .

Next:

f�η = f ∧ η�f = f

≡ { definition of � }
µ ◦ Mf ◦ η = f ∧ µ ◦ Mη ◦ f = f

≡ { η ∈M←̇Id }
µ◦η◦f = f ∧ µ ◦ Mη ◦ f = f

≡ { ⇐: Leibniz; ⇒: take f := id }
µ◦η = id ∧ µ ◦ Mη = id .

2 This gives us all we need to construct a category.

Definition 7.11 (Kleisli category) The Kleisli category for a monad (M,µ,η) over
a base category C is the category K defined as follows:

7.3. KLEISLI COMPOSITION 109

Objects: Those of C.

Arrows: x
K←y consists of the Kleisli arrows Mx

C← y.

Composition: Kleisli composition.

Identities: η.

2

This gives us a direct simulation of, e.g., the category Par in terms of Fun by using
the exception monad, or of state-transforming ‘functions’, as in imperative programming
languages, in terms of Fun.

Example 7.12 Let us work out Kleisli composition for the state-transformer monad
in Fun.

f�g
= { definition of � }

µ ◦ Mf ◦ g

= { state-transformer monad }
eval↼id ◦ (f×id)↼id ◦ g

= { ↼id is a functor }
(eval ◦ f×id)↼id ◦ g

= { Lambda-abstraction (nested) }
(v :: (s :: (((eval ◦ f×id)↼id ◦ g).v).s))

= { Fun-◦-comp }
(v :: (s :: (((eval ◦ f×id)↼id).(g.v)).s))

= { definition of ↼ in Fun }
(v :: (s :: (eval ◦ f×id ◦ g.v).s))

= { Fun-◦-comp }
(v :: (s :: eval . ((f×id).((g.v).s))))

= { where-abstraction }
(v :: (s :: eval . ((f×id).(u, t)) where (u, t) = (g.v).s))

= { Cartesian product }
(v :: (s :: eval . (f.u, t) where (u, t) = (g.v).s))

= { definition of eval in Fun }

110 CHAPTER 7. MONADS

(v :: (s :: (f.u).t where (u, t) = (g.v).s)) .

Here u corresponds to an intermediate result, while t is an intermediate state. Kleisli
composition tells us how to fit everything properly together.

2

Theorem 7.13 For any monad there is an adjunction between the Kleisli category
and the base category for that monad.

Proof We use (M,µ,η) to name the components of the monad, and C and K for the base
and the Kleisli category. If we guess the correct adjungates, all other ingredients follow.
Since Kleisli arrows are in fact arrows of C, we have

f ∈ x K←− y ≡ f ∈Mx
C←− y .

Pattern matching against the typing rules

dge ∈ x K←− Fy ⇐ g ∈ Gx C←− y

f ∈ x K←− Fy ⇒ bfc ∈ Gx C←− y

leads us to suspect that the adjungates are both the identity mapping, and that the action
of F on objects is the identity, while that of G is the same as M . Then, by unit-def and
counit-def, the unit and counit are the identity arrow from the other category: unit = η
and counit = id. Theorem 4.20 tells us now how to construct the adjoints:

Fg = η◦g and Gf = f�id = µ ◦ Mf .

We verify the functor requirements for F :

Ff � Fg = F (f ◦g)

≡ { construction of F }
(η◦f)�(η◦g) = η◦f ◦g

≡ { definition of � }
µ ◦ M(η◦f) ◦ η ◦ g = η◦f ◦g

≡ { lhs: M is a functor; rhs: η ∈M←̇Id }
µ ◦ Mη ◦ Mf ◦ η ◦ g = Mf ◦ η ◦ g

⇐ { Leibniz }
µ ◦ Mη = id

≡ { monad laws }
true ,

7.3. KLEISLI COMPOSITION 111

and, of course, F id = η.
All that is needed to apply (the dual of) Theorem 4.17 is to verify a right-fusion rule:

dhe � Fg = dh◦ge
≡ { the adjungates are identity mappings; construction of F }

h�(η◦g) = h◦g

≡ { definition of � }
µ ◦ Mh ◦ η ◦ g = h◦g

≡ { η ∈M←̇Id }
µ◦η◦h◦g = h◦g

⇐ { Leibniz }
µ◦η = id

≡ { monad laws }
true .

2

Exercise 7.14 Give the monad for the adjunction between Rel and Set.

2

Exercise 7.15 Express Kleisli composition for the exception monad in a functional
programming language.

2

Exercise 7.16 Using the obvious correspondence between f ∈ x
Par←− y and f ∈

x+1
Set←− y, and the adjunction for the exception monad, work out an adjunction between

Par and Set.

2

Exercise 7.17 Given a category C with exponents, give the monad for the adjunc-
tion (R↼,R↼) between Cop and C (see Exercise 5.2 and note the warning there). Ex-
press Kleisli composition for this monad, the so-called continuation-passing monad, in
a functional programming language. (The idea is that a value v can be represented by

112 CHAPTER 7. MONADS

@v = (f :: f.v). Think of f as standing for the future computation to which v will
be subjected. If there is no continuation of the computation, we take f = id, obtaining
(@v).id = v. If v has type x, putting R for the result type of the continuation, f is required
to have typing R←x, and so @v (as a value) has type R↼(R↼x).)

2

Exercise 7.18 Given a monad over a category C and an adjunction (F,G) between C
and D, the following construction combines them into a monad over D: First, decompose
the monad (using Theorem 7.13) into an adjunction between K and C. Next, use Theorem
4.21 to compose this adjunction with (F,G), thus obtaining an adjunction between K and
D. Finally, use Theorem 7.3 to obtain a monad over D.

Work out the details, and phrase the result as a theorem. Note that the intermediate
construction involving K dissolves.

2

Exercise 7.19 Using the results of the previous exercise, combine the exception monad
with the adjunction (×S,↼S). Work out the details of Kleisli composition for the new
monad, which tells us how to handle exceptions for state-transforming functions.

2

Further Reading

M. Arbib, E. Manes (1975). Arrows, Structures and Functors: The Categorical Imperative.
Academic Press.

Andrea Asperti, Giuseppe Longo (1991). Categories, Types, and Structures. The MIT
Press.

Michael Barr, Charles Wells (1990). Category Theory for Computing Science. Prentice
Hall.

Richard Bird, Oege de Moor (1996). The Algebra of Programming. (To appear).

J. Lambek, P.J. Scott (1986). Introduction to Higher Order Categorical Logic. Cambridge
University Press.

S. Mac Lane (1971). Categories for the Working Mathematician. Graduate texts in
mathematics 5, Springer-Verlag.

Benjamin C. Pierce (1991). Basic Category Theory for Computing Scientists. The MIT
Press.

D.E. Rydeheard, R.M. Burstall (1988). Computational Category Theory. Prentice Hall.

R.F.C. Walters (1991). Categories and Computer Science. Cambridge University Press.

113

Index

bd(-)ce, 24
bd(-)ce-char, 24
([-]), 21, 81
([-])-char, 21, 23, 82
([-])-comp, 83
([-])-fusion, 23, 83
([-])-id, 23, 83
([-])-promo, 100
([-])-typing, 23, 82
([-])F , 81
([-])F -char, 81
([-])F -comp, 82
([-])F -fusion, 82
([-])F -id, 82
([-])F -typing, 81
◦, 9
◦-typing, 10
∃, 63

-
∪, 28
5 , 37
5 -+-fusion, 42
5 -char, 39, 42
5 -comp, 40, 42
5 -form, 40, 42
5 -fusion, 40, 42
5 -id, 40, 42
5 -typing, 39, 42
d-e, 53
d-e-def, 59
d-e-left-fusion, 54
d-e-right-fusion, 54
b-c, 53
b-c-def, 59
b-c-left-fusion, 54
b-c-right-fusion, 54

[α], 10
4 , 43
4 -char, 43
4 -comp, 43
4 -form, 43
4 -fusion, 43
4 -id, 43
4 -typing, 43
%, 97
%-η-comp, 100
%-$-fusion, 98
%-promo, 100
%-typing, 97
; (composition in opposite category) , 20
⇑, 37
� (Kleisli composition), 108
∈

— for arrows, 9
— for elementals, 72
— for objects, 9

← (typing of arrow), 9
← (typing of function), 4
C←, 10
↼, 65, 67
↼-def, 69
µF (carrier of initial algebra), 81
µ (flatten), 98
µ-η-comp, 100
µ-promo, 100
+, 37

bifunctor —, 41
+-def, 41, 42
t, 35
×

— on two categories, 20

114

INDEX 115

— on two objects, 43
bifunctor —, 43

×- 4 -fusion, 43
×-def, 43
$, 93
$-η-comp, 100
$-comp, 95
$-fusion, 95
$-promo, 100
¡, 33
!, 71

-!, 72
Fun-Leibniz, 7
0 (‘the’ initial object), 23
1 (‘the’ terminal object), 24

absorption laws, 36
adjoint, 52
adjunction, 52
adjungate, 53
Alg.F , 80
Alg.(F,L), 90
algebra, 78

carrier of an —, 78
initial —, 81
lawful —, 90
parametrised initial —, 93

Algebra-typing, 80
anamorphism bd(-)ce, 24
apply, 66
arrow, 9

— mapping, 25
— typing, 10
identity —, 10

base category, 11
bcc, 74
bicartesian closed category, 74
bifunctor, 29

— +, 41
— ×, 43
exponent — (↼), 67
Hom —, 51

binary functor, 29

C×D, 20
Cop , 19
cancellation properties, 50
car, 78
carrier, 78
cartesian closed category, 70
Cat, 28
catamorphism ([-]), 21, 81
category, 9

Cat, 28
Discr.S, 18
Fun, 16
Mon.M, 17
Nat, 18
POset.A, 15
Par, 17
Paths.G, 18
PreOset.A, 15
Rel, 17
Alg.(F,L), 90
Alg.F , 80
— of small categories, 28
base —, 11
bicartesian closed —, 74
cartesian closed —, 70
cocone —, 37
derived —, 11
discrete —, 18
functor —, 33
Kleisli —, 108
locally small —, 13
monomorphic —, 12
opposite — (Cop), 19
product —, 20
small —, 13

ccc, 70
co-, 20
cocone, 37

— category, 37
codomain (cod), 9
coherence condition, 12

116 INDEX

composition, 9
Kleisli —, 108

Compr-abstraction, 7
Compr-char, 7
constant functor, 27
continuation-passing monad, 111
contravariant functor, 28
coproduct, 38
co-unit, counit, 57
counit-def, 57
counit-inverse, 58
counit-typing, 58
covariant functor, 28
curry, 65

derived category, 11
Discr.S, 18
discrete category, 18
disjoint union, 44
domain (dom), 9
dual, 20
Dummy-renaming, 6

effect monad, 105
elemental in a ccc, 72
endofunctor, 29

free —, 97
rational —, 101

eval, 65
exception monad, 106
existential image

— functor (∃), 63
exl, 43
exl-leap, 43
exl-typing, 43
exponent, 65

— bifunctor (↼), 67
exr, 43
exr-leap, 43
exr-typing, 43
Extensionality, 5

F -algebra, 78
F -homomorphism, 79

F -law, 90
flatten, 98
free endofunctor, 97
free type, 97
Free-([-])-decomp, 98
full subcategory, 11
Fun, 16
Fun-◦-comp, 6
Fun-◦-def, 6
functor, 25

— category, 33
binary —, 29
constant —, 27
contravariant —, 28
covariant —, 28
existential image — (∃), 63
graph — (<), 63
identity —, 27
map —, 93

Galois connection, 49
graph functor (<), 63

Hom (bi)functor, 51
hom-set, 13
homomorphism, 79

identity
— arrow (id), 10
— functor (Id), 27

in, 81
in-typing, 81, 82
initial

— algebra, 81
— object, 21
parametrised — algebra, 93

initiality, 21
inl, 37
inl-leap, 42
inl-typing, 39, 42
inr, 37
inr-leap, 42
inr-typing, 39, 42
isomorphic objects, 13

INDEX 117

isomorphism, 13
natural —, 33
unique up to —, 14

join, 35
— semilattice, 35

K (Kleisli category), 108
K.a, 27
Kleisli

— arrow, 107
— category, 108
— composition, 108

L-lawful algebra, 90
lambda form, 4
Lambda-abstraction, 5
Lambda-char, 5
Lambda-comp, 5, 6
Lambda-lambda-fusion, 6
Lambda-left-fusion, 6
Lambda-right-fusion, 6
lattice, 36
law, 90
lawful algebra, 90
left adjoint, 53
Leibniz, 4
locally small category, 13
lower

— adjoint, 52
— adjungate, 53

Lower-adjoint-def, 60

map functor, 93
mapping

arrow —, 25
object —, 25

meet, 35
— semilattice, 35

Mon.M, 17
monad, 103

continuation-passing —, 111
effect —, 105
exception —, 106

state-transformer —, 107
monoid, 17, 77, 106
monomorphic category, 12
morphism, 10

name, 72
name, 73
name-fusion, 73
Nat, 18
natural

— isomorphism, 33
— transformation, 32

object, 9
— mapping, 25
initial —, 21
isomorphic —s, 13
terminal —, 24

-
op , 19

opposite category (Cop), 19

pair, 65
Par, 17
parametrised initial algebra, 93
partially ordered set, 15
Paths.G, 18
polytypic, 96
POset.A, 15
precategory, 11
pre-ordered set, 9, 15
PreOset.A, 15
product

— category, 20
— of two objects, 43

promotion, 99

<, 63
rational endofunctor, 101
reduce, 97
reduction, 97
Rel, 17
Rel-◦-comp, 7
Rel-◦-def, 7
Rel-abstraction, 7

118 INDEX

right adjoint, 53

Section-commute, 30
semilattice

join —, 35
meet —, 35, 36

small
— category, 13
category of — categories, 28
locally — category, 13

state-transformer monad, 107
subcategory, 10

full —, 11
suitably typed, 10
sum, 38

terminal object, 24
‘the’, 14
transformation, 10

natural —, 32
triple trick, 11
typing

— of arrows, 10
— of functions, 4

uncurry, 65
unique

— arrow, 21
— up to isomorphism, 14

unit, unit, 57
unit-counit-inverse, 59
unit-def, 57
unit-inverse, 58
unit-typing, 57
unname, 73
upper

— adjoint, 52
— adjungate, 53

Upper-adjoint-def, 60

witness, 9
— of x ∼= y, 13
— of x←y, 12

