A Neutral Suggestion

Lambert Meertens
CWI, Amsterdam, and Utrecht University

In the formalisms we attempt to create for program calculation a humble but important role is played by what has been variously called the unit, identity element or just identity of a (dyadic) operation. Richard Bird has used the notation id_\oplus in several papers, and Roland Backhouse has introduced the notation 1_\oplus for this in his unpublished Exploration paper. Recently I noticed that Richard has taken to writing 0_\oplus.

Many of the most important operations like \oplus and \otimes are more of an additive than of a multiplicative nature, and it is indeed perhaps a bit confusing to the innocent student if $1_\oplus = 0$. On the other hand, if the operation is multiplicative, like \times itself, and has a zero element, then $0_\times = 1$, as Richard's new convention would have it, is equally confusing.

An identity element is also called a neutral element. This suggest the notation ν_\oplus, from the Greek letter nu, the first letter of the word "neutral" (which is of Greek origin). It has the advantage that it is neutral with respect to the perceived nature of the operation. Then we have:

$$\begin{align*}
\nu_\oplus &= [] \\
\nu_\otimes &= () \\
\nu_0 &= id \\
\nu_\times &= 0 \\
\nu_\times &= 1 \\
\nu_{\times_\oplus} &= (\nu_\otimes)
\end{align*}$$

What about zeros (absorbing elements) of a dyadic operation? Turning to Greek we have the adjective anabrotic, which means "gobbling up" (derived from bibróskhein, to devour). The word is listed in Webster as meaning "corrosive". Unfortunately, unlike "neutral", this word is virtually unknown. Still, it shares its first letter with the common word "absorbing", and so we could use:

$$\begin{align*}
\alpha_\times &= 0 \\
\alpha_\wedge &= \text{false} \\
\alpha_{\times_\oplus} &= \nu_\otimes
\end{align*}$$