
From B to ABC: the Salient Changes

Lambert Meertens
CWI

The past year, we have been working hard on the revision from B to ABC, making
an inventory of proposed changes (using the experience collected over several
years of use) and debating their pros and cons. There are two problems in that kind
of undertaking. One is that new proposals may have unexpected drawbacks, and
so you must be careful in adopting changes, more so than for a first ‘trial’ version
of a language. This danger can be minimised by only considering minor changes,
and in fact we felt no urge to do otherwise, since we were already unreasonably
happy with unrevised B and only wanted to give a final high polish. The second
problem is that two or more nice suggestions, fine enough by themselves to be
voted in by acclamation, may be incompatible if taken together. Here, it is a good
thing to ‘revise by repeated approximation’: take preliminary decisions on the
proposals, and let the result simmer for some time to see where conflicts arise,
revise the revision again etc. until stability.

We think we have now reached a point of stability, more or less. Not fully, since
(a) we are still open to further input, especially if it does not entail a complete
upheaval of everything that B stands for, and (b) we decided to categorise the
changes in three classes: ‘Hurry’, ‘Nice’, and ‘Wait’. This has to do with the fact
that we want to bring out a next release of our system, as soon as possible, that
understands (revised) ABC.

Now, some – in fact, not a few – of the proposed changes are so minor that it is hard
to explain the difference with the current situation. These may have to do with be-
haviour in marginal situations for which user-oriented semantic descriptions, like
in The B Programmer’s Handbook, are naturally ambiguously phrased. To give
one example, in order to allay the reader’s now piqued curiosity: The Handbook
does not specify where the extra space character should go if a text of even length

1

is centred in a field of odd length, as in "at"><7. This is defined in the much
more precise Draft Proposal, the Holy Writ for implementers, and there is now a
proposal to make a change there. We do not feel compelled to implement such
minor changes in the first ABC’d release of the system. Therefore, this change
has status: ‘Wait’ – that is, no ‘Hurry’. Some other proposed changes are not that
minor, but are strictly ‘upwards compatible’: they do not invalidate any existing B
code, but impart a meaning to hitherto undefined things. This refers both to cer-
tain new syntactic forms, as to semantic extensions of existing constructs. Here,
again, we felt free to confer the status ‘Wait’ to the proposals.

Other proposed changes are very visible and so got the label ‘Hurry’. Here, exist-
ing B code is invalidated, either because the syntax has changed, or because the
syntax is still the same but the semantics is different. Of course, we have tried
to minimise such changes, especially in the group of ‘same form, different con-
tent’. If we adopted one of those, we felt the merits to be substantial enough to
outweigh the inconvenience to the existing user community (and don’t forget that
we are big-time users of B ourselves). To minimise the pain, the next release will
in some cases still accept the old syntax style next to the new one, similar to the
behaviour of the (then only) C compiler when the syntax of, among others, initial-
isations was changed. Possibly, this release will also come with some ‘off-line’
conversion tool. (The first B implementation pulled another stunt in this area. It
was finished earlier than the Draft Proposal, and was updated along with the final
polishing of that document. If it recognised a piece of syntax that got changed
recently, it not only accepted the obsolete form, but recast it into current syntax
and stored that back. Very convenient, that; we shall probably not go as far out of
our way this time.)

The proposals that we categorised as ‘Wait’ are generally of minor import to the
user, true trifles. Some changes, however, among those of the strictly-upwards-
compatible kind, are such improvements that we would really like to bring them
out in the very first next release. These constitute the ‘Nice’ category. Whether we
succeed in incorporating all of them, we doubt, but most will be in there. (There
are degrees of ‘niceness’ that will determine our priorities.)

This long, but perhaps interesting by itself, digression was needed to explain what
I meant with ‘stability’. There is another categorisation: proposals can be in the
(currently) ‘Accepted’ or ‘Rejected’ sets, but also in the (as of yet) ‘Undecided’
set, which is where they all were, initially. The point where we are now, is that
all proposals still in the Undecided category have the label ‘Wait’: whatever the

2

final decision, it will not influence the next release of the system, nor the wording
in user-oriented documentation. In most of these cases, the proposal is still un-
decided because it appears to have possible ramifications that we could not quite
fathom – safer, then, to let it stay in limbo. If one of these Waiters turns out, on
further examination, to bite a Nice or even Hurried change, it will be summarily
rejected.

Some statistics. We started out with a collection of some 69 proposals. (Some-
times it is a matter of taste if you count something as one single proposal or as
two closely related proposals.) Of these, 36 are now Accepted and 15 Rejected,
leaving 18 Undecided. Of the thirty-six chosen ones, 22 are Hurried, 7 are Nice,
and another 7 lie in Wait.

Below, I only describe the more important changes. (Some of the Accepted–Hurry
ones are too petty to mention here. A full account is available on request.)

• The most prominent change, one that will in fact influence every existing B
program, is that HOW´TO will henceforth be spelled HOW TO.

• Not less dramatic is the following change: instead of YIELD we have now
HOW TO RETURN, and instead of TEST similarly HOW TO REPORT. So all units
will start with HOW TO. It is no longer appropriate to call command defini-
tions ‘how-to-units’ then, and we shall rename them ‘command-definitions’.
Instead of ‘yield-units’ we have then ‘function-definitions’, and ‘test-units’
become ‘predicate-definitions’.

• The signs ‘́ ’ and ‘"’ are allowed in names (tags) and keywords, and spaces
are not. In current B, the ‘́ ’-sign provides a way to introduce pseudo-
spaces, as in ‘last´time´seen’. In the future, a ‘.’-sign can be used for
the same purpose: ‘last.time.seen’. This is an addition: the use of ‘ ’́
and ‘"’ stays allowed since it is handy for such locutions as ‘x ’́. For a
long time, we hesitated between the signs ‘.’, ‘_’ and ‘˜’. The decisive
advantage of the ‘.’ is that it is a lower-case character on all keyboards
(except the Struldbrugg-YUC models).

• Moreover, the name of a user-defined command will no longer consist of
its first keyword, but of all keywords together preceding the first parameter,
if any (and otherwise simply all keywords). So then users can define and
use commands like PUT OFF task. The predefined command SET´RANDOM
is also changed into SET RANDOM. A further proposal is to consider the
whole ‘keyword skeleton’ as determining the command name, allowing

3

PUT a OVER b next to PUT a IN b. This last business is Undecided: we
fear adverse effects on the friendliness of the editor.

• Comparison between exact and approximate numbers will be changed in
accordance with the proposal in issue 4 of The B Newsletter. Henceforth,
root 4 = 2 shall succeed.

• The parameter mechanism for user-defined commands, currently call-by-
name as in ALGOL 60, will be replaced by copy-restore. Side effects of
evaluating or locating a parameter (which, because of the scratchpad-copy
semantics of expressions, are already restricted to run-time errors, I/O, or
changing the state of the pseudo-random-number generator) are thus in-
curred only once. The main change, therefore, is in the reduction of alias-
ing. Moreover, putting different values in actually identical output parame-
ters will be a (dynamically) signalled error, exactly as happens already in

PUT 1, 2 IN i, i .

It will remain an error to put a value in a formal parameter that does not
correspond to an actual target parameter.

• Also, multiple (collateral) names will be allowed as formal parameters in a
command definition, e.g. HOW TO SWAP a, b, so that the parameter mech-
anisms of commands and of functions and predicates are almost completely
unified – differences are that the parameters of functions and predicates are
always copied in, and that there is no ‘restore’ (which would be invisible
anyway because of the scratchpad copying), so that the formal parameter
can be used as a local target, even if the actual parameter is a formula. If
one of the fields of a multiple formal parameter is assigned to, but not all
fields, then either the actual must be multiple as well, or it may be single
but must then be already initialised at the time of the call. This prevents the
creation of compound locations not all of whose fields have a value.

• A new command PASS will serve to specify the dummy (null) action. Empty
command-suites will no longer do: each command-suite must contain at
least one command. Next to improving clarity, this also does away with the

4

problem that an indentation error, as in

IF x > 1:
PUT x-1 IN x

gets uncaught; this will cause a syntax error in the future. (In fact, the editor
will leave a hole for the missing command-suite.)

• The PARSING construct will be replaced by a somewhat less general, but in
other respects more powerful and in any case more user-friendly construct,
although probably not in the next release. Even then, PARSING will be gone
(at least from the documentation; it may temporarily remain in the system
to alleviate switch-over problems). The big problem with PARSING was that
it was so excruciatingly slow that no-one in their right minds used it in the
first place. This was not a matter of a more efficient implementation; its
inefficiency is inherent to its semantics. The new form, then, will be a FITS
test of the form

tex FITS inf ,

in which tex is a textual-expression and inf is a new animal, dubbed an
‘input-format’. May some examples suffice instead of a formal definition:

"$ 123.45" FITS "$ˋx EG 0ˋ"

will succeed and put the value (number) 123.45 in x. This x is a bound tag,
of course: its scope is the part that is reachable only by dint of the success
of the test.

"f 123.45" FITS "ˋcur RAWˋ̀ x EG 0ˋ"

succeeds as well, and also puts the text "f " in cur.

line FITS "ˋk RAWˋ: ˋi RAWˋ"

has the same meaning as the test in current B:

SOME k, c, i PARSING line HAS c = ": "

5

except, of course, that the dummy target c has gone. Thus, the first occur-
rence of ”: ” is used to split the text contained in line. The FITS construct
fails if no parsing will make the expression ‘fit’ the input-format; moreover,
the parsing strategy is ‘greedy’, just as with the present PARSING construct.

If the body of the input-format consists of a single ‘input-conversion’, the
enclosing quotes may be dropped. So, to convert a text to a pair of numbers,
the following test suffices:

t FITS x, y EG 0, 0

There are some murky matters not yet completely cleared up (like whether

"12321" FITS "ˋx EG 0ˋ2ˋy EG 0"

is in error or puts 1, 321 in x, y, or perhaps 123, 1), which is one of the
reasons why this might not yet show up in the next release.

• Input-formats are also allowed following READ. In fact, the existing forms
READ x EG y and READ x RAW become then special cases of this. The exe-
cution of a command like

READ "Article: ˋa RAWˋ (Code: ˋc EG 0ˋ)"

will prompt the user with

Article: ? (Code: ?)

Again, this is not expected for the next release.

• The command CHOOSE will be replaced by a monadic function choice, mak-
ing it possible to do something like

TAKE choice exits

in a single command. Similarly, DRAW is replaced by a zeroadic function
random, allowing the use of expressions like

(root(-2*log(1-random)))*sin(2*pi*random)

6

(which has a normal Gaussian distribution).

• The following kind of iteration may be added:

FOR [k]: i IN table: ...

to allow an easy way to traverse the keys and associated items of a table
together. Although rather nice, this change is still on the waiting list of
undecided proposals.

• The E in the floating-point number format is going to be replaced by a lower-
case e. The primary reason for this change is the improved legibility; a sec-
ondary reason is the disappearance of an anomaly in the editor to cope with
the case of commands with a keyword E. Furthermore, on input, numbers
in this format will be handled as exact numbers; thus, 1e9 evaluates to the
same number as 1*10**9. If an approximate number is intended, the user
has to indicate this explicitly, as in ˜1e9.

• We have noticed that errors of the form exemplified by

SELECT:
line|8 = "CONTINUE": GO ON
line|3 = "BYE": QUIT
ELSE: UNKNOWN COMMAND

are rather more common than we had anticipated. The problem is that if
line contains the text "BYE", then the evaluation of line|8 causes a run-
time error. In ABC, t|n will be equivalent to t|min{n; #t} in current B,
so that the code fragment above works as expected. Similarly, t@n will be
equivalent to t@max{n; 1}. If n < 0, the evaluation of t|n will still signal
an error, and similarly for n > #t+1 and t@n.

• The evaluation of a list-display like {1..n} will no longer signal an error
in ABC if n < 0; its value is simply the empty list. So, unlike in current B,
the following is a safe way to compute the intersection of two non-empty
ranges of integers r and s:

{max{min r; min s}..min{max r; max s}}

This change, as well as the following, is only ‘Nice’.

7

• The following will all be valid ABC:

{1..i-1; i+1..n}
{-a..a; -b..b}
{1; 2; 4..9; 5; 11}

• The priorities of the operators will be slightly changed, allowing, among
others, the currently not permitted

2 round x >> 7

but ruling out the currently allowed

t|2ˆˆn

(and some ambiguities permitted by the Draft Proposal as well).

• The name of the function atan will be changed to arctan. Possibly, also
arcsin and arccos will be added. Instead of dyadic x atan y, there
will be angle(x, y), and then a Nice addition is its natural companion
radius(x, y), computing the same as root(x**2+y**2), but offering for
many applications a far more convenient diction. In particular, if coordi-
nates (x, y) are stored as table items, say, you can use expressions like
angle t[i] without having to unpack the compound first. The value of
angle(0, 0), unlike that of 0 atan 0 in unrevised B, is not undefined, but
zero.

• Another proposal in the Nice category: to facilitate computation with de-
grees instead of with radians, dyadic versions of all trigonometric and cy-
clometric functions are added in ABC. The first parameter is the value of
a full circular arc expressed in the units desired. For example, since a full
circle is 360◦, use 360 sin 15 to compute the sine of 15◦.

• Some new functions will simplify text handling, especially, but not only,
user-supplied interactive input text. To convert to lower and upper case, we

8

have in ABC:

lower "E.E. Cummings"
upper "L19: cvtbl *-12(fp),r0"

returning respectively:

"e.e. cummings"
"L19: CVTBL *-12(FP),R0"

The function stripped will return its argument with all leading and trailing
blanks removed. To see if the reply to a question is any of "yes", "Y",
" yep!!", etc., it suffices to test if

(stripped lower reply)|1 = "y"

Nice would be a function words, or split, that takes a text and splits it (on
the blanks) into a sequence of words.

• The formula n th´of s, with its attendant abominations like 2 th´of s
and the frequent mistake n´th of s, will be traded in for s item n. The
order of the parameters is more in line with other selections like s[n] and
s@n|1.

We have also designed several extensions to ABC, for example for matrix/vector
functions (see issue 4 of The B Newsletter) and for graphics. These will not be in
the next release. In fact, if they will be offered in the future, they will be possibly
be separate additions with their own manuals that people may or may not acquire.

Going beyond this, we are also considering extensions that are primarily intended
for applications designers. Among these are a facility for dealing with data entry
(a generalisation of the FITS test), and also a possibility for adding new, user- (or
in fact designer-) defined, types (that are atomic to the end-user).

There is a designed addition that we have not yet classified; maybe it should be
incorporated in ‘general’ ABC and not be part of an extension. It is the addition
of a new sequence type. Although it is possible to use tables to model sequences,
some natural operations on sequence are difficult to handle; in particular, joining
two sequences and extracting a (contiguous) subsequence. The proposed addition
would introduce sequences as arbitrarily long, ordered but not sorted, collections

9

of items of the same type. A possible syntax for sequence-displays is that of

{0;; 1;; 0;; 2;; 0;; 1;; 0;; 3} ,

that is, like a list-display except that the semicolons are doubled. Not an obvious
candidate for a beauty contest, but we haven’t been able to think of anything nicer
that does not conflict with existing syntax. The notation {}, already doing double
duty for empty lists and tables, would acquire a third meaning: that of an empty
sequence. The displays {a} and {a..b}, currently only lists, would also get an
extra meaning: they would also be acceptable sequence-displays. The static type-
finding algorithm is easily amended to cope with this. The generic operations
on texts, lists and tables (iterating with FOR or with SOME/EACH/NO, the function
item and the monadic and dyadic versions of #, min and max) would extend to
sequences. Other operations on sequences would be: the join function ˆ and
the repeat function ˆˆ, and the trims @ and | (now only defined on texts). A new
monadic function items can be used to turn a text, list or table into a sequence; the
effect of FOR i IN tlt: ... is the same as that of FOR i IN items tlt:
Like keys, this function takes constant time, independent of the size of its param-
eter. (Using items on a sequence is also permitted; the result is the same as the
parameter supplied.)

Although an obvious possibility to consider, it will probably not be the case that
texts are a special case of sequences. There is a difference between "abc" and
{"a";; "b";; "c"} since identifying these would imply that "a" is the same as
{"a"}, which looks undesirable. But this needs further study; maybe there is a
satisfactory and consistent solution to this.

10

