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Of the various approaches to program correctness, that of "Transformational
Programming" appears to be the most helpful i n constructing correct pro-
grams. T he essence of the method is to start with an obviously correct—but
possibly hopelessly inefficient—algorithm, and to improve i t by  successively
applying correctness-preserving transformations. T he  manipulations involved
are akin to those used in mathematics. T w o important impediments to this
method are the verbosity of algorithmic notations, making the process cumber-
some, and the semantic baroqueness of many primitives, making it hard to ver-
ify the validity of transformations. Computer  Science can profit here from the
lessons taught by the history of Mathematics. Another  major step, comparable
to one made long ago in Mathematics, is not to insist on the "executability" of
algorithmic descriptions. This makes it possible to treat initial high-level specifi-
cations in the same framework as the final programs. J us t  as Mathematics
evolved fr om  "Transformational Arithmetic", Transformational Programming
may come of age as "Algorithmics".

Mathematical reasoning does play an essential role in all
areas of  computer science which have developed or are
developing from an art to a science. Where such reason-
ing plays litt le or no role in an area of computer science,
that portion of  our discipline is st ill in its infancy and
needs the support of  mathematical thinking i f  i t  is  t o
mature. RALsToN and SHAW [25]

O. INTRODUCTION
The historical roots o f  Mathematics and Computing are intertwined. I f  we
ascertain the validity o f  a more efficient way o f doing computations—more
generally, of constructing a result—, we are performing mathematics.

Nowadays, we are happy to leave the actual computing to automata. O u r
task is to prescribe the process, by means of a program. Bu t  however great the
speed of our automaton, our need for results is greater, and an important part
of the Art  of Programming is finding efficient computational methods. Who-
ever thinks now that programming as it  is practised implies routinely giving
mathematical justifications—albeit informal—of the "shortcuts" employed, is
deceived. Th is would not be an issue if making an 'error in programming were
exceptional. The  current deplorable state of affairs can certainly be partially
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ascribed to the ineptitude and ignorance of many progranuners. B u t  this is
not the fu ll explanation. I t  is true that Computer Science has yielded a
number of results that make it  possible to reason mathematically about pro-
gramming, i.e., constructing a program that satisfies a given specification. Bu t
what is lacking is a manageable set of mathematical instruments to turn pro-
grAmming into an activity that is mathematical in  its methods. T o  make it
possible to discuss the—as yet hypothetical—discipline that would then be
practised, I  shall use the term "Algorithmics".

Mathematicians portrayed in  cartoons are invariably staring a t a  black-
board covered with squiggles. To  outsiders, mathematics =  formulae Insid -
ers know that this is only the surface. But, undeniably, mathematics has only
taken its high flight because of the development of algebraic notation, together
with concepts allowing algebraic identities.
I The work reported on here has been motivated by the conviction that major
parts of the activities of algorithm specification and construction should and
can be performed in much the same way as that in which mathematicians ply
their trade, and that we can profit in  this respect from studying the develop-
ment of Mathematics. Earlie r work, based on the same conviction, can be
found in GEURTS and MEERTENS [ 1 1] and MEERTENS [191. I n  brief, the idea is
that algorithms are developed by manipulating "algorithmic expressions". T o
be able to do this, we need a language that is capable of encompassing both
specifications and programs B u t ,  and this is important, this language should
not be the union of two different languages, one a specification language, and
the other a programming language. Rather, the language must be homogene-
ous: it  must be possible to view all its expressions as specifications. Some of
these expressions may, however, suggest a construction process more readily
than others. Alternatively, a ll expressions can be viewed as abstract algo-
rithms. Some of these algorithms may be so abstract, however, that they do
not suggest an implementation.

The language should be comparable to the language used by mathemati-
cians. I t s  notations give a convenient way to express concepts and thus facili-
tate reasoning, and also sustain more "mechanical" modes o f  transforming,
expressions ( in  the sense i n  which a  mathematician transforms X
2  —  y
i
mechanically into (x +y)(x —y)).

In the long run, the development of algorithmics should give us "high-level"
theorems, compared to which the few transformations we have now will look
almost trivial. Th is  is  only possible through the growing development o f
higher-level concepts and corresponding notations. T o  get an idea of what I
am dreaming of, compare the special product above with Cauchy's Integral
Theorem, or with the Burnside Lemma.

1. The term "algebraic" is not used here i n the technical modern sense (as i n "algebraic data
type"), but with the imprecise older meaning of "pertaining to Algebra" (as in "high-school Alge-
bra"). The word "algebra" stems from the Arabic at :
k i r ,  m e a n i n g  " t h e  
[ a r t  o f ]  
r e c o m b i n i n g " ,  
o r i -

ginally used for  bone setting. I n  the loose sense corresponding to that etymology, an identity like
sin (x +y) =  sin x cosy + cos x siny, in which the left-hand side is broken into constituents that are
recombined to form the right-hand side, is algebraic.
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The reader should carefully distinguish between
(i) t h e  conviction—if not belief—that it  is possible to create a  discipline of

"Algorithmics" that can be practised in the same style as Mathematics; in
particular, by creating algorithmic derivations, using algorithmic expres-
sions, with the same flavour as mathematical derivations and expressions;

(ii) the general framework around which the current investigations are built;
namely a synthesis of an "algebraic" approach to data and to transforma-
tions (of data);

(iii) the concepts selected as worthy of a special notation in the language; and
(iv) the concrete notations and notational conventions chosen.

The program of research implied in  (i) is closely related to the paradigm of
"Transformational Programming"; see further Section 2. I t  i s  becoming
increasingly clear (at least to me; I  do not claim credit for the re-invention of
the wheel) that a  nice algebraic structure is a  prerequisite f o r obtaining
interesting results. Otherwise, no general laws can be stated, and so each step
has to be proved afresh. ( I n  fact, this is a truism, for what is an algebraic
structure but a domain with operations, such that some general laws can be
formulated.) This is also a major thought underlying the work on an "algebra
of programs" of BACKUS [1]. A  difference with the approach described here
can be found in his motivation to overcome the "von Neumann bottleneck",
resulting in a determined attempt to eschew variables for values (data, objects)
even in their conventional mathematical roles, generally not considered harm-
ful. Mo re  important is that Backus's "FP" framework is restricted to function
schemata, and has (currently?) no place for an integrated algebraic view on
data. (Th e  approach described b y GUITAG, HORNING and WILuAms[12]
allows algebraic specifications of data types but has more the nature of graft-
ing them on FP than of integration.) I t  is clear, however, tha t the results
obtained in his approach are valuable for the approach taken here, and that
the correspondence merits further study. Integration of the data algebra with
the algebra o f  operations o n  da ta  can  b e  found i n  t h e  w o rk  b y
VON HENKE [13]. The  emphasis there is on concepts; no attention is paid to
notation.

The concepts and notations used here have grown out of my attempts to use
the notations suggested by BIRD [ 4]. I n  trying to develop some small exam-
ples, I  was struck by the similarity of many of the laws formulated in  [4] (and
some more I had to invent myself). Investigating this intriguing phenomenon,
I discovered the higher-level algebraic framework underlying various similar
laws. Th is  incited me to  introduce modifications to the notation, aimed at
exhibiting similarities in the laws. These modifications have gone through vari-
ous stages; for example, the symbols for sequence concatenation and set union
were initially chosen to be similar; now they have been made identical.

The specific notational conventions, o f all ideas presented here, should be
given the least weight. Th is is not to say that I feel that good conventions are
of secondary importance. I t  is obvious, however, that much work has still to
be done t o  strike the right balance between readability, terseness, and
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534776 + 1149269 = 1684045
540983 + 1143062 = 1684045
547190 + 1136855 = 1684045

1136855 + 547190 = 1684045
1143062 + 540983 = 1684045
1149269 + 534776 = 1684045

dependability (freedom of surprises). O n ly  through the use in  actual algo-
rithmic developments, by a variety of people, can progress be made.

Two examples are included. They were chosen as being the first two not
completely trivial problems that I tried to do in the present framework.

1. MATHEMATICS FOR SHORTCUTS IN COMPUTATION
In the Introduction, it was claimed that to ascertain the validity of a more effi-
cient way of doing computations is to perform mathematics. Th is is still true
if the reasoning is informal: the important thing is that it  could be formalized.
A beautiful example is the feat ascribed to  Gauss as a  young schoolboy.
Asked to  compute the sum of an arithmetic progression, he astounded his
teacher by turning in  the correct answer while the other pupils were st ill
labouring on their first additions. We  cannot, of course, know with certainty
(if the story is true at all) what his reasoning was. B u t  a plausible possibility
is the following. Assume, for concreteness, that the task was to sum the first
one-hundred terms o f  the arithmetic progression 534776, 534776+6207 =
540983, 540983+6207 =  547190, •  • • T h i n k  of all those numbers, written
in a  column, and the same numbers in  a  second column, but this time in
reverse order. So the first number in the second column is the number on the
last line of the first column, which is 534776 +99 x 6207 =  1149269. Next ,
add the numbers horizontally, giving a third column of one-hundred numbers.

S +  S  1 6 8 4 0 4 5 0 0

FIGURE 1. Reconstruction of young Gauss's mathematical reasoning

Now we see a phenomenon that is not hard to explain. I f  we go down by
one line, the number in the first column will increase by 6207. The number in
the second column will decrease by the same amount. Th e  sum of the two
numbers on each line will, therefore, remain constant. S o  the third column
will consist o f 100 copies of the same number, namely 534776+1149269 =
1684045. Now, call the sum of the numbers of the first column S. (Th is is the
number to be determined.) The second column must have the same sum, for it
contains the same numbers. The sum of the numbers in the third column is
then 2S. Th is sum is easy to compute: it  equals 100 x 1684045 =  168404500.
So S =  1.168404500 =  84202250. This "reconstruction" is rendered schemati-
cally in figure 1. I t  is noteworthy that the proof involves an intermediate con-
struction that, if  actually performed, would double the effort. The  method is
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easily generalized: i f  a is the first term of the progression, b is the increment
and n is the number of terms to be added, we find a +(n —1)1, fo r the last
term, and so S =  ln  (2a +(n —1)b). The  use of variables does not make the
reasoning any less informal, of course.

Now, this was just an example, but substantial parts of mathematics consist
of showing that two different construction methods will (or would) give the
same result. Often one of the two is the original formulation of a problem to
be solved, and the other one gives a construction that is much easier to  per-
form.

It is also interesting to dwell for some time on the question of when we con-
sider a mathematical problem solved. I n  mathematics we make no sharp dis-
tinction between the problem space and the solution space: both "problems"
and "solutions" may have the form o f  construction methods. T o  ca ll an
answer a "solution" requires in the first place that it have the form either of a
construction method, or of a problem for which we have, in  our mathematical
repertoire, a standard method for solving it. Th is requirement is not sufficient.
For example, a mathematician will respond to the problem of determining the
larger root of X
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a case that we know how to handle". I f  that were the meaning, any quadratic
equation would be its own solution. Ou t  of the possibly many candidates fo r
being solutions according to this requirement, mathematicians select one that
allows a concise, elegant, formulation. We  shall return to this issue in  a dis-
cussion of mathematical notation, in Section 3.

2. TRANSFORMATIONAL PROGRAMMING
The first published method for proving program correctness with mathematical
rigour is that of FLOYD [ E s s e n t i a l l y  the same method was suggested ear-
lier b y  NALTR [ 21 ]. Be t te r known is  the (semantically re lated) axiomatic
approach of HOARE [14]. A  technical objection to these methods is that they
require the formulation o f  "intermediate assertions", i.e., predicates whose
domain is the state space of an abstract machine-, in  more complicated cases,
these predicates may grow into veritable algorithms themselves, and the con-
ventional notations from predicate logic do not suffice to write  them down.
What makes program proving especially unsatisfactory is the following. Th e
activity of programming, even in its present undisciplined form, already imp li-
citly contains the essential ingredients for the construction o f  a  correctness
proof. These ingredients are present in the programmer's mind while develop-
ing the program. F o r  example, a programmer may be heard muttering: " R
must be at least I  here, otherwise this code would not be reached. S o  I  can
omit this test and ...". None of this, however, is recorded.
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Program proving requires now that a  unique implicit correctness proof be
made explicit after the fact. B u t  such a reconstruction is in  general much
harder than t o  invent some proof in  the first place. A lso ,  i t  would be
uneconomic to attempt to prove the correctness of a given program without
verifying first that it handles several test cases successfully. Bu t  it is unrealistic
to assume that programmers would go—unless forced—through the effort of
proving apparently "working" programs correct.

This objection does not apply to the constructive approach advocated by
DUKSTRA [8],[9] and WIRTH [27], [28]. (Th e  technical objection mentioned,
however, does.) Here, the construction of the program is a result of the con-
struction of the proof. Typical to the practical use of this approach, however,
is that the program-under-construction is a hybrid, in  which algorithmic nota-
tions are mixed with parts that are specified in natural language. Fo r example,
if we look over the shoulder of a programmer using this method of "stepwise
refinement" or "top-down programming", we might see first:

"ensure enough room for T in curbuf'

in one stage of development, and in the next stage

while "not enough room for T in curbuf' do
"ensure nxtbuf n i l " ;
curbuf, nxtbuf n x t b u f ,  nxtbufsucc

endwhile

Although a big leap forward, the imprecision of the way the undeveloped parts
are specified is unsatisfactory. I n  the example, it  is probably the case that the
task to "ensure enough room for T  in curbuf' can be solved by emptying
curbuf, a n d  t h e  ta sk t o  "ensure nxtbu f  n i l "  b y  t h e  assignment

aubuf. B u t  this would, in  a ll likelihood, be incorrect, because of
certain invariants to be maintained. I t  is, in  principle, possible to attain the
desired degree of precision, but the method itself does not incite the program-
mer to do so.

The same problem is  not present in  the method o f  "Transformational
Programming"—at least, in  its ideal form. I n  its essence, Transformational
Programming is simple: start with an evidently correct—but possibly hope-
lessly inefficient—program, and bring th is into an  acceptable fo rm by a
sequence o f  "correctness-preserving" transformations. I n  contrast t o
mathematics, where the symmetrical relation "  " ,  i.e., " is equal to", plays a
central role, the central relation here is the asymmetric "may be replaced by",
1denoted by "  B u t  at all stages, one has a correct program, with a pre-
cisely defined meaning. Th is  way o f  manipulating a  sequence o f  symbols

1. A  simple example of this asymmetry is in the development of the task T  =  "Given a prime
number p, find a natural number n such that n
2 + n + p  i s  
c o m p o s i t e " .  
T h e  
d e v e l o p m e n
t  
s t e p  
t h a t

comes to mind ( for  a programmer) i s to replace T  by T '  =  " F i nd the smallest such natural
number". A  mathematician would probably replace the task by  T "  =  "Take n =  p". T hen

and T T " .  But  T'  and T"  are not interchangeable; for  example, i f p =  2, then T'  finds
n =  1, and in fact, they do not produce the same value of n for  any value of p.
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brings us closer to the ideal of "Algorithmics" aimed at. This is expressed in
the following quote from a paper by BIRD [3], describing a new technique of
program transformation: "The manipulations described in  the present paper
mirror very closely the style of derivation of mathematical formulas." There
are several impediments to the application of this method. I n  the first place,
the more usual algorithmic notations in  programming languages suffer from
verbosity. Th is makes manipulating an algorithmic description a cumbersome
and tiring process. T o  quote [3] again: "As the length of the derivations tes-
tify, we still lack a convenient shorthand with which to describe programs."
Furthermore, most programming languages have unnecessarily baroque seman-
tics. I n  general, transformations are applicable only under certain conditions;
checking these applicability conditions is all too often far from simple. The
asymmetry of "  m a k e s  these transformations also less general than is usual
in mathematics. The requirement that the initial form be a program already
(and "evidently correct", a t  that), is  not always trivial to  satisfy. I n  this
respect, the method is a step backwards, compared to Dijkstra's and Wirth's
approach. Finally, there is a very important issue: which are the correctness-
preserving transformations? Ca n  we give a "catalogue" of transformations?
Before going deeper into that question, it is instructive to give an example.

Take the following problem. We  want to find the oldest inhabitant of the
Netherlands (disregarding the problem o f  there being two o r more such
creatures). The data needed to find this out are kept by the Dutch municipali-
ties. Every inhabitant is registered at exactly one municipality. I t  is (theoreti-
cally) possible to lump all municipal registrations together into one gigantic
data base, and then to scan this data base for the oldest person registered, as
expressed in figure 2a in "pidgin ALGOL".

input din, mr;
gdb := 0;
for In e dm do

gdb : = gdb m r [ m ]
endfor;
aoi := o o ;
for i e gdb do

if  i-age >  aoi then
ol, ao i  : =  I ,  i -  age

endif
endfor;
output Oi.

FIGURE 2a• Program A for determining the oldest inhabitant

A different possibility is to determine the oldest inhabitant for each munici-
pality first. The oldest person in the set Of local Methuselahs thus obtained is
the person sought. Th is is expressed in figure 2b.

Replacing (possibly within another program) program A by program B is
then a  transformation. Were  there no inhabitants o f the Netherlands, both
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input dm, mr;
sim :=  0;
for m e dm do

aim ;=  —co;
for Ie  mr[m] do

if  i-age >  aim then
1m, aim := i
,  i -
a g e

endif
endfor;

:=  s/m U {im}
endfor;
aoi —  0
0 ;for i E SIM do

if  i-age >  aoi then
oi, aoi := i, i-age

endif
endfor;
output oi.

FIGURE 2b. P r o p
-
a m  B  
f o r  
d e t e r m
i n i n g  
t h
e  
o l d
e s t  
i n h
a b i
t a n
t

programs would have an undefined result. This is generally not seen as affect-
ing the applicability of the transformation A B .  B u t  if—assuming at least
one inhabitant in the country—some municipality had no registered inhabit-
ants, then program A would have a defined result, whereas the outcome of B
might be undefined. (The problem is that in the line "sim : s i m  U {/m}"  the
variable im has no defined value if the empty municipality is the first one to be
selected by "for m e dm do".) So  the transformation A B  has the following
applicability condition:

VM E dm: mr[m] 0 ) V  V M E dm: mr[m] 0 ) .

We happen to know that for the given application this condition is satisfied,
but it  is easy to think of applications of this transformation where it  is less
obvious and has to be checked. Overlooking such conditions that are only
exceptionally not satisfied is a  typical source o f programming errors. No te
that a human interpreter of the original descriptions in natural language would
almost certainly handle exceptional cases reasonably.

How large must a catalogue of transformations be before it is reasonable to
expect it to contain this transformation? Obviously, unmanageably large. I t  is
possible to  have a  manageable catalogue, and to  require proofs o f  other
transformations that are not in the catalogue. Bu t  how do you prove such a
transformation? Hopefully, again with transformations, otherwise the practi-
tioner of Transformational Programming needs two proof techniques instead
of one. But what transformations will gradually transform A into B?
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As another example, consider young Gauss's "transformation". Th is may be
expressed as

input a, b, n;
sum, t  =  0, a;
for i from 1 to n do input a, b, n;

output (n /  2) x (2x a +(n —1)x to)sum, t  := sum+ t, I  + b
endfor;
output sum

Again, this is an unlikely transformation to be catalogued. No w compare this
to the mathematical derivation:

z =12  fa +(i —1)0 =  [ i  (a +(i —1)b) +  ( a  +(z' —1)611 ==1 i = 1

fa +(i —1)b) +  { a  +(n — i)b }1= 1 ( 2 a  +(n —1)b) =i =1 i  =1 i  =1

In 2a +(n —
1 ) b )

It is usual in presenting such derivations to omit obvious intermediate steps,
and this one is no exception. F o r  example, the first step has the pattern
S =  +(S +S); a  complete derivation wou ld  have S  =  IS  =  (4•2)S =

(2S) =  4(S+S).  Nevertheless, the only step that possibly requires looking
twice to check it is the substitution of n +1— i for one of the two summation
variables

In what follows, an attempt is made to sketch an "algorithmic language" to
overcome the drawbacks mentioned. To  give a taste of what will be presented
there, here, in  that language, is the "transformation" A  B  o f  the oldest-
inhabitant problem:

t
a
g
,
/  
+
/
m
r  
*
d
m 
= 
a
g
e
/  
(
I  
a
g
e
/  
m
r
)  
*  
d
m

Comparing this with figure 2a and 2b should explain my complaint about the
verbosity o f algorithmic languages. A n d  yet that pidgin is a terse language
when compared to those mountains of human achievement, from FORTRAN to
Ada. N o t e  also the reinstatement o f  the symmetric "  = ", which will be
explained in Section 6.

The emphasis on the similarity with Mathematics creates a clear difference
with much of the work in the area of Transformational Programming, such as
that of the Munich CIP group (BAtTER et aL [2]). I n  that work, the emphasis
is on creating a tool for mechanical aid in, and the verification of, program
development. The  prerequisite of mechanical verifiability puts its stamp on a
language. Note that the language of Mathematics has not been developed with
any regard to mechanical verifiability; the only important factor has been the
sustenance offered in  reasoning and in  manipulation o f  formulae. I n  this
respect, the approach of, e.g., BIRD [3] is much more closely related, even if its
framework is different. To  quote that paper once more: "[...] we did not start
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out, as no mathematician ever does, with the preconception that such deriva-
tions should be described with a view to immediate mechanization; such a
view would severely limit the many ways in which an algorithm can be simpli-
fied and polished." The main point is, perhaps, that in my view the language
should be "open", whereas mechanical verifiability requires a closed and frozen
language. To  prevent misunderstanding of my position, I  want to stress that
sympathize with the thesis that systems fo r the complete verification o f  a
development are extremely valuable, and that research and development in
that area should be vigorously pursued. I  hope—and, in  more optimistic
moments, expect—that the different line of approach followed here will, in the
long run, contribute to better methods for program design and development,
and to better systems for mechanical assistance in these tasks.

3. THE ROLE OF NOTATION IN MATHEMATICS
When Cardan breached his pledge of secrecy to Tartaglia and published the
first general method for solving cubic equations in his Ars Magna (1545), he
described the solution of the case X
3 -
1 -  p x  q  
a s  
f o l l o w s  
[ m y  
t r a n s l a t i
o n ] :

RULE
Raise the third part  of  the coefficient of  the unknown to the cube, to
which you add the square of half the coefficient of the equation, & take
the root of the sum, namely the square one, and this you will copy, and
to one [copy] you add the holf of the coefficient that you have just multi-
plied by itself, f rom another [copy] you subtract the same half, and you
will have the Binomium with its Apotome, next, when the cube root of
the Apotome is subtracted f rom the cube root of  its Binomium, the
remainder that is left from this, is the determined value of the unknown.

This description strikes us as clumsy, but at the time, no better method was
available. Th is "clumsiness" stood directly in  the way of mathematical pro-
gress. Take, in  contrast, a  description o f  the same solution in  present-day
notation:

SOLUTION OF THE EQUATION X
3 =  q .
Let c = ,  where d = [
1 2  
1  - 1  
3
+  [
3
- )  2  
a n d  
l e t  
b  
=  
c  
+  
a n
d  
a  
=  
c  
—

3 2  2  2
Then x =  —  fit
- i s  a  
r o o t  
o f  
t h e  
e q u a t
i o n .

What are the advantages o f this notation? Obviously, i t  allows for a more
concise description. Also, in Cardan's description, there might be some doubt
whether "the half of the coefficient" itself, or its square, has to be added to
and subtracted from the copies. I n  present-day notation, there is (in this case)
no room fo r this doubt, and in  general, parentheses wil l  disambiguate (i f
necessary) anything. Both of these advantages, however, axe insignificant com-
pared to what I  see as the major advantage of the "algebraic" notation used
now, namely that it  is possible to manipulate the formula for x algebraically.
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So we see readily that
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we see that indeed x
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needed to verify the solution. A  similar verification is impossible for the for-
mulation in  natural language. I f ,  at the time, our notations had been avail-
able, then the solution o f  the cubic equation would not have had such a
romantic history. A  disadvantage o f  modem notation is its suggestion o f
abstruseness, o f being an esoteric code. Undeniably, people can only profit
substantially from the major advantage mentioned above if they not only know
the meaning of the diverse squiggles, but are intimately familiar with them,
which takes time and practice. I  want to emphasize, however, that a descrip-
tion in natural language, as the one given by Cardan, is utter gibberish too to
the mathematically uneducated reader. Th is point would have been obvious,
had I chosen to use the "most literal" translation of the words in the Latin ori-
ginal, instead of present-day terminology. The  rule would then have started:
"Bring the third part of the number of things to the cube, ...".

In Section 11 stated that a requirement for "solutions" is that their formula-
tion be "elegant". Th is issue is connected to that of notation. I t  is matter of
context, taste, conventions and tacit agreement between mathematicians, what
constitutes "elegance". I t  is hard for us to understand why the ancient Egyp-
tians were so keen on expressing fractions in terms of quantities a s  in

41 _  1  _
4
_  1  4
_  
1  
1  
_  
1  
1  
_
4
_  
1  
1

45 —  l o  —
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For some reason, forms like 11 did not belong to their solution space, but
quantities like -
9
1
- d i d .  
I f  
w e  
w e r
e  
t
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t h
a t
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s
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the largest root o f  the equation x
5  + p x
3  +  q x
2  + r x + s  
=  
0 ,  
b e l o n g
s  
t o  
o u r

solution space, then suddenly the general quintic equation becomes solvable
"algebraically". There is a reason for mathematicians not to take this way out.
The squiggle approach is helpful only if  mathematical practitioners can acquire
sufficient familiarity with the squiggles, which imposes a limit on their number.
Given this limitation, some criterion must determine which concepts are the
winners in  the contention for a notational embodiment. Two  aspects deter-
mine the viability of a proposed notation. One is the importance of the con-
cept: is it  just applicable in some particular context, or does it come up again
and again? The other is the amenability to algebraic manipulation: are there
simple powerful algebraic identities expressible in terms of the notation con-
sidered? Th e  Q-notation suggested above wil l  be found lacking in  both
respects.
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4. NOTATIONAL CONVENTIONS FOR FUNCTIONS AND OPERATIONS
A program operates on input and produces output. Whether that input be a
"value", a data base, or a stream of requests, say, is immaterial to this abstract
viewpoint. Similarly, it is immaterial if the output consists of values, modifica-
tions to a data base, or a stream of responses. I n  the usual approaches to pro-
gramming languages, the distinction is, unfortunately, paramount in the con-
crete embodiment of the program. This obscures the deeper similarities in
possible program development steps. So the first thing required is a uniform
notation, reflecting a unified conceptual framework. The notation used here is
that of a "function" operating on an "object". The result is a style that may
be called "functional". However, I feel that the cherished distinction between
a functional (or "applicative") style of programming, and a procedural (or
"imperative") one, is not as deep as supporters/ opponents of one or the other
style would make i t appear. A  much deeper difference is the distinction
between viewing an algorithmic expression, be it denoted as a function defini-
tion or as a while program, as an operational prescription for an automaton, or
as an abstract specification determining a relationship between input and out-
put. The  price paid for taking the latter viewpoint is that this abstraction may
make it hard to express some transformations that derive their relevance from
performance characteristics of certain types of architecture. Such a transfor-
mation makes sense only i f we commit ourselves to a decision on how the
abstract specification is mapped to a process on a machine—although in due
time several natural "canonical" mappings for various architectures may
emerge. Moreover, if the inverse mapping is not defined, a low-level transfor-
mation may lack a high-level counterpart. (This problem occurs in high-level
programming languages as well: try to express in Pascal, say, the low-level
optirnintion that the storage for a global array variable that will no longer be
referenced can be used for other purposes.) Since computing resources will
always remain scarce—relative to our unsatiable need for processing—this is
not a  minor inconvenience. Some consolation can be found in the thought
that many of these transformations are well understood and can be automated
relatively well (e.g., recursion elimination; tabulation techniques; low-level data
structure choice), possibly sustained by "implementation hints" added to the
program text.

The main ingredients of our language will be "objects", (monadic, or unary)
"functions", and (dyadic, or binary) "operations". Functions always take an
object as argument, and return an object. Operations are written in infix nota-
tion, and may take an object, a function or an operation as left operand and
an object as right operand. They return an object. Function application is
(notationally) not treated as an operation (although, from a  mathematical
point of view, it is one, of course). I t  is simply denoted by juxtaposition, usu-
ally leaving some white space for legibility or to delineate the boundary
between the lexical units involved. So, if f  is a function and x is an object, fx
stands for the application of f  to x. I f  g is then applied to fx, this may be
denoted by g fx. Function composition, usually written in mathematics in the
form gof, is also denoted by juxtaposition, without intervening operation.
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This makes expressions such as h g f  and g fx ambiguous. Bu t  semantically,
there is no ambiguity: the expressions specify the same, since (h g )f  denotes
the same function as h  (g f), and (g  f )x  the same object as g  (fx). (Th e
reader should note that these identities are algebraic, and about the simplest
ones possible.) I n  fact, the wish to  omit as many parentheses as possible
without depending on priority rules motivated this unconventional convention.
In particular, it removes the somewhat annoying disparity between an identity
expressed on the object level, as in

f  (g(x)) =  g '( f  (x)),

and its expression as functional identity, as in

fog =  g'of .

A drawback is that this convention does not indicate how to denote the appli-
cation of a functional (higher-order function) to a function argument; in  the
general case, a  function may be so generic that i t  might both be composed
with and be applied to another function. A n  example is the identity function;
in that particular case, the distinction is semantically unimportant, but fo r
other functions it is not. So some operation will be needed to denote function
application in the general case. (Actually, it  turns out possible to denote func-
tion application with the operations provided in  the sequel, but only in  a
clumsy way.)

If x  is an operation, then x x y denotes the application of x  to x and y. I n
general, parentheses are needed to  distinguish, e.g., f  (xx y) from ( f x ) x  ;7.
The interpretation of f  xxy in  the absence of parentheses is f  (xx y). I n  a
formula x XyXz, the absence of parentheses implies, likewise, the interpreta-
tion x X(yXz). Th is convention is similar to the right-to-left parsing conven-
tion of APL.

Note. I n  derivations, chains may occur like e 1 =  e
2  =  •  •  •  
T h e  c o n n e c -

tive signs ("  = " etc.) in  these chains are meta-signs, and are not to be con-
fused with  operations (in  particular, the  operation =  , which takes two
operands and delivers a truth value). They will always give precedence to the
operations in the expressions e
i
.

A further reduction of the number of parentheses is made possible by the
following convention. A n  expression of the form "a  ; 13" stands for " (a) /3".
The—purely syntactic—operator " ; "  takes lower precedence than the seman-
tic operations. I f  several " ;"s occur, they group from left to right: " a  ; /3 y "
stands for "((a) 19) y"

An important convention is the following: I f  x  is some operation, and x is
an acceptable left operand for x  , then the notation "x x"  stands for the func-
tion Ay: x x  y. No te  that x  x y is now syntactically, but not semantically,
ambiguous, since (x x) y denotes the same object as x X y. I n  the notation
f x  x the meaning is always f  (xx), so it denotes a functional composition. I f
the meaning (t x )x  is intended, parentheses are required (or, equivalently, the
notation fx;  x can be used). Th is convention makes it also possible to define
the meaning of an operation x in  the following form:
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Let x be T h e n  x x denotes the function F
xThe meaning of x x y is then that of F

x y .Now, f o r  example, +  V
–  i s  
d e fi n e d :  
i t s  
m e a n i
n g  
i s  
I
+  
;  
=

Xy: I  +y; 0 =  X x I  + V7x.
Finally, if  x  is an operation that takes two objects as operands, and f  and g

are functions, then f xg  stand for the function X x ( f x ;  xg  x).
The aim of these conventions is only to increase the usability of the formal

language. The proof is therefore in the practical use. I t  will take time, and the
experience of a variety of practitioners of Algorithmics, to find the most help-
ful notational conventions. No te  that the current mathematical practice o f
using the sign " + "  for addition and juxtaposition for multiplication, and to
give multiplication precedence, has taken i t s  t ime t o  become universally
accepted—after the general idea of using an algebraic notation was already
commonly accepted. A lso ,  i f  the language is as open as the language o f
Mathematics, i t  is possible to adopt other conventions locally when this is
more helpful in dealing with the problem at hand.

To define functions and operations concisely, we use, in addition to lambda
forms, the convention of BURSTALL and DARLINGTON [6]. F o r  example, the
following lines define the Fibonacci function:

Fib° 0 ;
Fib 1 1 ;
Fib n +2 F i b  n; + Fib n +1.

The variables on the left-hand side of "  "  are dummy variables for which
values are to be substituted such that the left-hand side matches the actual
function application; then the right-hand side, after applying the same substi-
tutions, is equal to the function application and may replace it  in a formula.
This step is known as "Unfold"; the reverse operation as "Fold". A  canonical
evaluation can be defined by systematically unfolding, thus providing an
operational semantics. BURSTALL and DARLINGTON show that an amazingly
large number o f  transformations can  b e  expressed a s a  sequence o f
Unfold/Fold steps. A s  long as i s  interpreted as equality, this is generally
safe. I f  i s  interpreted in terms of the canonical evaluation, then a Fold
step may introduce non-termination where it was not present.

5. STRUCTURES
In giving an algorithmic description, we are generally not only concerned with
elementary values, like  numbers and characters. These are combined into
larger objects with a certain structure. Fo r example, in  some application we
may want to compute on polynomials, represented as a  sequence of coeffi-
cients, or with a file of debtors. The usual algorithmic approach to such aggre-
gate structures has grown from the aim of obtaining an efficient mapping to
the architecture of concrete computational automata. F o r  the purposes o f
Algorithmics, we need a more algebraic approach. Th e  domain o f  data on
which a program operates usually has some algebraic structure. Th is  fact
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underlies the work in  the field o f  algebraic data types. However, since the
motivation there is not to obtain a simple algebra, but to achieve representation
abstraction, the types as specified by way of example in the papers in this field
are not usually algebraically (in the allebr sense) manageable. I f  they are, as
for example the type o f  natural numbers, o r the type o f  McCarthy's S-
expressions, the structure o f  algorithms operating on objects of these types
tend to reflect the structure of the objects. I n  algebraic terms, the function
relating the input to the output is a homomorphism. This observation under-
lies the work by VON HENKE [13]. (The  work by JACKSON [15 ]---hest known
outside of Academia—can be viewed as based on the same idea, although the
term "homomorphism" is not used there.)

Let us start with algebraic structures that are about as simple as possible.
Using the notation of MCCARTHY [17], we have

SD D  S D  X SD •

This defines a domain of "D-structures", each of which is either an element of
the (given) domain D (e.g., numbers, or sequences of characters), or is com-
posed of two other D-structures. T o  practitioners of computer science, it  is
virtually impossible to think of these structures, McCarthy's "S-expressions",
without a mental picture of an implementation with car and cdr fields from
which arrows emerge. T o  mathematicians, however, this domain is simply a
free groupoid, about the poorest (i.e., in algebraic laws) possible algebra, and
computer-scientists will have a hard time explaining to them how arrows enter
(or emerge from) their mental picture.

We need some notation for constructing such structures. We  construct a D-
structure by using the function "^"  and the operation " +" .  I f  x is an element
of D, then ^x will stand for the corresponding element of SD. The monadic
function ^ is, of course, an injection. I t  is a semantically rather uninteresting
function, and it could be left unwritten in many cases without ambiguity. As a
compromise, the application of ^ to  x is written as i f  this is typographically
reasonable. I f  s and t are D-structures, then s +t  denotes the D-structure com-
posed of s and t. The  set SD consists then of all structures that can be built
from D by a finite number of applications of ^ and + .  ( I t  is also useful to
allow an infinite number of applications; this possibility will be ignored here to
keep the treatment simple.)

The diligent reader will have noticed an important difference between the
structures defined now, and the S-expressions as used for Lisp. The value nil
is missing. We  can introduce it by writing (using "0" instead of "nil"):

SD D  { 0 }  ED SD X SD.

Algebraically, however, this makes little difference; the domain obtained is iso-
morphic with SD {0 } , i.e., the one obtained by the previous construction if  D
is first augmented with  an element O. I t  becomes more interesting i f  we
impose an algebraic law: s + 0 =  0+3 =  s. This gives about the poorest-but-
one possible algebra. N o w  we have a  more dramatic deviation from the
S-expressions, for it is certainly not the case that, e.g., cons (s, n il) s .



304  L .  Meertens

The previous law is known as the identio
, l a w ,  a n d  a n  
e l e m e n t  
0  
s a t i s f y i n g

this law is called an "identity (element)". Note that an identity can always be
added, but that there is at most one identity in a groupoid.

We can go further and consider structures on which other algebraic laws are
imposed. O f  particular interest are the laws o f  associativity: s  +(t  +u) =
(s +t )+u ;  of commutativi0
,
: s  +  t  
=  t  
+ s ;  
a n d  
fi n a l l y  
o f  
i d e m p o
t e n c y :  
s  
+
s  
=

s. The interesting thing now is that the structures obtained correspond to fam-
iliar data structures: we get, successively, sequences, bags,' and sets. Fo r sets, ^
is the function A x: {x} and +  is the set union U .  The identity law gives us
the empty sequence, bag or set. Th is relationship between familiar algebraic
laws and familia r data structures has been pointed o u t  b y  Boom [5].
Sequences correspond to  what are known in  algebra as monoids (o r semi-
groups if there is no identity).

The usual way of characterizing sequences algebraically uses an operation
"append (or prepend) an element". The choice between using "append" and
"prepend" as the primitive operation introduces an asymmetry. The introduc-
tion of sequences by imposing associativity is quite symmetric. Th is  way of
introduction gives a uniform approach, exhibiting the essential and deep simi-
larity between binary labelled trees (the S-expressions), sequences, bags and
sets. Th is can be used to express laws that apply to all these kinds of struc-
tures. To  stress the similarity, +  will be used in all cases; a disadvantage is
that the type has then (at least in  some cases) to be clear from the context.
The notation SD will likewise be used for all domains of such structures, and
not be reserved for the free S-expressions.

To prove laws, we can use the following lemma:

INDUCTION LEMMA. Let f  and g be two functions defined on SD, satisfting, for
all xe  D and s and le  SD:
(i) f 0  =  gO,
(ii) f  =  g a n d
(iii) f s  + t  =  gs +t, using the induction hypothesis

thatfs = g s a n d f t  g
Then f  = g.

PROOF. B y induction on the complexity of the function argument.

If SD has no identity, then part (i) can of course be omitted. I t  is sometimes
easier, i n  particular f o r sequences, t o  replace ( i i )  and (i i i )  together b y
f s + ;  =  g s+. i,  which gives the traditional induction on the length. Th e
advantage of the lemma as stated here is that it allows many laws to be proved
independently of the algebraic richness of SD.

To express interesting laws we first need some general operations, that also
play an important role in Backus's FP. The notation used here for "applied-
to-all" has been taken from [4]; the APL notation is used for "inserted-in".

I. Bags (or  m u l t i
-
s e t s ) ,  
u n d e r r e p
r e s e n t e d  
i n  
m a t h
e m a t
i c s ,  
a
r
e  
u b i
q u i
t o u
s  
i
n  
c o
m p
u t
e r  
s
c i
e
n
c
e .

They differ from sequences in that the elements have no order, and from sets in that an element
can occur more than once.



Algorithm ics 305

Applied-to-all. L e t  f  be a function in D 1 D 2 .  Then f *  stands
for the function in SD, -3 SD
2 s a t i s f y i n g(i) 0  =  0 ,
(ii) =  ^ f  x , and
(iii) f *  s +t  =  f *  s; + f .  t

So f  is applied to each "member" (elementary component) of its argument,
and the result is a structure of the function values obtained. For example, if  s
is the set of numbers 0 through 9, then 1+ •.s is the set 1 through 10. Fo r p
to be well defined, it  is required that +  on SD, have at least the same alge-
braic richness as its counterpart on SD,: if  +  on SD. is associative, then so is
+ on SD
2
, 
a n d  
s o  
o n
.  
I
f  
S
D
,  
h
a
s  
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o  
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e
n t
i t
y ,  
w
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n  
s
i
m
p
l
y  
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m
i
t  
p
a
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t  
(
i
)  
f
r
o
m

the definition. A  similar remark can be made in most cases in the sequel: the
laws are presented for structures with identity, but can easily be amended to
cover identity-less structures.

Inserted-in. L e t  x  be an operation in  D XD D .  Then x /
stands for the function in SD - -
÷ D  s a t i s f y i n g(i) i f  x  has an identity e (so that exx x x e  =  x), then

x /  0 =  e ,
(ii) x /  =  x , and
(iii) x / s + t  =  x / s ;  x x / t .

So i f  x  stands fo r the conventional multiplication operation, r i
x E s  x  i s  amore familiar notation for x/s. However, inserting an operator x  in a struc-
ture s is only meaningful if  x  has at least the same algebraic richness as the
operation +  used to construct the structure. This means that if x is multipli-
cation, then the notation x / s  is not allowed if  s is a set, for (in general)

x. Otherwise, we  would obtain contradictions like 2  =  x /  2 =
X/  2 + 2 =  X /  2; x x /  2 =  2  X 2 =  4. (Alternatively, we could define the
insertion as an indeterminate expression, depending on the choice of represen-
tatives from the congruence classes induced by the laws of + .)

The classes of functions p  and x /  are special cases of the homomorphisms
definable on SD. B y  combining them in the form x / p ,  all such homomor-
pbisms can be expressed. This can be stated in the form of another lemma:
HOMOMORPHISM L a w .  Let the function ge S D
- 0
D '  b e  a  
h o m o m o l p h i s m ,  
i . e . ,

let there exist a function feD—> D' and an operation X E D' XD' D '  with
identity x /  0, satisfting, for all xe D and s and t E SD:
(i) g  0 =  x/O,
(II) g  =  fx,
(iii) g s  + t  =  gs;XgL
Then g  =  x / p .

PROOF. B y  the induction lemma. Fo r part (i), we have g0 x /  0 =  x / p a
For part (ii), g =  f x  =  x / ^ f x  =  F o r  part b y  the induction
hypothesis g  s =  x / p s  and g t  =  x / p t .  Th e n  g s + t  =  g s ;  xg t =
x/ f *s;  X X /p t  =  x / p s  +t.
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Note that this gives an algebraic formulation of the "Divide and Rule" para-
digm. Fo r part (iii) tells us that to rule a structure s that is not atomic (i.e., to
compute gs), we can divide s in two parts, rule these, and combine the results
appropriately.

The operations • and /  give rise to three important new laws.
LAW 1. Let le  D2 -
> D 3  a n d  
g E D
1  
D 2 .  
T h e
n  
(
f  
•  
=  
f
-  
g
•

LAW 2. Let le  D —› D', D  XD -4 D and X / E D ' X D
/
— > D '  s a t i s f y

f x x  y =  f x ; X ' f y  and f X / 0  =  X'/O
Then f  X/ =  X ' l

LAW 3. Let xe DX D--)• D and let +  operate on SD.
Then X /  +/  =  X /  X/ • (where these functions operate on S
s
, , ) .PROOF. The  proof (by induction) o f law l  is straightforward. L a w 2 is an

application of the homomorphism lemma, by taking f  x /  for g and x '  for X.
Law 3 is an application of the same lemma, with x /  for "'and x /  +/ for g.
Each of these laws corresponds to a whole set of program transformations.
Since the law g•x +y =  g•x; +g .y holds, and g• +/O =  + / O  (since 0 is the
identity of +  , we have + /O =-- 0), we can apply law 2, with g• for f  and +
for both x  and x ', to obtain

COROLLARY. Let g• S D  S D
,  T h e n  
g •  + /  
=  
+ /  
g  
•  
•

The importance of the corollary is that it  has no condition to be verified, in
contrast to the complex applicability condition of the law from which it  was
derived.

This game can be continued on more complicated algebras. Th e  simple
cases dealt with above, however, already give rise to  a  surprisingly fruitful
range of identities. Fo r example, the identity mentioned in Section 2, which in
functional form reads t
a g e
/  + / m r  
•  =  
l
a g e
/ ( t
a g e
l m r )  
•  
,  
i n  
w h i
c h  
m
r  
i
s  
u s
e d  
a
s  
a

function, is derived as follows
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/  
•
m
r
• 
(
b
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l
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3
,  
u
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a
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X
)
.
s
p

= t
a g
e
/
( t
a g
e
/
m r
)  
•  
(
b
y  
l
a
w  
1
)
.

This identity applies then to  trees, sequences, bags and sets. Indeed, the
transformation A  B  is  valid, irrespective o f whether the inhabitants are
registered in orderly ledgers, or in bags. I t  is possible that t
a g
, /  i s  n o t  m e a n -
ingful on the structures considered, but then both sides of the identity are
meaningless.

A particular type of structure is obtained by taking the point domain (t),
containing one single element L. Assume +  is at least commutative, and define
1 =  2. Then  each member o f  S  to, except 0, can be written in  the form
I + • • • +1 . I n  this particular case, associativity implies commutativity, since
the Is are indistinguishable. (Th is is not true if we allow infinite structures.)
If identity, associativity and commutatMty are the only laws for +  , so that,
e.g., 1+ I 1 ,  then S(,) =  N, the natural numbers, and +  has the conven-
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tional meaning of addition. I f  idempotency holds too, we obtain a set with
two elements, 0 and I, which will be identified with "false" and "true", respec-
tively. The meaning of +  on this domain is that of V  , the "logical or" opera-tion.

6. F l a n
-
n o u s  
V A L
U E
S

Since antiquity mathematicians have been confronted with  equations that,
although not inconsistent, were nevertheless "impossible". A  simple example
is the equation s +8 =  5. I f  a shepherd adds eight sheep to his flock, it  is
impossible that the result is that the flock contains five sheep. A n d  yet,
discovered the mathematicians, it is possible to practise an internally consistent
mathematics with  fictitious quantities such as "3  short". I n  this way the
notion of "number" has been extended from natural to, successively, integral,
rational, algebraic, real and complex numbers. Today we are so familiar with
all this that it  is hard to realize what triumph of intellect the invention must
have been to denote "nothing", something "non-existent", with a symbol like
"0". Wh y has mathematics gone the way of accepting "fictitious values" on an
equal footing? The answer must be that for mathematical practice the simpli-
city of the algebraic laws prevailed over semantic doubts about the necessary
extensions of the notion of "value". Nowadays, we feel no qualms in stating
that the set of primes that are also squares is empty, rather than that such a
set is "impossible". On ly one century ago, this was not so easy. The  well-
known mathematician C .  L. DODGSON —well-known f o r  o ther than  h is
mathematical writings—advocated that universal quantification over such an
"impossible" set would stand for a contradiction. Nobody could have worded
the arguments better than he, but nothing has stopped mathematics from going
the way of algebraic simplicity, in spite of all "common sense", leading to the
currently universally accepted interpretation, which is just the reverse. So now
we have

(Nix e S:p(x)) D (Vxe S ' :p (x)) fo r all p if f  S ' C S

The Carrollean definition would have required, instead of " i l l  S' C S", the
much more complicated " i f  S 0  V  S' 0  A S' C S". Ye t it is important
to realize that all this is a matter o f convenience, and not o f  mathematical
necessity. I f ,  for example, we define <  between sets over an ordered domain
by

S <  T i f  VsES: loft E T: s <  t,

then under the present interpretation <  is not transitive, whereas i t  would
have been so, had nineteenth-century "common sense" prevailed. S o  the
advantages of the current convention are not unequivocal.

The problem that arises in the oldest-inhabitant problem treated in Section 2
if some municipality is without inhabitants, can be solved by introducing the
fictitious value "Nobody". I n  more mathematical terms, the domain of inhab-
itants forms a semi-lattice (disregarding inhabitants of equal age), and, as is
well known, it  is always possible to  add some bottom element to it .  I f  we
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denote the operation of the semi-lattice by " I
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eral, i f  some operation x  has no identity in  its domain, we can extend the
domain by adding x/O as its identity. The  properties of x /  0 are completely
determined by the relevant algebraic laws. I n  particular, we see that it  is an
identity of x  from x x  x/O x fi c ;  x  x/  0 =  + 0  =  =  x. Such a
fictitious value can drastically simplify an algorithmic description; for that rea-
son, i t  is not uncommon to find the notation co in  algorithms described in
"pidgin ALGOL". The important insight is that such a domain extension is, in
general, consistent. Inconsistencies can arise through additional laws, o r
through interference between laws involving several operations in  a domain.
To give an example of the possible pitfalls, let the operation <  be defined by

x y  x .

This operation is associative, since (x < y)<z =  x  < (y  <z). Th e  function
< /  selects the first element of a sequence (or the leftmost element of a tree).
Now consider < /O,  where 0 is the empty sequence. Then < / O ;  < x  =  x,
since < / O  is the identity o f < .  B u t  from the definition o f  < ,  we have
</O; < x  =  < / 0 .  So  x =  < / O  for arbitrary x. The  problem arises since
the law x < y  =  x has already assigned a value to a formula containing the
newly introduced identity. I n  fact, each element is a so-called right-identity of
< ;  i f  a semi-group contains both a left- and a right-identity, then it  is well
known that they must coincide. I f ,  for algorithmic purposes, a fictitious ele-
ment < / O  is desirable, we must choose between two possibilities to retain
consistency: either restrict the law x < y =  x to x < / O ,  or use < / O  as a
right-identity only (in which case the law < / s  +t  =  < / s ;  <  < / t  requires,
of course, the restriction s 0 ) .  Which solution is best depends on the con-
text.

For the applicability o f  the methods o f  "transformational programming"
and especially of "programming by stepwise refinement", it  is important that
algorithmic descriptions allow a certain amount of "indeterminacy". We  may
then find descriptions like "Let x be an element of s". The  correctness of the
algorithm does not depend on the element chosen, and so permits arbitrary
choice. This type of "arbitrariness" should not be confused with the intended
chaotic arbitrariness of pseudo-random generators. I t  only indicates a freedom
that is left in realizing the algorithm, and which can be used, e.g., to achieve a
simplification through a judicious choice of x. No w what if  s 0 ,  the empty
structure? The usual approach is then that the meaning of "Let x be an ele-
ment of s" is "undefined", an entity that is loved by semanticists but best
avoided by programmers. L e t  us use the symbol 0 to  denote an unspecified
choice: the operation of making an arbitrary choice between two values. S o
x fly is a specification that is satisfied by any solution for x, but also by any
solution for y. The expression 102 may yield 1, but may as well yield 2 (but
not 3). The operation 0 is associative: (x y )  0 z is equivalent to x 0 (y 0 z). I t
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is also commutative and idempotent. So  0 / s stands for an "arbitrary" choice
from the structure s. Choosing from an empty structure can now be described
with the formula 0/0. Bu t  no choice is possible, so what is the meaning of
this formula? The answer is: "Nothing". A  more learned answer is that 0/0
represents the  tmsatisfiable specification. I n  essence, the  question is  as
unanswerable as the question what i t  means to take the square root of —1.
The meaning of 0/0 is given by the algebraic laws it  satisfies; beyond that, it
has no inherent meaning, any more than 00, - r -T ,  V i , 1  or, for that matter,
— 3 have one. So, in particular, its meaning is that it satisfies x U [I/O =  x. I n
words, i f  we may choose "freely" between x  and Nothing, then we must
choose x.

An important identity for El is

p a y  I x ;  f y .
This corresponds to what is known in Formal Semantics as the "monotonicity"
of f. We  know then, from law 2 of Section 5, that f 0 /  =  0 /  P • A  prere-
quisite for general applicability of this law here, is, however, that the function
be "strict", i.e., that the identity f  0/0 =  0 /0  be satisfied as well. (I n  Formal
Semantics, a function f  is called "(error-)strict" o r "bottom preserving" if f  (x)
is "undefined" (or "the error value") whenever x is. The pseudo-value 0/0 can
serve here, more or less, as a denotation of an "error value") Many other
identities require that the functions involved be strict. Th a t  a  function is
indeed strict will sometimes follow from its definition. I n  other cases, such as
for the constant function 0 <, it  does not; i f  strictness is not necessary, we
have to specify what we want. I t  is, o f  course, possible to take strictness of
functions as an immutable characteristic of the framework. But this is undesir-
able. I n  particular, if  0/0 is an identity of the operation 0, this gives simpler
algebraic laws. Since then x =  x, the function x 0 cannot be strict for
satisfiable x, and so the identity x  0 / s  =  0 / 4  re q u ire s the restriction
s O .  A  reasonable convention appears to be that a function f  is only strict
if  the algebraic identities assign no other meaning to f  [I/O, or, of course, if
strictness is explicitly specified. Then ^ , + ,  and all functions of the forms p
and x / ,  are strict. Moreover, =  must be strict, to prevent pathological para-
doxes as would be created by f x  i f  fx 0 / 0  then x else WO.

We can now define the asymmetric relation i n  terms of =  and  0, for
p q  has the same meaning as p p 0  q. A  consequence is that p 0 / 0  for
each p; fo r that reason programmers are well advised not to interpret "
too literally as "may be replaced by": otherwise, "Nothing" would remain of
programming.

7. ABSTRACT ALGORITHMIC EXPRESSIONS
The expressions we have encountered until now are algorithms, in  the sense
that we could construct an automaton that accepts such expressions and—
provided that the value of all variables is known—produces a result in a finite
amount o f  time. Th e  first mathematical formulae were, likewise, computa-
tional prescriptions. When we now manipulate formulae, it  is the exception
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rather than the rule that we are concerned with the efficiency of evaluating the
formula; whether we replace x
2  —  y
2  b y  ( x  
y ) ( x  —
y ) ,  
o r  
p r e f e
r  
t h
e  
r e p l a
c e -

ment in  the opposite direction, depends on the context. Likewise, we must
abandon our fixation on efficiency if algorithmics is to enjoy a fruitful develop-
ment. I n  general, developing an efficient algorithm will require that we first
understand the problem, and for this we need simple algorithmic expressions;
but to simplify an expression we have to shed our old habits. I n  mathematics,
a formula like Um sup„ a e  shows that the thought o f  a  constructive
prescription has been abandoned. Fo r algorithmics, it is similarly useful not to
cling to the idea that every algorithmic expression must be interpretable by an
automaton. A n  interesting step, that has not yet been explored, is to extend
the notion o f  "structure" t o  structures whose finite constmctibility is  not
guaranteed, o r is even provably impossible. So, fo r example, the function
infrep defined by

infrep x i + i n f r e p
would define an infinite structure of x's.

For the time being, the primary purpose is to allow algorithmic expressions
that serve purely as specifications. An  example of a possible specification is, in
natural language, "a counterexample to Fermat's Last Theorem". Even though
we do not know, at the time of writing, how to construct one, we can (in
theory) recognize one if  it exists. But even the uncertainty about the existence
of a counterexample does not make the specification vague; i t  has a precise
and well-understood meaning. Allowing such "unexecutable" specifications to
be expressed in  the language of algorithmics makes it  possible to keep the
complete trajectory, f rom the initial (formal) specification to the final algo-
rithm, in one unified framework. Many transformational derivations start with
an expression that is theoretically executable, but not in practice; in particular,
they tend to take the form of "British Museum" algorithms, in which a finite
but exceedingly large search space is examined. A n  advantage is that one may
hope to run this initial "specification" for a very small example. A  disadvan-
tage is that it  is not always trivial to give an expression for the proper search
space; the requirement that it be finite may increase the distance from the true
specification. Also, i t  is not unthinkable that this step might introduce an
error (some relevant case not included in  the search space); particularly so
since it  precedes the formal development. I t  turns out that we can use one
particular "unexecutable" expression to denote a "sufficiently large" search
space. I t  wi l l  be denoted b y " U" ,  and its meaning is, informally, the
"universe" of all possible objects that are meaningful, i.e., of the right type, in
the given context. The trick is that the notation P :s, where P is a predicate,
stands for the collection of elements of s that satisfy P. A  more traditional
notation is {x  E
S I  P
( x ) } ;  
h o w e
v e r ,  
" :
"  
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sets. The meaning of fx e U I POO) is then understood to be the same as that
of the common notation {x I P(x)}. So, if  C is a predicate testing for the pro-
perty of being a counterexample to Fermat's famous claim, then C: U specifies
all counterexamples, and 0 /C: U specifies a counterexample.
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8 SEMANTICS FOR ALGORITHMIC EXPRESSIONS
How important i t  is to have a formal semantics for algorithmic expressions
depends on the degree to which we want to place confidence in the meaning-
fulness of purely formal manipulations. My  feeling is that in the current stage,
a requirement that each proposed construction be accompanied by a formal
definition of its meaning, so that each transformation could be formally justi-
fied, would be stifling. A f te r all, great progress had been made in , e
Analysis, before Cauchy developed a  firm foundation, and the paradoxes
involved in  summing divergent series have not led to disaster. Well-known
examples where theory followed the application are Heaviside's "Operational
Calculus" and Dirac's 8-notation. I n  due time, if  the approach to Algorithm-
ics investigated here proves its worth, possible paradoxes can be resolved by
introducing higher-level concepts similar to, e.g., uniform convergence, to
tighten the conditions of some theorems.

Still, some form of semantics would help to reason about aspects of pro-
posed constructions. I t  is well known that we need extremely sophisticated
mathematical constructions to define denotational semantics for expressions
involving unbounded indeterminacy, and the desire also to  allow infinite
objects in the domain of discourse will hardly simplify matters. This seems to
defeat the original motivation for defining semantics in a denotational way,
namely to define meanings in clearer terms (i.e., better amenable to formal rea-
soning) than possible under the usual operational approach. I n  our case, the
situation is even worse. Fo r the intention is that the algorithmic expressions
serve equally well as specifications. But specifications requiring an inordinate
mathematical ability to understand them in the first place, are pretty useless.
An operational semantic definition is, of course, out of the question (but see
the next Section). A  possible approach is the following.

Let S stand for the set of algorithmic expressions. I t  is assumed that, next
to the usual well-formedrtess criteria, other aspects, such as typabffity, are
prerequisites for acceptability as an expression of S. To  simplify the treat-
ment, we assume that S is recursive, and that S contains a recursive subset 'V
of expressions that are identified with "values" (e.g., "2", or "X x : x + I").
Intuitively, we can interpret an expression e of S as "specifying" one, or more,
or possibly no, elements of T. Define S (e) to be the set {I
, E  I  e  " s p e c i -fies" v}. Alternatively, we can interpret e as a "task" to find or construct some
element o f  'V. Th a t  task might have several solutions, o r be impossible.
Defme e e '  to mean: the task e can be solved by solving the task e". The
relation i s  a subset of S X S. We can think of a s  "may be transformed
to". The relation i s  reflexive and transitive (which may be ensured by tak-
ing the reflexive and transitive closure of some initial relation). Under the
interpretation of an expression e as specifying elements of cV, we would cer-
tainly expect e to specify a given v e 'V whenever e •$t. On the other hand, if
v E ( e )  has been established, then v is a solution of the task e, so we have
e v .  I t  follows that S (e) =  {vE91 e  1
,
} .  T h i s  g i v e s  
a  
c h a r a c t e r i z a t i o
n  o f

in terms of I f  we define the relationa.
-
-•  C  & X S  b y  
e  e '  
i f f  
e  
e '

and e '  e ,  then =  i s  an  equivalence relation. W e  can, in  the usual
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way, step from G (and T )  to the equivalence classes induced by i n  these
sets. Fo r convenience, the classes may still be denoted by some representative;
but where formerly we had to write e e ' ,  now we have e =  e'.

When may a task e be replaced by a task e'? A  requirement is certainly that
any solution to e ' be a solution to  the original task e. S o  e r e q u i r e s
S(e ') C q6(e). We  take this as the characterization o f i n  terms o f  %,
replacing "requires" by " i f " .  Th is has some consequences. Ca l l  an expres-
sion f  "flat" if  S ( f )  is the empty set. A n  example of a fiat expression is 0/0
(assuming that we do not admit this pseudo-value in the distinguished com-
pany of the proper values). Then we find, for any e, e 0 / 0 .  Bu t  WO can
hardly be considered a reasonable replacement for e, unless e happens to be
flat too. So, possibly, a more reasonable characterization of i n  terms of
might additionally require the "preservation of defmedness", meaning that a
non-flat expression may not be replaced by a flat one. Th is gives rise to rules
that are more complicated, which is a  reason for rejecting this approach.
Instead, it  is better to accept the validity of e 0 / 0 ,  with the consequence
that the meaning of d o e s  not correspond exactly to the intuitive notion of
"may (as a task) be replaced by". The preservation of definedness has then to
be proved separately for derivations involving I t  is generally easier to do
this once than to check it for each individual derivation step.

There is another important difference between the usual formal treatment of
the refinement relation between algorithms (see, e.g., MEERTENS [19]), and the
relation F o r ,  in the usual treatment, one has 0/0 e  for any e. Th is is
unacceptable here, since we would then find that each e =  0/0. See, however,
the notion of "total variant" of a function defined below.

If we start with some definition of q1, next derive f r o m  that definition,
and use t h e n  to find (35 , this will be the original function we started with.
If, however, we start with some definition of ,  use that to define S and use
this function to determine ,  the latter relation may be larger than the origi-
nal one. Next  to transitivity and reflexivity, a "complete" relation sa t isfie s
a stronger closure property:

If E  c\I I e ' 1 7 ) C E T  I e v ) ,  then e

In this way, a relation c a n  be specified by giving an initial subset, in  the
form of rules like

e
l 
0
e
2 
= 
1
,  
2
.

But this still does not give the full story. A  pleasant property of expression-
forming constructions is monotonicir. if  C [e] stands for an expression contain-
ing e as a constituent sub-expression, and e t h e n  we want to be able to
conclude that C[e] C [ e l .  Th is property is postulated for all constructions
admitted to our language (and so 9) is excluded).

It is necessary to give a meta-rule for o n  functions, since equality of
functions is not in general decidable. (The notion of "function" includes here
our binary operations.) A  reasonable rule appears to be:
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META-RULE FOR O N  FUNCTIONS.
Let f  and f ' E D —0 'V (where D CcV), and let f  v f '  v for all veD U (0/01.
Then •
f 
f ' .This rule makes a choice between several possibilities for defining o n  func-
tions. The  possibility chosen seems to be the more manageable rule. I f  func-
tionals (higher-order functions) can operate on functions involving indeter-
minacy, the meta-rule must be used with caution. Fo r  assuming the reason-
able id e n t it y  f  g ;  x =  x ;  Og x, w e  a r e  l e d  t o  conclude t h a t
f a g  =  X x : ( f x ;  0 gx). No w take f  = id  ( =  X x : x), g =  3 <  ( =  X x : 3),
and let h =  Xx:  x 03. Then h =  f  11g. Bu t  if  F =  XO: (01; +02), then we
find F f  g  =  11 ;0•Fg =  1+2 ;  3  +3 =  306, whereas Fh =  h 1 ; +h  2 =
103; +203 =  3040506.

The converse rule " I f  f  f
1
,  t h e n  
f v  
v "  
r e s u l t
s  
i f  
t h
e  
m o n o t
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t y  
p o
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tulate is applied to function application. A  consequence is that if f  is a partial
function, but f '  is total (i.e., never yields 0/0), then f  ' cannot hold. How-
ever, it  is often desirable to turn partial functions into total ones. Fo r exam-
ple, a problem specification may prescribe that error messages be given if cer-
tain conditions are not met. I t  may then be preferable to treat these error
messages in it ia lly as "instances" o f  WO. C a l l  f '  a  "variant" o f  f  i f
f v f ' y  W O  whenever f v  is not fiat. A  useful curiosity is that i f  f  is
"determinate" (see below), then f ' f .  Th is is also a sufficient condition to
show that a determinate function f '  is a variant o f
f .  A  " t o t a l  
v a r i a n t " ,  
fi n a l l y ,

is a variant that is a total function.
We also need rules for function applications. Unfortunately, the simple rule

(X x : C[x])e =  C[e]

is not enough. One  counter-example is found by considering f  102, where
f  = X x : x — x .  Mechan ica l textua l substitution g ives 1 0 2 ;  —102 =
—1; 0001, which, together with the above meta-rule, would lead to the conclu-
sion that function application is  no t monotonic (o r,  worse, that 0  1 ) .
Another problem is given by taking h[1/0, where h =  Xx:  x03 is—for the
moment—taken t o  be  a  strict function. Textua l substitution results in
WO; 11 3 =  3, which is inconsistent with the identity characterizing strictness,
namely h0/0  =  0/0. Therefore, the rule for function application needs the
condition that the expression fo r the argument is "determinate" (see below)
and non-flat if the function is specified to be strict. Th is corresponds, roughly,
to what is known as "call-by-value" semantics. Note, however, that it  is not
required to evaluate the argument; a ll that is needed is that we exhibit certain
properties, for which some sufficiency conditions can even be given in terms of
syntactic criteria. I f  the function definition does not involve more than a sin-
gle occurrence o f the argument, then indeterminacy o f  the argument is no
problem. Th e  reason that functions are non-strict by default should now be
apparent: this choice simplifies the applicability condition of the rule. No te
that for strict functions it is always safe to use the rule in the "Fold" direction,
namely C[e] ( X  x : C[x])e.
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An expression e is determinate if, for any two values v 1 and v
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to be determinate, which implies that a n d  =  coincide on CV. A l l  values
are, by definition, non-flat. The function-application rule could then be stated
by restricting the argument to values (as was already done for the meta-rule),
with the advantage that the notions of "determinacy" and "flatness" need not
be used. A  problem arises, however, if  we want to define S (h), where h is as
above (but not strict). Since h is obviously indeterminate (we have both h i d
and h 3 < ) ,  we do not want to allow X x : x 03 as element of 'V. No  enumer-
able collection of determinate lambda forms, however, can capture the mean-
ing of h. Th is is related to the problem mentioned above for equality of func-
tions.

A function definition may contain several occurrences of the argument, as in
abs x i f  x < 0 then —x else x

Suppose we want to show the equality
abs 2xe =  2 x abs e.

This is easily proved by the Unfold/Fold method:
abs 2 x e =  if  (2)< e)< 0 then — (2 e )  else (2 x =
if e < 0 then 2X --e else 2x e 2 x  if e < 0 then —e else e =
2Xabs e

Unfortunately, the condition for the function-application rule is not satisfied if
e is indeterminate. A n d  yet, it  is easy to see that in this particular case no
harm is done. Th is insight can be generalized to the following meta-rule:
META-RULE FOR INDETERMINATE UNFOLD/FOW-
L& C[e] and C' [e] be expressions containing e as a constituent expression, and
let e occur at most once in Ci[e].
I f  there is a derivation C[e] r C '  [e] for determinate e, and e is uninterpreted in
that derivation, then C[e] C '  [e] is also valid for indeterminate expressions e.

This allows one to use, e.g., e—e 0  or Fe e ,  the latter by applying the
meta-rule in both directions. Th is meta-rule is a corollary of the rules given
above, as the following derivation shows:

C [e] ( X  x : C [x]) e ( X  x : C' [x]) e C  ' [e]

The middle step is an application o f  the meta-rule fo r o n  functions,
together with the monotonicity property;

9. EXECUTABLE EXPRESSIONS
In going from specification to implementation, we can stop the development
when we have an expression that has an obvious translation in terms of a pro-
gram (i.e., it belongs to the "solution space"). I f  that translation is so obvious,
then we can wonder if  it could not be delegated to a machine. I f  that is possi-
ble at all (and it  is certainly possible for some subset of the language & o f
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algorithmic expressions), then we effectively have a machine for executing
some expressions. Th is would eliminate an uninteresting step that might easily
introduce clerical errors. I t  also opens the possibility of having the machine
apply certain optimizations that are hard to express without spoiling the clarity
of the expressions, but that are nevertheless obvious (e.g., replacing recursion
by iteration, or eliminating redundant computations).

In the current stage of this work, a serious effort to define an "executable
subset" o f  the algorithmic expressions is still out of the question. We  may
wonder, however, what properties we would require of a hypothetical machine
for executing expressions. Le t G , 'V and b e  as in the previous section. A
possible approach is that the machine tries to mimic g o i n g  through a
sequence e 1 e
2  •  
•  
•  
,  
h o p e
f u l l y  
e n
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machine, the forms it operates on are states, rather than expressions. I t  is real-
istic to assume that the machine may have to attach some bookkeeping infor-
mation to the expressions. To  simplify the discussion, this possibility will be
ignored. Obviously, we may not assume that the machine is capable of accept-
ing all expressions of a s  states.

Let 9  be a subset of S, standing for he "executable" expressions, i.e., the
expressions that the machine is designed to cope with. (The letter (3' has been
chosen here because to us these expressions are programs for the machine.)
We assume that 6  and g  n 'V are recursive sets. No w we define p -4 p' to
mean: i f  the machine is in the state p, it can, possibly, switch next to the state
p'. S o  -4  is a subset of 6X 6. There is no reason to require that the machine
be deterministic, but it  makes sense to assume that •-+ is at least recursively
enumerable. There must be some halting condition for the machine. A  simple
criterion is to have the machine halt if its state is a value, i.e., a member of 'V.
This is then the output. Fo r the sake of simplicity, we require all values to be
"dead-end states", where p is a dead-end state if no state is reachable via -4
from p. No w we have two requirements:

Soundness. L e t  -4 *  stand for the transitive and reflexive closure
of -4  Then ,  for all p e 6 and v E c
V, i f  p  
v  ,  
t h e n  
p  v

Preservation of Definedness. Let p be an arbitrary non-flat member
of 9  (where the non-flatness is with respect to S). Then (a) if
p p ' ,  and p' is a dead-end state, then it  is a value; and (b)
there does not exist an infinite sequence of states p
o  ,  p  ,  •  •  •such that p = po --4
p1 — *  •  
•  •  
•

The first requirement is simply that the machine produce no wrong answers.
The second one requires that i f  the program p, viewed as an expression, speci-
fies a result (some value), then the machine will output a value when started in
state p. Part  (a) prohibits the machine from reaching a dead end without pro-
ducing output (which, if  it  can be detected, can be interpreted as abortion of
the program), whereas part (b) forbids infinite loops. I t  is, of course, in gen-
eral undecidable whether the machine will halt if  started in a given state p, so
the proof would depend heavily on properties of ,  such as monotomcity,
and possibly of 6.
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A relation --> satisfying the requirements for soundness and for preservation
of definedness, may be called an "operational semantics" fo r 6. No te  that
different machines may correspond to different executable subsets of S , and
even that two machines operating on the same set 6  may differ in their opera-
tional semantics. So there is no such thing as the subset of executable expres-
sions. I n  fact, let 6  be any executable subset, with operational semantics
Then it is always possible—provided that i s  sufficiently expressive—to fmd
some pair <e, E  5 X c
Ir s u c h  
t h a t  
e  e  
a n d  
e  
v .  
T h e
n  
6  
U  
{ e
,  
v
}  
i
s  
a l
s o  
a
n

executable subset, with operational semantics U  ((e, 0 ) .  So  there do not
even exist maximal executable subsets of S.

The "canonical evaluation" of programs in the style of BURSTALL and DAR—
LINGTON [6] is one prime candidate for being an operational semantics. Some
expressions have  obvious translations in t o  a n  imperative style , l i k e
t
a
g
e
/  
-
1
-
-
/
m
r
•
d
m 
i
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t
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tricted t o  such programs, which could then be "compiled" in to  "pidgin
AtGot". Ye t another possibility is translation into FP.

A problematic aspect is the evaluation of expressions such as x y .  I t  is
easy to imagine a machine that would always go to a state x' D
y  i f  x  f o rsome x'. Note, however, that the machine is forced, by virtue of the require-
ment of preservation o f definedness, to try the other choice if  the preferred
choice leads to  a dead end without output. Th is corresponds, in  a  limited
sense, to what is sometimes called "angelic nondeterminism". Operationally,
however, no "nondeterminism" need be involved in this. Bu t  the same is also
required i f  the first choice may lead to  an infinite loop. Fortunately, the
machine need not decide beforehand if  this tmdecidable contingency will arise;
it is sufficient i f  the evaluations o f the alternatives are "dovetailed" (inter-
leaved) in a fair way, i.e., not excluding some alternative indefinitely. I n  the
context of a recursive function definition, this provides "automatic backtrack-
ing", where [I/O takes the role of "Fail". To  give a stronger example, consider

f x  i f  x =  0 then f00 I else 1.

It is then guaranteed that f 0  =  I ,  since f0  _ /
-
0 [ 1 1  I ,  a n d  
n o  
o t h e r

value than I  could be a possible outcome. Although this may not be the most
pleasant thing to implement, neither is it  prohibitively difficult o r expensive,
and certainly not if  occurrences of i n  "executable code" are the exception
rather than the rule. I t  will often be possible to exhibit the non-flatness of
expressions by a  static analysis. I f  x is known to be non-flat, then the step
x y  ---> x is allowed.

10. SOM E MORE BASIC OPERATIONS
If x and y  denote two objects, <x, y> denotes an object that is a pair consist-
ing of those two objects. The  functions a n d  / r
2  a l l o w  t h e  
r e t r i e v a l  
o f  t h e

components from the pair, so, e.g., I r
2  < X ,  y >  =  
y .  I f  
x  E
D
1  
a n d  
y e  
D 2  
,  
t h e

pair <x, y )  e D 1 ><D
2 I f  
o r d e r i n g
s  
a r e  
d e fi n
e d  
o
n  
t h
e  
c o m
p o n
e n t  
d o
m a
i n s
,

then the product domain is assumed to be ordered lexicographically, unless a
different order is specified.
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We have already encountered the operation < ,  which selects its left
operand: x  <  y =  X. A n  important application is that x < denotes the con-
stant function Xy: x. The operation >> selects its right operand (and so x
is, for each x, the identity function id).

I f  x  is a  determinate object (meaning that no choice of the type U is
involved), then P? x, where P is a predicate (i.e., a function returning a truth
value), stands for x  <• P  x. Th is formulation has probably no immediately
obvious mewling to the reader. Remember that "false" and "true" are identi-
fied with 0 and 1 =  2, respectively. So, if  P x is false, P? x =  x < * 0  = O. I f
P x is true, P? x =  x  <•1 =  x  <*2 =  ^ xc i,  =  i  We  see now that P?
means " if  P x then ;  else 0". The operation ? is mainly (but not only) useful
as auxiliary operation to define other operations. A n  important application is
in the definition of a "filter": a function to "extract" all members of a struc-
ture satisfying a given property. The function + /  P? • returns the structure of
all P-satisfying members of its argument. Fo r example, if  P x holds, but P y
does not, we obtain + /  P? • +  + / ( '  P? x; +^ P? y) =  + /  1+0 =
+ /  +  + /  =  + 0  =  I t  is important enough to merit a shorter nota-
tion; fo r this, we use P: ,  which we have already encountered. Fo r example,
the filter x=  : extracts all elements equal to x. We  can then define

x  E  0 0  X =  :

to test for membership of x.
Some laws that use : are:

= + / P :
x=  :U =  : x

P:f•  =  ,  provided that f  is determinate;
P:Q: =  P A CI; : (remember that P A Q; x =  P x; A  2 x).

The p roo f  o f  the first, least obvious, law, is  P : + /  =  + /  P? • +/ =
+ /  +/  P? * * =  + / P : . ,  in  which the middle step is an application of the
corollary of Section 5. The second law cannot be proved from previous laws,
since no previous law involves U; instead, it  can be viewed as a (partial?)
characterization of U. The derivation of the third law is left as an exercise to
the interested reader. (Hin t:  use the meta-rule for o n  functions from Sec-
tion 8  to  show first that fx;• <  = f  x <, and next that P ? f  = f• (P f)?.)
The last law is most easily proved by proving it first for determinate predicates
P and Q (by considering all possibilities of assigning truth values to P x and
Q x), and then using the last meta-rule of Section 8.

An example of the use of these laws is given by
=  =  0 0 P : x = : U  =  =

00 P?x =  P x.

Another important property connected with : needs some terminology. Call
an operation x  ED XD -3D "selective" i f  ,  i.e., for all x and y e D,
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x0 y x x  y. Examples of selective operations are 0 itself, < ,  a n d  I
f  a n dto be defined below. The property is then:

If x  is selective and x/P:s 0 / 0  for some structure s, then

The crucial step in the proof is 0/P:s x / P : s .
Another useful application of ? is in the definition of w h e r e  the predi-

cate p -4 is defined by 0/p < ?, in which p is a proposition, i.e., an expression
whose value belongs to  the domain of truth values. (Since the operation ?
requires a predicate as first operand, the operation <  is used to turn the pro-
position p into a predicate.) Then p--->x;0(1-4 y specifies, indeterminately, x
or y, but x is only specified if p can be satisfied, and y  if q can be. Fo r exam-
ple, assume that p holds and q does not. Then we find p-4x;Dq—> y =
0/ p <  ?x; OD/ ?  y =  0 /  ..
X; 0 / 0  x  
0  0 / 0  
x .  
S o  
t h e  
c o m b i n
a t i o n  
o
f

with g ive s  "guarded expressions", whose meaning is not primitive but is
obtained by composing the meanings of the individual operations. No te  that
001-, -->x x ,  since 001; =  0-->x; 01—>x.

An important law for —> is:

f p - 4  = p - - * f ,  provided that f  is strict.
Since p —* is obviously strict, we have p q  --> ( = p A q ; - 4 ) .

If x and y  are elements of a semi-lattice with greatest lower bounds, then
x l y  stands fo r the greatest lower bound o f  x  and y .  Th e  expression I /0
stands then for the top of the semi-lattice. I f  it has no top already, it  can be
extended with one in a consistency-preserving way. I t  is often profitable to
identify I/0 with 0/0. The operation t is defined similarly. Although it is like-
wise often useful to define I/0 =  IVO if  the (semi-)lattice has no bottom, it  is
generally unsafe to use this device for both I and I if  they can appear mixed in
a formula.

On structures, we can define a default partial ordering
s
r  
i
f  
0
0
1
;
<
:
t
s
.

So s < t if s can be obtained by omitting some (possibly none) of the members
of t. Fo r  sequences, co rresponds then to " is a (possibly non-contiguous)
subsequence of" . F o r  sets, natural numbers, and truth values, we find as
meanings, respectively, " C" ,  the traditional " < " ,  and implication. Structures
for which the construction operation +  is associative and commutative form
now a lattice, and I  gives, e.g., " n "  for sets and " A "  for truth values. The
operation I is then defined as well. Note that I/O =  0, since 0 is an identity of
the operation

The operation <
f
,  w h e r e  
fi s  
a  
d e t e r
m i n a
t e  
f u n
c t i
o n ,  
i
s  
d e
fi n
e d  
b
y

x <
f
y  
f
x
;  
<
f
y
,

and = f ,  > f ,  etc., are defined similarly.
The operation 4
f
, f o r  
a  
d e t e r
m i n a t
e  
f u n
c t i o
n  
f  
w h
o s
e  
r a
n
g
e  
i
s  
a  
d
o
m
a
i
n  
w
i
t
h

a total ordering, is defined by
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x l
f
y  
(
x
<
f
y
;  
-
-
x
)
0
(
y  
<
f
x
;  
y
)
.

An identity relating I f  to i s  f t
i
l  =  1 / /
-
*  T h e  
o p e r a t i o
n  1 :
1  
i s  
d e fi n e
d  
s i m
i -

larly. I t  is again often helpful to define 4
1
/ 0  =  0 / 0  o r  
1 :
/
/ 0  =  
0 / 0 ,  
w i t h  
t h e

same caveat for mixed use.
Finally, we need a function *  to count the number of elements of a struc-

ture. Th is can be done by mapping each element to I, so = i + i =
1+1 2 .  So  we can define *  as i < T h e r e  is a surprise, though: on sets
(and more generally, on a ll structures with  idempotency) this *  refuses to
count properly. The  problem is that * ,  as defined, is a homomorphism. Bu t
the number-of-elements function on sets is not. Tha t  "number of elements"
cannot be defined as a homomorphism on sets follows from the breakdown of
the law *  + /  =  + / * *  (an application of the corollary of Section 5) for sets;
in particular, * s ;  +  *s for a non-empty set s differs from * s  +s =  *s .  The
function t <s  is only defined on sets as a mapping to the set S(,), which is the
domain of truth values, and it tests then for non-emptiness.

11. FIRST EXAMPLE: A  TEXT-FORMATTER
The following problem specification, copied from BAUER et al. [2], is a refor-
mulation (under the heading "Text editor") of the original specification (under
the heading "Line editing problem") given in NAUR[22].

"A text, i.e. a  non-empty sequence of words separated by blanks
(Bt) or new line characters (NO, is to be re-structured according to
the following rules:
(1) every two words are separated by exactly one BL or NL;
(2) the  first word is preceded by NL; the last character is neither

BL nor  N t ;
(3) each line is at most MAX characters long (not counting NO;

within this range, it contains as many words as possible.
The input line is required to start with tsTt; further, no word must
contain more than MAX characters."

As a first step, we aim at more abstraction. Th is can be done by assuming
that a type "word" is already given, and that the function * ,  applied to a
word, wi l l  give its length (some natural number). Then the input can be
viewed as a single "line", i.e., a sequence of words, whereas the output is a
sequence of lines. Th is abstract view makes requirements (1) and (2), the clar-
ification "(not counting NO" o f  (3) and the first part o f the last sentence
irrelevant, since they deal with the concrete representation o f sequences o f
lines in  terms o f  some character code. Mo re  important is that it  guarantees
that the algorithmic development will work for different representations. ( I f
more concreteness is nevertheless required, it  is still advantageous to split the
problem into a  more algorithmic part, and the treatment o f  the concrete
representation. Fo r  the latter, mappings from the types "sequence of words"
and "sequence of lines" to the type "sequence of (character or 'BL' or 'NL)"
have to be defined, and the abstract algorithm obtained has to be transformed
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to work on this new concrete representation. Techniques f o r effecting a
change of representation are given in  BURSTALL and DARLINGTON [6] and
MEERTENS [18]. Hopefully, i t  will be possible in  some future to leave such
low-level transformations to an automated system.)

Next we have to make the natural-language specification more precise. The
mewling of "A text i s  to be re-structured" is best expressed as a requirement
on the relationship between the input and the output:

(0) t h e  output, "unstructured", is the original input.

Furthermore, requirement (3) is best split into two parts:

(3a) each line of the output is at most of length mAX;
(3b) each line of the output contains as many words as is possible

within the constraints imposed by (0) and (3a).

An observation can now be made: the specification is symmetric with respect
to the directions left-to-right and right-to-left. Mo re  precisely, let rev be a
function that takes a sequence as argument and returns the reverse sequence as
result. Then we have:

If a function f  "solves" (0), (3a) and (3b) (i.e., for each acceptable
input line i, fi  is  acceptable output), then so does rev* rev f  rev
( =  r ev r ev* f  rev).

From (3b) we can derive the following requirement:

No line of the output starts with a word that would have fit at the
end of the previous line.

For, otherwise, that line contains fewer words than possible. Expressed very
informally, this means: lines are "eager" to accommodate words as long as
there is enough room. Because of the symmetry, a solution must then also
satisfy the mirror-image "reluctant" requirement:

No line of the output ends with a word that would have fit at the
start of the following line.

But it  is not hard to give input for which the "eager" and the "reluctant"
requirements are, together, impossible to satisfy. A n  example, if  MAX =  13, is
the input "  Impossi hie- to.s a tis fy .  in-both -ways!". T h e  unique
"eager" solution is then

Impossible. to
sati sfy- i n —
both .ways ! —

The "reluctant" solution is different:

ImpossibLe—
to-s a t i s fy —
in.both.ways!
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Something is wrong. Th e  "reluctant" approach tends to leave as much white
space on  the first  line  as possible. Th is  is, by application o f  real-world
knowledge, typographically undesirable. Th e  "eager" approach, in  contrast,
leaves the last line unfilled Th is  is, i f  not typographically desirable, then at
least neutral. Th is suggests to us replacing (3b) by:

(3b') each line but the last, i f  any, of the output contains as many
words as is possible within the constraints imposed by (0)
and (3a).

However, this st ill does not solve the "eager" vs. "reluctant" problem: just
add a 13-character "word" (e.g., "Exaspera t ing ! ") to the end of the exam-
ple input given above. The  problem with the specification seems to reflect our
conditioning to  th ink in  terms o f  left-to-right. Whereas (0) and (3a) are
"boundary conditions", (3b) is an "objective", namely, "Do not waste more
space than necessary"; more precisely:

(3b") minimize the total white space on the output, not counting
the last line.

This approach was suggested to me by Robert Dewar. There is still a tiny
problem left: i f  the last line is completely filled, then another empty line may
be added without penalty in terms of the white-space objective. So a second
objective, subordinate to the previous one, is to minimize the number of lines
of the output.

Now we are ready to start giving a formal treatment of the problem. Th is
will be done in  an unusually detailed way, comparable to the minuteness of
the steps in  S I S  =  =  1(2S) =  1(S -FS). We  use the letter r for
the input (" raw"), and c for the output ("cooked"). The proposition that the
input/output constraints are satisfied, is denoted by r—c. I f ,  furthermore, obj
denotes the objective function, then the problem is to determine, for given
input r,

f r  l
o
b "  
r  
" -
•  
:
U

In words: take  a n y obj-minimizing object c  such that r—c. W e  p u t
1
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length of a single line, then —, expressing that the two constraints (0) and (3a)
are satisfied, can be defined as:

r—c + / c  r ;  A  t/len•c <  MAX

The /en of a line is the sum of the lengths of its words, plus I  for each space
between a pair of words. A  simple way to obtain this result, is to add 1 to the
length of each word before summing, and to subtract 1 from the sum. Fo r an
empty line, we have to define its length separately:

len 0 0 ;

len1+1;
, —
I ;  
+  
+ /
( 1
+ *
)
* 1
+ ;
v '
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For a  line  consisting o f  a  single word, we  have, o f  course, ien1;') =
—1; +  + / (I  + * )  41
s, =  — 1 ;  
+  
( 1 + #
)  
w  
=  
* w
.  
T h
e  
o b j
e c t
i v e  
f u
n c
t i
o n  
i
s

defined by

obj c ( w s  c,
where the "white-space" function ws gives the white space on its argument (not
counting the last line). The  white space left on a single line is given by the
function ws
i =  
M A X  
—  
l e
n .  
T h
i s  
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the last. This gives us the definition:

wsci+/ + / w s
i
. e ' .

To make the function total, we also define
ws 0 O .

We turn now first to the question whether it  is possible to satisfy the con-
straints, not bothering about the objective. One extreme approach to satisfy
(0) is to have a one-line page, or c =  T h i s  is likely to violate constraint
(3a). Since the white space does not matter, we can try the other extreme: use
a separate line for each word. Th is would give us c =  • r .  Then (0) is, of
course, satisfied, but what about (3a)? Since len^ =  *  , we find

V  len •c =  l e n *  ̂  *r =  ( l e n " )  *r =  * * r

So, if  V  * * r  <  mAX, i.e., each word on the input is at most MAX long, we
have r—" .r, so the problem posed is solvable. Next, we show that this condi-
tion is not only sufficient, but also necessary. I f !  0  0,

len =  —1; +  + / (1 + * ) * 1  — 1 ;  +  V(1+ * ) . 1  =
—1; +  1+ V =  V * . / .

In the given context, t/O =  0, since line lengths are natural numbers. Then, if
/ =  0, len 1 =  0 =  t /  4 ,  so no condition! 0  0 is necessary for the inequal-
ity len/ t /  * 1 .  No w we have

T/ /en 1 / 1 /  *  ..c =

If r—c is satisfied, + / c  =  r  and V len *c <  MAX, so

t /  * r  =  V  * * + / c  <  V  len *c <  MAX
In conclusion,

r 0 / 0  i f  and only if V  * * r  <  MAX

To "synthesize" J
.
, w e  
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place, empty lines can be deleted from the output without violating the con-
straints. Fo r

+ / c
1
+ 6
+ c
2  
=  
( +
/ c
1
) +
( +
7
6 )
+
( +
/ c
2
)  
=

( + / c
1
)
+ 0 +
( + /
c 2 )  
=  
( ±
/
c 1
) +
( +
/
c 2
)  
=  
+
/
c
1
-
f
c
2
•

Also, V  len *6 =  ^ le n  0 =  VO =  0, so
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1/1en•c 1 +6 + c
2 
( 1 / 1 e n •
c
l
) t  
( 1
/  
l e
n  
• 6 ) 1
( I l l e
n • c
2
)

(1/ len • c
l
) 0  
t  
( 1 / 1
e n •
c
2
)  
( 1 /
1 e
n . c
1 ) t
( t /
l e n
• c
2
)  
=

1/ le n *c
i
+  c
2

Combining these two gives
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Next, we show that empty lines are always disadvantageous in terms of the
objective. T o  show this, we have to distinguish several cases, because of the
form of the definition of ws. First, we treat the case where the empty line con-
sidered is not the last line. Since

we have

Since

we have

+
/  
w
s  
1  
•
0  
=  
+
/  
w
s  
1  
0  
=  
W
S  
1  
0  
=  
M
A
X  
— 
i
e
n  
0  
=  
M
A
X
,

WS CI + 0+ C 2 + 1 =  + /w S1 *CI; + M AX+  + /wSI•C2
+/W,91•C1; +  +/WS1 oc2 =  +/W,S1 *CI + c2 =  WS CI + C 2+ 4.

If the empty line is the last, but not the only one, we find

ws c 1 + +  0 =  +/ws c  1 +/ + / w s o c
i
;

=  wsc
i 
+ / .Finally, if  the whole document consists of just one empty line,

ws =  ws 0+0 =  -1 --/ws
1
•0  - 1 - / 0  
=  0  
w s  
0 .

So in all cases

w s c
1
- 1 -
0 - 1
- c
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s
c
i  
-
1
-
c
2
•

( 4 : P c
1
) + (
4 )
-
4
-
( t
c
2
)  ( *
c
1
) +
1 +
( *
c 2
)

( * c
l
)  
+  
(
#
c
2  
)  
=  
c  
c
2

323

obj c
i 
+
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+  
c
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c
l
-
F
c
2
•

We may conclude that i t  is never helpful to consider output containing
empty lines. Th is can be expressed formally by inserting a filter that sifts out
pages with empty lines, e.g., by replacing U in  the definition of f  by Oe:U.
On the set of pages without empty lines, obj has the same ordering as ws, so
we can replace ,L
obj i n  
t h e  
d e fi n i t i
o n  
o f  
f  
b y 4
s
.  
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len function the uniform definition

len 1 — 1 ;  +  + / (1 +  *) .1 ,

since we know that the function is not applied to an argument O. Th is  allows
us to do some elementary mathematics. I f  c 0 ,  we can put c =  c'-I-/, so
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ws =  ws c' =  + /wsi• c '  =  +/(mAx— len) •c' =
+/(mAx— (-1 ) + + /  (1 + * )• )• c '  =
+ /  (mAx+ 1; — + / (1 + * ) • ) • c '  =
M AX+  1; X  #C';  — + / + / ( 1 +  * )  • •C' =
M AX+  1; X  #C';  — + A I +  4t) • + / C
1
.If, furthermore, r—c, then r =  + / c ,  so

len r l e n  +/c l e n  +/c '  =  —1; +  + / (1 +  * )  • + /  c' =
+/ (1 + * ) • +/c'; + (-1 ) + + /  (1 + *)•1 =
+/ (1 + * ) • +/c'; + len I ,

so that we have

+/ (1 + * ) • +/c' =  len r; —len 1

Combining these two gives us: if  r—c and c =  c '+  /,
ws c =  M AX+  1; X  # t
s
;  —  ( l e n  
—  
l e n  
1 ) .

In using this formula to compare the outcome of ws on two different non-
empty pages that both meet the  constraints, we  can replace the  p a rt
" — (len r; — lent)"  by "  + lent", since r, and therefore len r, is fixed. Since
then, moreover, len I <  MAX+ I, the quantity * c '  prevails over len t in  the
comparison. This leads us to consider the simpler function

lpos c' + 1 ( * c c  len 1>

On non-empty pages, the ordering of ws is that of Ipos. I f  we also define

lpos < 0 ,  0>,

we may even drop the restriction to non-empty pages.
I f  we combine the above findings, we obtain the following definition for f:

f r  l
o o
s
/  
r -
-
.
0
e :
U

This formulation makes it possible to find solutions of Jr + Cy in terms of solu-
tions of J
r .  
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We may thereby lose some other, equally optimal, solutions. Expressed in
words, the crucial idea is the following. Suppose c is the result of formatting a
given input text r. We  can "truncate" c by "erasing" the last word on its last
line, and the last line itself if  it  then becomes empty. Then  the two data c-
truncated and w, together with the knowledge that c-truncated was obtained
by erasing w from an optimal solution c, suffice to reconstruct c uniquely. ( I t
is assumed that the value of mAX is known.) Moreover, c-truncated is then an
acceptable way o f  formatting r-truncated, and although i t  need not be an
optimal solution, there is no harm done by replacing it by an optimal one. I t
follows then that an optimal solution for r (since we know it  to exist) can be
formed from an optimal solution for r-truncated. Th is  wil l  now be shown
more formally W e  define
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Trnc c' I  +W' ( I  X  0; c '  +i)[1(/ =  0; --> c');
Trnc r' r '

(Note that the function Trnc is "overloaded" here: the two definitions operate
on arguments from different domains.) So suppose r—c, and among all possi-
ble solutions the  lpos o f  c  is  minimal. Suppose, moreover, c  0 ,  so
r =  + / c  0  (remember that empty lines are excluded), and we can put

c =
r

From r—c we  have r ' + w
^
2  =  + / c / + ^ /
+ w
^
1  =  
+ /
c / ;  
+ 1 -
F ,  
s
o  
r
'  
=

+/c';  +  I and w
i =  
w 2 .  
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five here. Th e  conclusion would be unwarranted if  +  were commutative or
idempotent.) We  can now drop the subscripts on w. Le t C
T =  T r n c  c .  T h e nCT =  Trnc c' =  (1 0 ;  --- c' +

.
6 0  ( /  =  0 ;  
- - > e ) ,

in which c/ and / are still to be determined. We  see that c' and I satisfy

(/ X  0 ;  =  c ' + i )0 (/  =  0 ;  C T  =  c/).

If C
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t
h
e  
fi
r
s
t  
a
l
t
e
r
n
a
t
i
v
e  
c
a
n
n
o
t  
a
p
p
l
y  
(
s
i
n
c
e  
c
/
±
/  
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Otherwise, we can put C
T 6 + /
T
,  a n d  
s o

( C
T 
X  
0
;  
A
l  
0
;  
-
+  
/
)  
=  
(
6
,  
1
7
-
.
)
)

(/ =  0 ;  ---><e, i> =  (CT, 0)) ,
or

<c', I )  =  (CT X  0;  A  I X  0; / 7
-
) ) 0  ( /  =  
0 ;  -
* ( c y ,  
0 > ) .

The conditions on I have now lost their significance, since they are satisfied by
both possible choices. I f  we put

c
l 
= 
6
-
+
^
/
T
+
;
;
;
,  
c
2 
= 
c
T
+
I
f
)
,

we find that c =  c/+^/ +cv has to satisfy

c =  (C
T X  
0 ;  
- -
* c
1
) 0 c
2
.

Since c has to satisfy I /  Ien.c m A X ,  the first choice is open only if, moreover,
len I
T
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indeterminacy has t o  be resolved using the minimality o f  lpos C. I f  both
choices are still open, c
l h a s  t o  
b e  
c h o s e n
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s i n c
e
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The choice is now determinate, and c =  c2-+E-w, where 1-1- is defined by
* I v ;  <  MAx;

-
W
w 
(
l
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n 
1
2
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‹
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A
X
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)
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>
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.
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+/(1 0; —› c' + ( /  =  0;
(/ 0; - 4 + / C

'  
+
1
)  
(
/  
0  
;

( 1 ; ( + / C
'
) + 1 )  
l
J  
(
1  
=

It has to be verified next that Trnc r—Tmc c. I n  the first place,

+/Trnc c =  +/Trpc c' +^1+ ;v
s = ---> c') =

—3 + / C
'
)  
=

; + / C
'
)  
=  
+ /
C
'
;  
+  
I  
=  
r
'

Tmc r' +;
,
i;  =  
T r n
c  
r

It is intuitively obvious that erasing words cannot increase line lengths, so that
t /  len *c <  MAX implies 1/1en.Trnc c <  MAX. However, we wil l  derive this
also formally, just to show how this is done. We  reinstate—temporarily—
len 0 =  O. Then

So

and so

V len .c' +0 7
7-- 1 /
( l e n . c
' )
+ ^ l e n  
0  
=  
1 /
( l e
n . c
' )
+ 0  
=

T/len•c'; 11/0 =  1/ len ..c'; t 0 =  1/ len •c'; 1 /0  =  l e n . c '

= 1 / 1 e n . c ' +
-
1 + ; i
s
) =  
1 /
( l e n * c
' )
+ 7 e n 1
+ ; v
s

1/ len • c'; lien 1+ ci7 t /  len • c' ; 'lien I =
1/(len.c'; -Plen I) =  .
1 / l e n *  c '  
+ 1  
=

(1 0 ;  -->Illen•c' + ( 1  =  0; -->l/len•c'+o) =
(1 0  ; 1 /  len •c' + 00(1 =  0; - -
,
1 /  l e n  • c / )  
=

1/1en*(1 0 ;  c '  +1) n (/ =  0 ; c i )  =  1/ len *Trnc c
We have now Trnc r—Trnc c.

Finally, it  must be shown that replacing Trnc c in c =  Tmc c; 4Fw by an
arbitrary reali7ation of _Is Trnc r does no harm to the minimality of Ipos c_ (The
verification that the result still satisfies r—c is straightforward and is omitted
here.) I f  Trnc r 0 ,  there is no choice but taking c =  0-H-w. Otherwise, put-
ting c =  c
T  - H -  
w  
=  
c '
T  
+ /
T
;  
-
H
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w
,  
w
e  
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e
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If we define

<m, n> =  lpos c
T ,we find # c'
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We can now simplify the expression for lpos c to
(n + 1 w  m A X ;  —› On, n + l + * w > )
E I (n  + 1 +  * w ;  >  M A X ;  ---> +  1, W > ) .
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This expression is non-strictly monotonic in <m, n> =  Ipos CT, so taking CT to
be a  realization o f  f  TrTIC r, which minimizes Ipos, guarantees that Ipos c is
minimized too. Summing up, we have

f  0 =  0;

f r  =  f r  - H - w  f  Tme r -
H
-  w  =  f  
r ;  - f t -  
w

After these lengthy preparations (but remember that most of the derivations
were aimed at exhibiting obvious facts), we can now formulate an "implemen-
tation" of f:

i f  0 0 ;

fie r fi c  r ;

This function satisfies f f  and i t  preserves the definedness of f ,  i.e., i f
J r  I V O ,  then i f  r 0 / 0 .  The standard technique of recursion elimination
gives the obvious iterative "eager" algorithm. No t e  also that J r  =  a /0
implies i f  r =  IVO. Th is is a consequence of f  I f ,  since then 0/0 f
ri f  r 0 / 0 .  I t  is easy to define a total variant of i f  by making -1-1- total, e.g.
by removing the conditions "4:hy; - ‹  MAX" from its definition.

Some final remarks to this example: The  length of the derivation is mainly
due to the small steps taken, but also to some degree to the presentation,
which emphA sized the algorithmic analysis and synthesis. I f  one were to
"guess" the definition of if, then the verification is somewhat shorter. Note, in
particular, that the need to handle U did not arise.

The final development phase was an example of "Formal Differentiation"
(or "Fin ite Differencing") (PAion [23], PAIGE and KOENIG [24]). Th is term
stands fo r a widely applicable technique for improving algorithms. I t  is of
special interest here because it  is often especially fit to  the improvement of
high-level algorithms that have been (semi-)automatically synthesized. Th e
essential idea is that o f "incremental" computation. L e t  x '  be the result of
applying a "small" variation to x. Fo r many functions f, it is more efficient to
compute the value of f x '  from the result of f x and the variation, than to com-
pute it  afresh. I t  can be seen that this is a special case of the "Divide and
Rule" paradigm. I f  x  is the result of sequentially making small variations,
then f x  can also be computed sequentially. A  challenging problem, not
addressed here, is to develop general algebraic techniques for deriving expres-
sions for "formal derivatives". Fo r a not very general but interesting algebraic
technique, see SIIARIR [26].

The eager strategy (also known as "greedy" strategy) is a special case of for-
mal differentiation in  the context o f optimization problems. A  higher-level
derivation would have run, schematically: (i) show that f  satisfies the condi-
tions of some "eagerness" theorem; (ii) apply the theorem to give i f  as imple-
mentation. There  appears to  be a  relationship with  matroid theory here
(KoRTE and Lovitsz [16]). I t  remains t o  be investigated i f  this can be
expressed conveniently in the framework pursued here. I f  so, it  would be a
good example of the "higher-level" theorems aimed at. A  different choice for
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the objective function (e g., minimize the sum of the squares of the white space
on each line) would have invalidated its applicability. Still,  an important gain
in efficiency is possible for many other objective functions (e.g., for the least-
squares objective), namely by applying the technique o f  dynamic program-
ming. A n  algebraic approach t o  t h is  technique c a n  b e  fo u n d  i n
CUNINGHAME-GREEN [7], and a  specific application o f  this approach in  an
algorithmic development in MEERTENS and VAN VLIET [20].

12. SECOND EXAMPLE: THE AMOEBA FIGHT SHOW
The following problem is of interest because it  is the first problem that I  tried
to tackle algebraically without already knowing a reasonable algorithm fo r
it—or seeing one immediately. I t  was passed on to me by Richard Bird. I t s
origin is, as far as I know, a qualifying exam question from CMU. Since I  do
not know the original formulation of the problem, it  is given here in a setting
of my own devising.

What with the rising prices of poultry, a certain showman has modernized
his Amazing Life-and-Death Rooster _Eight Show, and replaced his run of prize-
fighting cocks by a barrel of cannibalistic amoebae. A s  is well known, amoe-
bae have an engrossing way of tackling an opponent: it  is simply swallowed,
hide and hair.
1 I t  
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weight of the winner then increases by that of the loser. Each show stages a
tournament between n amoebae (where n is some positive natural number),
consisting o f a  sequence o f  n  —1 duels (two amoebae staged against each
other). A t  the end o f  the tournament, a ll that remains is  the final victor
(although it  encompasses, in  some sense, all losers). The  showman wishes to
maximize the throughput of his enterprise by minimizing the time taken by
one show. The time needed for a single duel, he has found experimentally, is
proportional to the weight of the lighter contestant (about one minute for each
picogram). A t  the start of a show, the amoebae are lined up in a microscopic
furrow. Each two adjacent fighters are kept apart by a removable partition.
(This set-up has been chosen thus because of limitations in the state of the art
of micro-manipulation. Fo r similar reasons, the initial arrangement cannot be
controlled ) Each time a partition is removed, the two amoebae now confront-
ing each other engage in a life-and-death duel.

FIGURE 3. Five amoebae lined up before the tournament (magnification: 500 X )

1. For  amoebae, this terminology is not entirely appropriate. T he hapless victim is, i n  fact,
engulfed by the attacker's bulging around and completely enveloping it, membrane and pseudopo-
dia.
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The showman thinks the best strategy is to  have, each time, the lightest
amoeba fight against its heaviest neighbour. H is  assistant suspects that it  is
better to choose the pair whose weight difference is largest. I n  the situation
sketched in  figure 3, these two strategies give rise to the same sequence of
duels. First ,  the showman removes partition 4, and Delta and Echo fight.
After 3 minutes, Echo has consumed Delta. Next, partition 3 is lifted, and
Charlie enters the arena against Echo. Th e  unequal battle takes 4  more
minutes. E ch o  weighs now, after having feasted on  Delta and Charlie,
15+3+4 =  22 picograms. The  next step is the removal of partition 1. I t
takes Bravo 5 minutes to gobble up Alpha. When the last partition is taken
away, the battle of the champions starts. I n  spite of Bravo's putting up a
heroic resistance, pseudopod after pseudopod wraps around its body, and after
19 exciting minutes the last visible part disappears into Echo's innards. The
whole tournament has taken 3+4+5+19 3 1  minutes. Unaware of the fact
that a different sequence of duels would have required less than half an hour,
the showman and his assistant start clearing the house for the next show.

Let us see if  we can do better. The process of amoeba fusion in a tourna-
ment creates a tree structure op top of the original sequence of amoebae. For
the example, that tree is A +B; + C+ D+ E ,  where A stands for Alpha, etc.
Each node corresponds to a sub-tournament. Since the structure of the tree
gives sufficient information to determine the tournament, even if  the elements
are not amoebae, i t  is simplest to  work directly with the sequence of the
weights of the amoebae. Le t  w t, for a given tournament tree t, stand for the
final weight of the champion of 2', d  t for its duration, and wd t for the pair
<w t, d  I) F o r  the trivial case of a one-amoeba "tournament" we have

wd);/ =  wd
o  w  
< w ,  
0 )
.

Then we find

329

wd t
i
, + t
R  
w
d
t
c
,  
x
w
d  
t
R
,

where the operation x is given by
<wL, dL) X  <wR, dR) < wL + wR,  4 + 4 + wL iw id •

(The operation x  is commutative, but, of course, not associative.) So, by the
homomorphism lemma, we can express wd by

wd X /  wd
o •The function d can be re-defined as 7r

2 w d .  I f  T  
s  i s  
t h e  
s e t  
o f  
a l l  
p o s s i b l
e  
t o u r -

nament trees that can be put on top of an initial configuration s, the problem
can be specified as: Determine I
d
/  T  s .  T h e  
p r o p e r t y  
c h a r a c t e r
i z i n g  
a  
m e m b
e r

t of Ts is s =  +/-* •t, in which the inserted operation +  introduces associa-
tivity. Then

T  r  •) :  L i
.

It would be possible, o f  course, to develop an algorithm for determining T,
after wh ich  we  would have an  algorithm fo r the whole problem. B u t
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computing Ts for large values of #s is very inefficient; the number of binary
trees with n endpoints is of the order ( e n  —312 ). I t  will turn out, moreover,
that we do not need an explicit construction of Ts in the derivation. I t  is also
obvious that dynamic programming gives us a polynomial algorithm. I n  such
cases it is generally easy to transform an algorithm for a function of the form
I /  P  ( =  fl y / )  t o  an algorithm for I
f
/ .  T h e r e f o r e ,  
w e  
c o n c e n t r a t
e  fi r s t  
o n

simplifying d .  T.
Let us first t ry some simple cases. I n  minimi7atiOn problems such as the

present one, it  often pays off to switch to a seemingly more conventional alge-
braic notation that exploits the algebraic properties of the two operations I and
+ (CUNINGILAME-GREEN [7]). Fo r  not only are both associative and commu-
tative, but together they are also distributive: x  +y I z =  x +y; x  +z. I f  we
denote the operation +  the way a multiplicative operator is usually written in
mathematical formulae, namely by juxtaposition of its operands (so we write
"xy" instead of " x +  y"), and we use then the—now free—symbol " + "  to
denote the operation I, then the distributive property referred to above is writ-
ten as x (y+ z ) =  xy+xz, in  which "multiplication" takes precedence over
"addition". Th is is purely a notational convention, but the advantage is that
we can apply our experience in handling and simplifying formulae of this kind.
Unconventional identities, however, are x0  =  Ox =  x (since the meaning is
still addition) and x+0  =  0 + x  =  0 (in which it is assumed that all numbers
involved are non-negative; a property preserved by the two operations). So  we
have, in particular, x +xy =  x0 + xy  =  x (0 + y )  =  x0  =  x: a term cancels
other terms of which it is a factor. The special case x +x =  x of the identity
x +xy =  x expresses the fact (which we knew already, o f  course) that the
operation +  is  idempotent Th e  expression fo r x  i n  this new notation
becomes now:

<wL, d d  X <wa dR> =  <wzwa, ckcitawt.+wR)> •

If the initial amoeba weight configuration is 1;)
1
, t h e  d u r a t i o n  
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= (wi +w2)(wily2+w3) and d t2 =  (W2 +W3)(W1 W2W3). So the short-
es t t o u r n a m e n t  t a k e s  t i m e  ( w i  +  W2 )(W  1 W2 + W 3 )  +  (W2 +  W3)(W1 +  W2W3)-
After distribution, we obtain the formula
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•
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that we obtain, fo r a general configuration of n weights, the "sum" o f  a ll
"products" of the members of each subset of size n —1 of the set of amoebae.
First, we return to the notation using " + "  for addition, and "4," for taking the
minimum. A n  expression like (w
i +  w  2 ) 1 ( w  
1
+  w  3
) 1 ( w  
2  
+  
w  3
)  
c a n  
b e  
r e w r i
t -

ten thus:
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(w 1 --
E
w2 
) 1
( w  
1  
-
1
-
w 3
) 1
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)
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w 3 ;  - -
w 3 )
1
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w
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)
1
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w
2
-
F
w
3
;  
=

WI +w2+w3;

In the general case, we expect to find
ci• T s =  + /s;  —t/s .

A moment's reflection will show why this is a lower bound for the duration of
any tournament on s. Fo r in a tournament, each contestant but one is eaten,
and its weight is then counted at least once. So the best possible is that each
weight of the less fortunate contestants is counted exactly once, and that the
one contestant not counted is as heavy as they come. The next question is if
we can prove that this formula is correct (and not only a lower bound) for the
general case. Fo r this, we do not need the full-fledged expression for T s, but
only a simple property:

The tree t
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First we  prove, by induction, that we have indeed a  lower bound. L e t
t =  T  s =  t
L
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R
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Next, we must show that this lower bound is attainable (which is trivial for a
single amoeba). The method is again by induction. Write  s =  + s ' + c v „ .
If we take for t
R a  d -
m i n i m i
7 i n g  
m e m
b e r  
o
f  
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s
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+
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using the hypothesized formula for d t
R
,  t h e  e x p r e s s i o n+ ( ± / s ' +
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Similarly, taking t
L  =  i
d
/ T ; o
1
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1/d*T s <  d + t R ;  t
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,
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(± / s ;  — 1 / s ' + ) ( + / s ;  —1/1
-
v1 + s ' )  =
+/ s  —(1/ s ' + '1;1„; + s ' )  =  +/ s ;  —

The proof shows that it is possible to organin the tournament such that (a)
an amoeba of (initially) maximum weight will emerge as champion and (b) the
loser of each duel is putting up its first appearance (and so is not burdened by
the weight of any fellow amoebae it  has devoured). I t  follows immediately
from (a) and (b) that each amoeba, except the one destined to be champion,
enters the stage only against the future champion. Conversely, i t  is now
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obvious that any tournament with this property is optimal. Th e  step from
here to a linear-time algorithm is simple, i f  not trivial. One  possible algo-
rithmic formulation is

T s t s ,

where t is defined recursively by

t 1
.
4 '
;  
;

t 1 ; 1
1
-1 -s
1
-1 -- ;
v '  
(
w
l
<
m
R
;  
1
.
1
)
'  
1
+
1  
R
)  
(
w
,
,
-
‹
m
i
,
;  
t  
L
;

where L  -= 1 / L ,  R  s '  m
R  ,  1 / R .

The correctness follows directly from the preceding proof, since it  has been
shown that dt s 1 / d • T  s.

Our showman is probably more interested in a simple method that tells him
when to lift which partition, than in determining a tree. I t  should be obvious
that we can advise him to remove, each time, any partition keeping the heavi-
est amoeba apart from a neighbour. I t  is not hard to derive this formally from
the given expression for t.

13. CONCLUSION
An attempt has been made here to convince the reader that the ideal of a dis-
cipline of "Algorithmics" can be realized. I f  the account was possibly uncon-
vincing, then, I  suspect, a major culprit is perhaps the shock of being exposed
to a set of unfamiliar squiggles. I n  my first endeavours, exploring the sugges-
tions of BIRD[4], I  found that the only way to proceed was to translate the
formulae continually into familiar "operational" concepts. No w,  after having
played with these notations for some time, I  find myself applying transforma-
tions without being conscious of an operational meaning. The reader is invited
to try and undergo the same experience. A  good starting point is to derive

-1-/ +/ (1<tP?)• •

This is a meaningful and useful transformation; the two formulae are readily
translated into "pidgin ALGOL", and the resulting programs are each about 10
lines long.

Much work has to be done to develop the current set of concepts and nota-
tions beyond the initial attempts presented here. Important points are the
discovery and formulation of "algebraic" versions of higher-level programming
paradigms and strategies, and the development of techniques to assess some-
thing like the concrete "complexity" o f  an expression in  the absence o f  an
operational model in  which time and space are meaningful notions. Othe r
issues to be investigated are the introduction of infinite objects, o f ways to
express some form of concurrency, and of suitable notations for handling alge-
braically more complex structures than the ones dealt with here.
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