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1 Introduction

1.1 The Abstraction-Specialisation Cycle

The development of science proceeds in a cycle of activities, the so-called ab-
straction-specialisation cycle. Abstraction is the process of seeking patterns or
commonalities, which are then classified, often in a formal mathematical frame-
work. In the process of abstraction, we gain greater understanding by eliminating
irrelevant detail in order to identify what is essential. The result is a collection of
general laws which are then put to use in the second phase of the cycle, the spe-
cialisation phase. In the specialisation phase the general laws are instantiated to
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specific cases which, if the abstraction is a good one, leads to novel applications,
yet greater understanding, and input for another round of abstraction followed
by specialisation.

The abstraction-specialisation cycle is particularly relevant to the development of
the science of computing because the modern digital computer is, above all else,
a general-purpose device that is used for a dazzling range of tasks. Harnessing
this versatility is the core task of software design.

Good, commercially viable, software products evolve in a cycle of abstraction and
customisation. Abstraction, in this context, is the process of identifying a single,
general-purpose product out of a number of independently arising requirements.
Customisation is the process of optimizing a general-purpose product to meet
the special requirements of particular customers. Software manufacturers are
involved in a continuous process of abstraction followed by customisation.

1.2 Genericity in Programming Languages

The abstraction-specialisation/customisation cycle occurs at all levels of soft-
ware design. Programming languages play an important role in facilitating its
implementation. Indeed, the desire to be able to name and reuse “programming
patterns” —capturing them in the form of parametrisable abstractions— has
been a driving force in the evolution of high-level programming languages to the
extent that the level of “genericity” of a programming language has become a
vital criterion for usability.

To determine the level of genericity there are three questions we can ask:

– Which entities can be named in a definition and then referred to by that
given name?

– Which entities can be supplied as parameters?
– Which entities can be used “anonymously”, in the form of an expression, as
parameters? (For example, in y = sin(2×x), the number resulting from 2×
x is not given a name. In a language allowing numeric parameters, but not
anonymously, we would have to write something like y = sin(z) where z =
2× x.)

An entity for which all three are possible is called a first-class citizen of that
language.

In one of the first high-level programming languages, Fortran (1957), proce-
dures could be named, but not used as parameters. In Algol 60 procedures
(including functions) were made almost first-class citizens: they were allowed
as parameters, but only by name. In neither language could types be named,
nor passed as parameters. In Algol 68 procedures were made true first-class
citizens, making higher-order functions possible (but not practical, because of
an awkward scope restriction1). Further, types could be named, but not used as
parameters.

1 Anything that —in implementation terms— would have required what is now known
as a “closure”, was forbidden.
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Functional programming languages stand out in the evolution of programming
languages because of the high-level of abstraction that is achieved by the combi-
nation of higher-order functions and parametric polymorphism. In, for example,
Haskell higher-order functions are possible and practical. But the level of gener-
icity still has its limitations. Types can be defined and used as parameters, but
. . . types can only be given as parameters in “type expressions”. They cannot
be passed to functions. The recent Haskell-like language Cayenne [2] which ex-
tends Haskell with dependent types does allow types as arguments and results
of functions.

In these lecture notes we introduce another dimension to the level of abstraction
in programming languages, namely parameterisation with respect to classes of
algebras of variable signature. This first chapter is intended to introduce the key
elements of the lectures in broad terms and to motivate what is to follow. We
begin by giving a concrete example of a generic algorithm. (The genericity of
this algorithm is at a level that can be implemented in conventional functional
programming languages, since the parameter is a class of algebras with a fixed
signature.) This is followed by a plan of the later chapters.

1.3 Path Problems

A good example of parameterising programs by a class of algebras is provided
by the problem of finding “extremal” paths in a graph.

Extremal path problems have as input a finite, labelled graph such as the one
shown below.
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Formally, a directed graph consists of a finite set of nodes, V , a finite set of edges,
E, and two functions source and target, each with domain E and range V . If
source e is the node x and target e is the node y, we say that e is from x to y. (In
the figure the nodes are circled and an edge e is depicted by an arrow that begins
at source e and points to target e.) A path through the graph from node s to node
t of edge length n is a finite list of edges [e1, e2 , . . . , en] such that s = source e1
and t = target en and, for each i, 0 < i < n, target ei = source ei+1. A graph is
labelled if it is supplied with a function label whose domain is the set of edges, E.



Generic Programming 31

In an extremal path problem the edge labels are used to weight paths, and
the problem is to find the extreme (i.e. best or least, in some sense) weight of
paths between given pairs of nodes. We discuss three examples: the reachability
problem, the least-cost path problem and the bottleneck problem.

Reachability The reachability problem is the problem of determining for each
pair of nodes x and y whether there is a path in the graph from x to y. It is
solved by a very elegant (and now well-known) algorithm discovered by Roy [42]
and Warshall [46]. The algorithm assumes that the nodes are numbered from 1
to N (say) and that the existence of edges in the graph is given by an N×N
matrix a where aij is true if there is an edge from node numbered i to the node
numbered j, and false otherwise. The matrix is updated by the following code.
On termination aij is true if there is a path from node i to node j of edge length
at least one; otherwise aij is false.

for each k, 1 ≤ k ≤ N

do for each pair (i,j), 1 ≤ i,j ≤ N

do aij := aij ∨ (aik ∧ akj )

end for

end for

(The order in which the nodes are numbered, and the order in which pairs of
nodes (i,j) are chosen in the inner loop, is immaterial.)

The reachability problem is an extremal path problem in which all edges have
the same label and all paths have the same weight, namely true.

Least-Cost Paths About the same time asWarshall’s discovery of the reachability
algorithm, Floyd [17] discovered a very similar algorithm that computes the cost
of a least cost path between each pair of nodes in the graph. The algorithm
assumes that the matrix a is a matrix of numbers such that aij represents the
least cost of traversing an edge from node i to node j. If there is no edge from i
to j then aij is ∞. The cost of a path is the sum of the costs of the individual
edges on the path. Floyd’s algorithm for computing the cost of a least cost path
from each node to each other node is identical to the Roy-Warshall algorithm
above except for the assignment statement which instead is:

aij := aij ↓ (aik + akj )

where x ↓ y denotes the minimum of x and y.

Bottleneck Problem A third problem that can be solved with an algorithm of
identical shape to the Roy-Warshall algorithm is called the bottleneck problem.
It is most easily explained as determining the best route to negotiate a high
load under a series of low bridges. Suppose an edge in a graph represents a road
between two cities and the label is the height of the lowest underpass on the
road. The height of a path between two nodes is defined to be the minimum
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of the heights of the individual edges that make up the path. The problem is
to determine, for each pair of nodes i and j, the maximum of the heights of
the paths from node i to node j (thus the maximum of the minimum height
underpass on a path from i to j).

The bridge height problem is solved by an algorithm identical to the Roy-
Warshall algorithm above except for the assignment statement which in this
case is:

aij := aij ↑ (aik ↓ akj )

where x ↓ y denotes the minimum of x and y and x ↑ y denotes their maximum.
(In the case that there is no edge from i to j then the initial value of aij is 0.)

A Generic Path Algorithm If we abstract from the general shape of these three
algorithms we obtain a single algorithm of the form

for each k, 1 ≤ k ≤ N

do for each pair (i,j), 1 ≤ i,j ≤ N

do aij := aij ⊕ (aik⊗akj )

end for

end for

where ⊕ and ⊗ are binary operators. The initial value of aij is the label of the
edge from i to j if such an edge exists, and is a constant 0 otherwise. (For the
purposes of exposition we assume that there is at most one edge from i to j for
each pair of nodes i and j.) The algorithm is thus parameterised by an algebra.
In the case of the Roy-Warshall algorithm the carrier of the algebra is the two-
element set containing true and false, the constant 0 is false, the operator ⊕ is
disjunction and the operator ⊗ is conjunction. In the case of the least-cost path
problem the carrier is the set of positive real numbers, the constant 0 is ∞, the
operator ⊕ is the binary minimum operator, and the operator ⊗ is addition.
Finally, in the case of the bridge height problem the carrier is also the set of
positive real numbers, the operator ⊕ is the binary maximum operator, and the
operator ⊗ is minimum.

Correctness The above generic algorithm will compute “something” whatever
actual parameters we supply for the formal parameters ⊕, ⊗ and 0, the only
proviso being that the parameters have compatible types. But, that “something”
is only guaranteed to be meaningful if the operators obey certain algebraic prop-
erties. The more general transitive closure algorithm shown below

for each k, 1 ≤ k ≤ N

do for each pair (i,j), 1 ≤ i,j ≤ N

do aij := aij ⊕ (aik ⊗ (akk )∗ ⊗ akj )

end for

end for
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is guaranteed to be correct if the algebra is regular [6,8]2. By correctness is meant
that if initially

aij = Σ〈e: e is an edge from i to j: label e〉 ,

where Σ is the generalisation of the binary operator ⊕ to arbitrary bags, then
on termination

aij = Σ〈p: p is a path of positive edge length from i to j: weight p〉

where weight p is def ined recursively by

weight [ ] = 1

for the empty path [ ], and for paths e : p (the edge e followed by path p)

weight (e : p) = (label e) ⊗ (weight p) .

Exercise 1.1 Suppose that the edges of a graph are coloured. (So there are
blue edges, red edges, etc.) We say that a path has colour c if all the edges on
the path have colour c. Suggest how to use the above algorithm to determine
for each pair of nodes x and y the set of colours c such that there is a path of
colour c from x to y in the graph.

2

1.4 The Plan

The difference between executability and correctness is an important one that
shows up time and time again, and it is important to stress it once more. The
transitive closure algorithm presented above can be executed provided only that
instantiations are given for the two constants 0 and 1, the two binary operators
⊕ and ⊗, the unary operator ∗, the number N and the matrix a. An imple-
mentation of the algorithm thus requires just the specification of these seven
parameters. Moreover, if we bundle the first five parameters together into an al-
gebra, all that is required for the implementation is the signature of the algebra:
the knowledge that there are two binary operators (with units) and one unary
operator. For the correctness of the algorithm much, much more is needed. We
have to supply a specification relative to which correctness is asserted, and es-
tablishing correctness demands that we require the algebra to be in a certain
class of algebras (in this case the class of regular algebras).

2 Without going into complete details, an algebra is regular if it has two constants 0
and 1, two binary operators ⊕ and ⊗, and one unary operator ∗. The constants 0 and
1 and operators ⊕ and ⊗ should behave like 0, 1, + and × in real arithmetic except
that × is not required to be commutative, and + is required to be idempotent. The
∗ operator is a least fixed point operator. The three algebras mentioned above are
all regular, after suitably defining the constant 1 and defining a∗ to be 1 for all a.
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As for conventional programs, the specification is absent from a generic pro-
gram’s implementation. Nevertheless, it is the complete process of program con-
struction —from program specification to a systematic derivation of the final
implementation— that will dominate the discussion in the coming pages. Our
aim is not to show how to derive functional programs but to show how to derive
functional programs that are correct by construction. To this end we borrow a
number of concepts from category theory, emphasising the calculational proper-
ties that these concepts entail.

Algebras, Functors and Datatypes The emphasis on calculational properties be-
gins right at the outset in chapter 2 where we introduce the notion of a functor
and an initial algebra and rela te these notions to datatypes.

An algebra (in its simplest form) is a set, called the carrier of the algebra, to-
gether with a number of operations on that set. A Boolean algebra, for example,
has as carrier a set with two elements, commonly named true and false and binary
operations ∧ (conjunction) and ∨ (disjunction) and unary operation ¬ (nega-
tion). The signature of the algebra specifies the types of the basic operations in
the algebra.

In order to implement a generic algorithm we need to provide the compiler with
information on the signature of the operators in the algebra on which the algo-
rithm is parameterised. In order to calculate and reason about generic algorithms
we also need a compact mechanism for defining signatures. The use of functors
provides such a mechanism, compactness being achieved by avoiding naming the
operators of the algebra. The use of functors entails much more however than
just defining the signature of an algebra. As we shall see, a datatype is a func-
tor and inductively defined datatypes are (the carriers of) initial algebras. The
concepts of functor, datatype and algebra are thus inextricably intertwined.

PolyP Following the discussion of algebras and datatypes, we introduce PolyP,
an extension of the Haskell programming language in which generic functions
can be implemented.

The name of PolyP is derived from “polytypic programming”, polytypic pro-
grams being generic programs defined on a particular class of datatypes, the
so-called regular datatypes. Writing programs in PolyP means that one can get
hands-on experience of generic programming thus reinforcing one’s understand-
ing and, hopefully, leading to further insights.

A Unification Algorithm Chapter 4 presents a more substantial example of
generic programming — a generic unification algorithm. The basis for the al-
gorithm is a generic construction of a type representing terms with variables,
and substitution of terms for variables. The algorithm is implemented using
type classes in a style similar to object-oriented programming.
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Relations The discussion in chapters 2 and 3 is on functional programs. In
chapter 5 we outline how the concepts introduced in chapter 2 are extended to
relations, and we show how the extension is used in establishing one element of
the correctness of the generic unification algorithm.

There are several reasons for wanting to take the step from functions to relations.
The most pressing is that specifications are relations between the input and the
output, and our concern is with both specifications and implementations. Re-
lated to this is that termination properties of programs are typically established
by appeal to a well-founded relation on the state space. We will not go into ter-
mination properties in these lecture notes but the use of well-founded relations
will play an integral part in our discussion of one element of the correctness of
a generic unification algorithm in chapter 4.

Another reason for wanting to extend the discussion to relations lies in the
theoretical basis of generic programming. In chapter 5 we demonstrate how every
parametrically polymorphic function satisfies a so-called logical relation.

The final reason is why not? As we shall see, extending the theory to relations
does not significantly increase the complexity whilst the benefits are substantial.

1.5 Why Generic Programming?

The form of genericity that we present in the coming pages is novel and has
not yet proved its worth. Our goal is to stimulate your interest in exploring it
further, and to provide evidence of its potential value.

Generic programming has indeed, potentially, major advantages over “one-shot”
programming, since genericity makes it possible to write programs that solve a
class of problems once and for all, instead of writing new code over and over
again for each different instance. The two advantages that we stress here are
the greater potential for reuse, since generic programs are natural candidates for
incorporation in library form, and the increased reliability, due to the fact that
generic programs are stripped of irrelevant detail which often makes them easier
to construct. But what we want to stress most of all is that generic programming
is fun. Finding the right generic formulation that captures a class of related
problems can be a significant challenge, whose achievement is very satisfying.
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STOP (Specification and Transformation of Programs) project which ran for-
mally from 1988 to 1992. The project was particularly successful because of the
real spirit of cooperation among those participating. Project members (both of-
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Swierstra, Jaap van der Woude, Nico Verwer, Ed Voermans. Our thanks go to
all who made participation in the project such an enjoyable and stimulating
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Development of both practical applications of generic programming and the
underlying theory is continuing: see the bibliography for a selection of recent
(formally-published and web-published) papers.

2 Algebras, Functors and Datatypes

This chapter introduces the concepts fundamental to generic programming. The
first section (section 2.1) introduces algebras and homomorphisms between al-
gebras. In this section we see that datatypes (like the natural numbers) are also
algebras, but of a special kind. The presentation in section 2.1 is informal. In
section 2.4 we make precise in what way datatypes are special: we introduce the
all-important notion of an “initial” algebra and the notion of a “catamorphism”
(a special sort of homomorphism). The link between the two sections is provided
by the intermediate sections on functors. The first of these (section 2.2) provides
the formal definition of a functor, motivating it by examples from functional
programming. Then section 5 introduces further examples of functors forming a
class called the “polynomial functors”. Section 2.4 augments the class of poly-
nomial functors with so-called type functors; the resulting class is called the
class of “regular functors”, and generic programs defined over the regular func-
tors are called “polytypic” programs. The final section (section 2.5) presents an
elementary example of a polytypic program.

2.1 Algebras and Homomorphisms

In this section we review the notion of an algebra. The main purpose is to
introduce several examples that we can refer to later. The examples central to
the discussion are datatypes. At the end of the section we consider how we might
formalise the notion of an algebra. We recall a formulation typical of ones in texts
on Universal Algebra and remark why this is inadequate for our purposes. We
then present the definition of an algebra in category theory based on the notion
of a “functor” and outline how the latter expresses the content of the traditional
definitions much more succinctly and in a much more structured way.

Algebras An algebra is a set, together with a number of operations (functions)
that return values in that set. The set is called the carrier of the algebra. Here
are some concrete examples of algebras:

( IN , 0 , (+) ), with 0 :: 1→ IN , (+) :: IN× IN → IN
( IN , 0 , (↑) ), with 0 :: 1→ IN , (↑) :: IN× IN → IN
( IR , 1 , (×) ), with 1 :: 1→ IR , (×) :: IR× IR → IR
( IB , true , (≡) ), with true :: 1→ IB , (≡) :: IB× IB → IB
( IB , false, (∨) ), with false :: 1→ IB , (∨) :: IB× IB → IB
( IB , true , (∧) ), with true :: 1→ IB , (∧) :: IB× IB → IB
(A?, ε , (++)), with ε :: 1→A?, (++) ::A?×A?→A?

In the last line A? stands for the words over some alphabet A, with “++” denot-
ing word concatenation, and “ε” the empty word. This is, of course, basically
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the same algebra as (List A, [ ], (++)), the (finite) lists of A-elements with list
concatenation. Note that in the typing of the operations we use the notation
“source-type→ target-type”. In an algebra all operations have the same target
type3: its carrier. Note further that we use the “uncurried” view in which a bi-
nary operation takes a pair (2-tuple) of arguments and so has some type like
A×B→C. To make fixed elements, like 0 ∈ IN, fit in, they are treated here as
nullary operations: operations with a 0-tuple of arguments. This is indicated by
the source type 1, which in Haskell would be denoted as “()”. Sometimes we
will instantiate a generic program to a specific Haskell program, and in doing
so we will switch back to the curried view for binary operations, having some
type A→ (B→C), and to the view of nullary operations as plain elements, hav-
ing type A rather than 1→A. Conversely, going from a Haskell program to an
algebraic view, we will uncurry n-ary functions, n ≥ 2, and treat constants as
nullary functions.

The concrete algebras above were chosen in such a way that they all have the
same number of operations with the same typing pattern. They can be unified
generically into the following abstract algebra:

(A, e,⊕), with e :: 1→A, ⊕ ::A×A→A

So they all belong to the same class of algebras. An example of another class of
algebras is:

(IN, (+), (+1)), with (+) :: IN×IN→ IN, (+1) :: IN→ IN
(IR, (×), (×2)), with (×) :: IR×IR→ IR, (×2) :: IR→ IR
(A, ⊕ , f ), with ⊕ :: A×A→A, f :: A→A

Here, the first two are concrete, while the last is the generic algebra.

By just looking at an algebra, it is not possible (in general) to tell what class
of algebras it belongs to: a given algebra can belong to several different classes.
So the class information has to be supplied additionally. Take for example the
following class:

( IN , 0 , (+)), with 0 :: 1→ IN , (+) :: IN× IN → IN
( IN , 0 , (↑) ), with 0 :: 1→ IN , (↑) :: IN× IN → IN
(List IN, [ ], ( : )), with [ ] :: 1→List IN, ( : ) :: IN×List IN→List IN
( A , e , ⊕ ), with e :: 1→ A , ⊕ :: IN× A → A

The first two concrete algebras also occur in the first class treated above, but
the generic algebra reveals that this is a different class.

To give a concluding example of an algebra class:

(IN, 0 , (+1)), with 0 :: 1→ IN, (+1) :: IN→ IN
(IR, 1 , (×2)), with 1 :: 1→ IR, (×2) :: IR→ IR
(IB, true , (¬) ), with true :: 1→ IB, (¬) :: IB→ IB
(IB, false, (¬) ), with false :: 1→ IB, (¬) :: IB→ IB
(A, e , f ), with e :: 1→A, f :: A→A

3 We freely identify types and sets whenever convenient.
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A recursively defined datatype determines, in a natural way, an algebra. A simple
example is the datatype Nat defined by4:

data Nat = zero | succ Nat

The corresponding algebra is:

(Nat , zero, succ), with zero :: 1→Nat , succ :: Nat→Nat

This belongs to the last class mentioned; in fact, if we ignore the possibility of
infinite data structures —made possible by lazy evaluation— this is essentially
the same algebra as (IN, 0, (+1)). Another example is:

data Natlist = nil | cons IN Natlist

The corresponding algebra is:

(Natlist, nil, cons), with nil :: 1→Natlist, cons :: IN×Natlist→Natlist

This is basically the same as (List IN, [ ], ( : )). Both of these examples illustrate
the general phenomenon that a recursively defined datatype determines an alge-
bra in which the carrier of the algebra is the datatype itself, and the constructors
of the datatype are the operations of the algebra.

Homomorphisms A homomorphism between two algebras, which must be
from the same class, is a function between their carrier sets that “respects the
structure” of the class. For example, the function exp :: IN→ IR is a homomor-
phism with as source algebra (IN, 0, (+)) and as target algebra (IR, 1, (×)). In
this case, respecting the structure of this algebra class means that it satisfies the
following two properties:

exp 0 = 1
exp(x+ y) = (exp x)× (exp y)

Another example in the same class is length :: (A?, ε, (++))→ (IN, 0, (+)). (This
notation is shorthand for the statement that the function length :: A?→ IN is a
homomorphism from source algebra (A?, ε, (++)) to target algebra (IN, 0, (+)).
In this case, respecting the structure means:

length ε = 0
length(x++y) = (length x) + (length y)

In general (for this class of algebras), h :: (A, u, ⊗)→ (B, e, ⊕) means:

h :: A→B
h u = e
h(x⊗ y) = (h x)⊕ (h y)

4 We use Haskell syntax for defining datatypes, except that we write constructors
using a sans serif font where Haskell would capitalize the first letter. The Haskell
definition of Nat would be data Nat = Zero | Succ Nat.
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So to apply h to a value in A that resulted from a u-operation (and there is only
one such value), we may equally apply h to the operands (of which there are
none) and apply e to the resulting 0-tuple. Similarly, to apply h to a value in A
that resulted from a ⊗-operation, we may equally well apply h to the operands
(which gives two B-values) and combine these with the operation ⊕. Here are
some more examples of homomorphisms in this class:

(↓ 1) :: (IN, 0 , (+))→ (IN, 0 , (↑) )
even :: (IN, 0 , (+))→ (IB, true , (≡))
(> 0) :: (IN, 0 , (↑) )→ (IB, false, (∨))
(¬) :: (IB, false, (∨))→ (IB, true , (∧))
(¬) :: (IB, true , (∧))→ (IB, false, (∨))

If we have two homomorphisms in which the target algebra of the first homomor-
phism h :: (A, e, ⊕)→ (B, u, ⊗) is the source algebra of the second homomor-
phism k :: (B, u, ⊗)→ (C, z, �), then their composition is also a homomorphism
k•h :: (A, e, ⊕)→ (C, z, �). For example,

(> 0) • (↓ 1) :: (IN, 0 , (+))→ (IB, false, (∨))
(¬) • (¬) :: (IB, false, (∨))→ (IB, false, (∨))

Now (> 0) • (↓ 1) = (> 0) on IN, and (¬) • (¬) = idIB (the identity function
on IB), so we have

(> 0) :: (IN, 0 , (+))→ (IB, false, (∨))
id :: (IB, false, (∨))→ (IB, false, (∨))

The identity function idA is of course a homomorphism between any algebra
with carrier A and itself.

For the class of algebras whose generic algebra is

(A, e,⊕), with e :: 1→A, ⊕ :: IN×A→A

we have that h :: (A, e, ⊕)→ (B, u, ⊗) means:

h :: A→B
h e = u
h(x⊕ y) = x⊗ (h y)

So why is h for this class not applied to the occurrence of x in the righthand side
of the second equality? The answer is that that would not make sense, since h
has source type A, but x is of type IN. (Later, after we have introduced functors,
we shall see how to define the notion of homomorphism generically, independent
of the specific algebra class.) We have:

sum :: (List IN, [ ], ( : ))→ (IN, 0, (+))
foldr ⊕ e :: (List IN, [ ], ( : ))→ (A, e, ⊕ )

In fact, sum = foldr (+) 0 .
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Uniqueness We have given several examples of algebra classes and their homo-
morphisms. The first class had generic algebra

(A, e, ⊕) with e :: 1→A, ⊕ :: A×A → A .

Note that the fact that a function is a homomorphism of algebras in this class
does not uniquely define the function. For example, we observed above that
length is a homomorphism with source (A∗, ε, (++)) and target (IN, 0, (+)). But
the function that is constantly 0 for all lists is also a homomorphism with exactly
the same source and target algebras. Indeed, in the case of all the examples we
gave of homomorphisms between algebras in this class the constant function
returning the value e of the target algebra has the same homomorphism type as
the given function.

Contrast this with the third class of algebras. The generic algebra has the form

(A, e, ⊕) with e :: 1→A, ⊕ :: IN×A → A

Again, the fact that a function is a homomorphism of algebras in this class
does not uniquely define the function. But there is something rather special
about the algebra (List IN, [ ], (:)) in this class of algebras. Specifically, foldr ⊕ e
is the unique homomorphism with source algebra (List IN, [ ], (:)) and target
algebra (A, e, ⊕). For example, sum is the unique homomomorphism with source
(List IN, [ ], (:)) and target (IN, 0, (+)). That is, function h satisfies the equations

h :: List IN→ IN
h [ ] = 0
h(x:xs) = x+ (h xs)

if and only if h = sum.

This uniqueness is an important property that will be a focus of later discussion.

Isomorphisms Above, we said several times that two algebras were “basically”
or “essentially” the same. We want to make this notion precise. The technical
term for this is that these algebras are isomorphic. In set theory, two sets A
and B are called isomorphic whenever there exists a bijection between A and B.
Equivalently, A and B are isomorphic whenever there exist functions f ::A→B
and g ::B→A that cancel each other, that is:

f•g = idB

g•f = idA

The generalisation for algebras is now that we require these functions to be
homomorphisms between the algebras involved. A homomorphism that has a
cancelling homomorphism is called an isomorphism. ¿From the examples above
we see that the algebras (IB, true, (∧)) and (IB, false, (∨)) are isomorphic.
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Algebras with laws Although we will hardly use this, no account of the notion
of algebra is complete without mentioning the following. A class of algebras can
be further determined by a set of laws. In a “lawful” class of algebras, all al-
gebras satisfy the same set of (possibly conditional) equational laws. Monoids
form the best-known example of a lawful algebra class. The generic monoid is
(A, e,⊕), with e :: 1→A, ⊕ :: A×A→A , and the monoid laws are the follow-
ing two:

⊕ is associative: (x⊕ y) ⊕ z = x⊕ (y ⊕ z)
e is neutral for ⊕: e⊕ x = x = x⊕ e

If an operation ⊕ has a neutral element, it is unique, and we denote it as ν⊕.
For example, ν+ = 0 and ν× = 1. The examples of concrete algebras from the
first class treated in this chapter are actually all monoids. For lawful algebras
the definition of homomorphism is the same as before.

Graphs The notion of homomorphism is more general than that of a “structure-
respecting” function between algebras. Homomorphisms can generally be defined
for anything having structure. As an example, we consider homomorphisms be-
tween directed graphs. Recall that a directed graph is a structure

(V, E, source, target), with source ::E→ V, target ::E→ V

in which the elements of V are called “vertices” or “nodes”, and the elements of E
are called “edges” or “arcs”. If edge e is an edge from nodem to node n, we have:
source e = m and target e = n. Directed graphs are just like an algebra class,
except that we have two “carrier sets”: V and E. (There is a term for algebras
with more carrier sets: heterogeneous or multi-sorted algebras.) A homomor-
phism from graph (V0, E0, source0, target0) to graph (V1, E1, source1, target1)
is a pair of functions, one with the typing V0→ V1 and one with the typ-
ing E0→E1, and if we overload the identifier h to denote both functions,
they satisfy:

h(source a) = source(h a)
h(target a) = target(h a)

As before for algebras, two graphs are isomorphic whenever there are cancelling
homomorphisms between them. Informally, this means that one graph can be
obtained from the other by systematic renaming. In standard Graph Theory, for
unlabelled graphs like the ones we are considering here, two isomorphic graphs
are usually considered identical. Still, there can be non-trivial automorphisms,
that is, isomorphisms between a graph and itself that are not the identity iso-
morphism.

Summarising and looking ahead In this section we have introduced the notion
of a class of algebras and homomorphisms between algebras in the same class.
We have observed that datatype definitions in a functional programming lan-
guage define an algebra, the carrier of the algebra being the datatype itself and
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the operations being the constructors of the datatype. We have also made the
important observation that in some cases a function is uniquely characterised
by its homomorphism type (the fact that it is a homomorphism combined with
knowledge about its source and target algebras).

In the remaining sections of this chapter our goal is to formalise all these ideas
in a way that facilitates the calculational construction of programs. Let us give
an outline of what is in store.

The notion of an algebra is formalised in many textbooks on Universal Algebra.
Here is an example of such a definition. This is not the definition we intend to
use so you don’t need to understand it in detail.

Σ-algebra A Σ-algebra with respect to a signature with operators Σ = (S,Γ ) is
a pair (V ,F ) such that

– V is an S-sorted set, and
– F = {γ: γ ∈ ∪ Γ : fγ} is a set of functions such that

γ ∈ Γ〈〈s0,...,sn−1〉,r〉 ⇒ fγ ∈ Vs0× . . .×Vsn−1 → Vr

γ ∈ Γ〈s,r〉 ⇒ fγ ∈ Vs→Vr

V is called the carrier set of the Σ-algebra and set F is its operator set.

Contrast this with the definition we are going to explain in the coming sections.

F -algebra Suppose F is a functor. Then an F -algebra is a pair(A,α) such that
α ∈ FA→A.

Neither definition is complete since in the first definition the notion of a signature
has not been defined, and in the second the notion of a functor hasn’t been
defined. In the first definition, however, it’s possible to guess what the definition
of a signature is and, after struggling some time with the subscripts of subscripts,
it is possible to conclude that the definition corresponds to the “intuitive” notion
of an algebra. The disadvantage is that the definition is grossly unwieldy. If the
definitions of one’s basic concepts are as complicated as this then one should
give up altogether any hope that one can calculate with them.

The second definition is very compact and, as we shall see, gives an excellent
basis for program construction. Its disadvantage, however, is that it is impossible
to guess what the definition of a functor might be, and it is difficult to see how
it corresponds to the familiar notion of an algebra. How is it possible to express
the idea that an algebra consists of a set of operations? On the face of it, it
would appear that an F -algebra has just one operation α. Also, how does one
express the fact that the operations in an algebra have various arities?

The answer to these questions is hidden in the definition of a “functor”. And,
of course, if its definition is long and complicated then all the advantages of
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the compactness of the definition of an algebra are lost. We shall see, however,
that the definition of a functor is also very compact. We shall also see that
functors can be constructed from primitive functors in a systematic way. The
“disjoint sum” of two functors enables one to express the idea that an algebra
has a set of operations; the “cartesian product” of functors allows one to express
the arity of the various operations; “constant functors” enable the expression of
the existence of designated constants in an algebra. An additional major bonus
is that the categorical notion of an “initial algebra” leads to a very compact
and workable definition of inductively defined datatypes in a programming lan-
guage. The remaining sections of this chapter thus provide a veritable arsenal of
fundamental concepts whose mastery is tremendously worthwhile.

Exercise 2.1 Check the claim that even :: (IN, 0, (+))→ (IB, true, (≡)) is a ho-
momorphism.

2

Exercise 2.2 Give the composition of the following two homomorphisms:

(¬) :: (IB, false, (∨))→ (IB, true , (∧))
(> 0) :: (IN, 0 , (+))→ (IB, false, (∨))

2

Exercise 2.3 An automorphism is an isomorphism with the same source and
target algebra. Show that the only automorphism on the algebra (IB, true, (≡))
is the trivial automorphism id.

2

Exercise 2.4 Give an example of a non-trivial automorphism on the algebra
(IR, 0, (×)).

2

2.2 Functors

To a first approximation, datatypes are just sets. A second approximation, which
we have just seen, is that a datatype is the carrier of an algebra. In this section we
identify parameterised datatypes with the categorical notion of functor, giving
us a third approximation to what it is to be a datatype. It is in this section that
we take the first steps towards a generic theory of datatypes.

Examples The best way to introduce the notion of a functor is by abstraction
from a number of examples. Here are a few datatype definitions:

data List a = nil | cons a (List a)

data Maybe a = none | one a
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data Bin a = tip a | join (Bin a) (Bin a)

data Rose a = fork a (List(Rose a))

Each of these types can be viewed as a structured repository of information, the
type of information being specified by the parameter a in the definition. Each of
these types has its own map combinator. “Mapping” a function over an instance
of one of these datatypes means applying the function to all the values stored in
the structure without changing the structure itself. The typings of the individual
map combinators are thus as follows.

mapList :: (a→ b)→ (List a→List b)
mapMaybe :: (a→ b)→ (Maybe a→Maybe b)
mapBin :: (a→ b)→ (Bin a→Bin b)
mapRose :: (a→ b)→ (Rose a→Rose b)

A datatype that has more than one type parameter also has a map combinator,
but with more arguments. For instance, defining the type of trees with leaves of
type a and interior nodes of type b by

data Tree a b = leaf a | node (Tree a b) b (Tree a b)

the corresponding map combinator has type

mapTree :: (a→c)→ (b→d)→ (Tree a b→Tree c d)

Given a tree of type Tree a b, the combinator applies a function of type a→c
to all the leaves of the tree, and a function of type b→d to all the nodes, thus
creating a tree of type Tree c d.

In general, the map combinator for an n-ary datatype maps n functions over
the values stored in the datatype. (This also holds for the case that n is zero.
Datatypes having no type parameter also have a map combinator, but with
no functional arguments! The map in this case is the identity function on the
elements of the datatype.)

Functors Defined The idea that parameterised datatypes are structured reposi-
tories of information over which arbitrary functions can be mapped is captured
by the concept of a functor. We first explain the concept informally for unary
functors. Consider the world of typed functions. Functors are the structure-
respecting functions for that world. So what is the structure involved? First,
that world can be viewed as a directed graph, in which the nodes are types and
the arcs are functions. So, as for graphs, we require that a functor is a pair of
mappings, one acting on types and one acting on functions, and if we overload
the identifier F to denote both functions, they satisfy the typing rule:

f :: a → b

Ff :: Fa → Fb
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Further, functions can be composed with the operation “•”, which is associative
and has neutral element the identity function, id, so this world forms a monoid
algebra. Functors also respect the monoid structure:

F (f • g) = (F f) • (F g)
F ida = idFa

The first of these laws says that there is no difference between mapping the
composition of two functions over an F structure in one go and mapping the
functions over the structure one by one. The second law says that mapping the
identity function over an F structure of a’s has no effect on the structure.

To be completely precise, the world of functions is not quite a monoid, since
the algebra is partial: the meaning of f •g is only defined when this composition
is well-typed, that is, when the source type of f is the target type of g. The
first equality above should therefore only be applied to cases for which f •g is
defined, and from now on we assume this as a tacit condition on such equations.
It follows from the typing rule that then also the composition (F f) • (F g) is
well-typed, so that is not needed as a condition.

Now, in general, an n-ary functor F is a pair of mappings that maps an n-
tuple of types a0, . . . , an−1 to a type F a0 · · · an−1 and an n-tuple of functions
f0, . . . , fn−1 to a function F f0 · · · fn−1 in such a way that typing, composition
and identity are respected:

fi :: ai → bi for i = 0, . . . , n− 1
Ff0 · · ·fn−1 :: Fa0 · · ·an−1 → Fb0 · · · bn−1

F (f0•g0) · · · (fn−1•gn−1) = (F f0 · · · fn−1) • (F g0 · · · gn−1)
F id · · · id = id

Examples Revisited As anticipated in the introduction to this section, the pairs of
mappings F (on types) and mapF (on functions) for F = List,Maybe, etcetera,
are all unary functors since they satisfy the typing rule

f :: a → b

mapF f :: Fa → Fb

and the functional equalities

mapF (f•g) = (mapF f) • (mapF g)
mapF id = id .

An example of a binary functor is the pair of mappings Tree and mapTree since
the pair satisfies the typing rule

f :: a → c
g :: b → d

mapTree f g :: Tree a b → Tree c d

and the functional equalities

mapTree (f•g) (h•k) = (mapTree f h) • (mapTree g k)
mapTree id id = id .
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Notational convention Conventionally, the same notation is used for the type
mapping and the function mapping of a functor, and we follow that convention
here. Moreover, when applicable, we use the name of the type mapping. So, from
here on, for function f , we write List f rather than mapList f .

Exercise 2.5 Consider the following datatype declarations. Each defines a
mapping from types to types. For example, Error maps the type a to the type
Error a. Extend the definition of each so that it becomes a functor.

data Error a = error String | ok a

data Drawing a = above (Drawing a) (Drawing a)
| beside (Drawing a) (Drawing a)
| atom a

2

2.3 Polynomial Functors

Now that we have defined the notion of a functor and have seen some non-trivial
examples it is time to consider more basic examples. Vital to the usefulness of
the notion is that non-trivial functors can be constructed by composing more
basic functors. In this section we consider the polynomial functors. As the name
suggests, these are the functors that can be obtained by “addition” and “multi-
plication” possibly combined with the use of a number of “constants”.

The technical terms for addition and multiplication are “disjoint sum” and
“cartesian product”. The use of disjoint sum enables one to capture in a sin-
gle functor the fact that an algebra has a set of operations. The use of cartesian
product enables one to express the fact that an operator in an algebra has an
arity greater than one. We also introduce constant functors and the identity
functor; these are used to express the designated constants (functions of arity
zero) and unary functions in an algebra, respectively. For technical reasons, we
also introduce a couple of auxiliary functors in order to complete the class of
polynomial functors. We begin with the simpler cases.

The identity functor The simplest example of a functor is the identity functor
which is the trivial combination of two identity functions, the function that maps
every type to itself and the function that maps every function to itself. Although
trivial, this example is important and shouldn’t be forgotten. We denote the
identity functor by Id.

Constant functors For the constant mapping that maps any n-tuple of arguments
to the same result x we use the notation xK. As is easily verified, the pair of
mappings aK and ida

K, where a is some type, is also a functor. It is n-ary for
all n.
Following the naming convention introduced above, we write aK to denote

both the mapping on types and the mapping on functions. That is, we write
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aK where strictly we should write idaK. So, for functions f0 . . . fn−1, we have
aK f0 . . . fn−1 = ida.
A constant functor that we will use frequently is the constant functor asso-

ciated with the unit type, 1. The unit type is the type that is denoted () in
Haskell. It is a type having exactly one element (which element is also denoted
() in Haskell). This functor will be denoted by 1 rather than 1K.

Extraction Each extraction combinator

Exni z0 · · · zn−1 = zi, for i = 0, . . . , n− 1

is an n-ary functor. The extractions that we have particular use for are the
identity functor Id, which is the same as Ex10, and the binary functors Ex

2
0 and

Ex21, for which we use the more convenient notations Par and Rec. (The reason
for this choice of identifiers will become evident in chapter 3. When defining
recursive datatypes like List , we identify a binary “pattern functor”. The first
parameter of the pattern functor is the parameter of the recursive datatype —
and is thus called the Par parameter— and the second parameter is used as the
argument for recursion —and is thus called the Rec parameter.)

The sum functor The binary sum functor + gives the “disjoint union” of two
types. We write it as an infix operator. It is defined by:

data a+ b = inl a | inr b

f + g = h where
h(inl u) = inl(f u)
h(inr v) = inr(g v)

f5 g = h where
h(inl u) = f u
h(inr v) = g v

The datatype definition introduces both the type a+b, called the disjoint sum of
a and b, and the two constructor functions inl ::a→a+ b and inr ::b→a+ b. The
name “disjoint sum” is used because a+b is like the set union of a and b except
that each element of the sets a and b is, in effect, tagged with either the label
inl, to indicate that it originated in set a, or inr, to indicate that it originated in
set b. In this way a+a is different from a since it effectively contains two copies
of every element in a, one with label inl and one with label inr. In particular 1+1
has two elements. The constructors inl and inr are called injections and are sa
id to inject elements of a and b into the respective components of a+b.

In order to extend the sum mapping on types to a functor we have to define the
sum of two functions. This is done in the definition of f+g above. Its definition
is obtained by type considerations — if + is to be a functor, we require that if
f :: a→b and g :: c→d then f+g :: a+c→ b+d. It is easily checked that the
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above definition of f+g meets this requirement; indeed, there is no other way to
do so.

In addition to defining f+g we have defined another way of combining f and g,
namely f5g, which we pronounce f “junc” g. (“Junc” is short for “junction”.)
As we’ll see shortly, f5g is more basic than f+g. The meaning of f5g is only
defined when f and g have the same target type; its source type is a disjoint sum
of two types. Operationally, it inspects the label on its argument to see whether
the argument originates from the left or right component of the disjoint sum.
Depending on which component it is, either the function f or the function g is
applied to the argument after first stripping off the label. In other words, f5g
acts like a case statement, applying f or g depending on which component of
the disjoint sum the argument comes from.

The typing rule for 5 is a good way of memorising its functionality:

f :: a →c
g :: b→c

f5 g :: a+b→c

(Haskell’s prelude contains a definition of disjoint sum:

data Either a b = Left a | Right b

with either playing the role of 5.)

Now that we have defined + on types and on functions in such a way as to
fulfill the typing requirements on a (binary) functor it remains to verify that it
respects identities and composition. We do this now. In doing so, we establish
a number of calculational properties that will prove to be very useful for other
purposes.

Note first that the definitions of + (on functions) and of 5 can be rewritten in
point-free style as the following characterisations:

h = f+g ≡ h • inl = inl • f ∧ h • inr = inr • g
h = f 5g ≡ h • inl = f ∧ h • inr = g

This style is convenient for reasoning. For example, we can prove the identity
rule:

inl5inr = id

by calculating as follows:

id = α 5 β

≡ { characterisation of 5 }

id•inl = α ∧ id•inr = β

≡ { id is the identity of composition }

inl = α ∧ inr = β .
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This last calculation is a simple illustration of the way we often derive programs.
In this case the goal is to express id in terms of 5. We therefore introduce the
unknowns α and β, and calculate expressions for α and β that satisfy the goal.

If we substitute f + g or f5 g for h in the corresponding characterisation, the
left-hand sides of the equivalences become trivially true. The right-hand sides
are then also true, giving the computation rules:

(f+g) • inl = inl • f (f+g) • inr = inr • g
(f5 g) • inl = f (f5 g) • inr = g

The validity of the so-called 5-fusion rule:

h • (f5g) = (h•f)5 (h•g)

is shown by the following calculation5:

h • f5g = α5β

≡ { characterisation of 5 }

h • f5g • inl = α ∧ h • f5g • inr = β

≡ { computation rules for 5 }

h • f = α ∧ h • g = β .

Note once again the style of calculation in which the right side of the law is
constructed rather than verified.

It is also possible to express + in terms of 5, namely by:

f + g = (inl•f)5 (inr•g)

We derive the rhs of this rule as follows:

f+g = α5β

≡ { characterisation of 5 }

f+g • inl = α ∧ f+g • inr = β

≡ { computation rules for + }

inl•f = α ∧ inr•g = β .

Another fusion rule is the 5-+ fusion rule:

(f5g) • (h+ k) = (f•h)5 (g•k)

We leave its derivation as an exercise.

5 We adopt the convention that composition has lower precedence than all other op-
erators. Thus h • f5g should be read as h • (f5g). In the statement of the basic
rules, however, we always parenthesise fully.
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These rules are useful by themselves, but they were proved to lead to the result
that + respects function composition:

(f + g) • (h+ k) = (f•h) + (g•k)

The proof is simple:

f+g • h+k

= { definition of + }

(inl•f) 5 (inr•g) • h+k

= { 5-+ fusion }

(inl•f •h) 5 (inr•g•k)

= { definition of + }

(f •h) + (g•k) .

The proof that + also respects id, that is,

id+ id = id

is also left as an exercise.

An important property that we shall use is that the mapping 5 is injective,
that is:

f5 g = h5k ≡ f = h ∧ g = k .

Just two simple steps are needed for the proof. Note, in particular, that there is
no need for separate “if” and “only if” arguments.

f5g = h5k

≡ { characterisation }

f5g • inl = h ∧ f5g • inr = k

≡ { computation rules }

f = h ∧ g = k .

Further, the mapping is surjective (within the typing constraints): if h::a+ b→ c,
then there exist functions f :: a→ c and g :: b→ c such that h = f5g. In fact,
they can be given explicitly by f = h•inl and g = h•inr.

The product functor While sums give a choice between values of two types,
products combine two values. In Haskell the product type former and the pair
constructor are syntactically equal. However, we want to distinguish between the
type former × and the value constructor ( , ). The binary product functor × is
given by:
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data a× b = (a, b)

exl(u, v) = u
exr(u, v) = v

f × g = h where
h(u, v) = (f u, g v)

f4 g = h where
h u = (f u, g u)

The functions exl :: a× b→a and exr :: a× b→ b are called projections and are
said to project a pair onto its components.

Just as for disjoint sum, we have defined f×g in such a way that it meet the
type requirements on a functor. Specifically, if f :: a→b and g :: c→d then
f×g :: a×c→ b×d, as is easily checked. Also, we have defined a second com-
bination of f and g, namely f4g, which we pronounce f “split” g.

The operational meaning of f×g is easy to see. Given a pair of values, it produces
a pair by applying f to the first component and g to the second component. The
operational meaning of f4g is that it constructs a pair of values from a single
value by applying both f and g to the given value. (In particular, id4id constructs
a pair by “splitting” a given value into two copies of itself.)

A curious fact is the following. All the rules for sums are also valid for products
under the following systematic replacements: replace + by ×, 5 by 4, inl and inr
by exl and exr, and switch the components f and g of each composition f •g. (In
category theory this is called dualisation.) This gives us the characterisations:

h = f×g ≡ exl • h = f • exl ∧ exr •h = g • exr
h = f4 g ≡ exl • h = f ∧ exr •h = g

the identity rule:

exl4exr = id

the computation rules:

exl • (f×g) = f • exl exr • (f×g) = g • exr
exl • (f4 g) = f exr • (f4 g) = g

the 4-fusion rule:

(f4g) • h = (f•h)4 (g•h)

× expressed in terms of 4:
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f × g = (f•exl)4(g•exr)

the ×-4-fusion rule:

(f × g) • (h4k) = (f•h)4 (g•k)

and finally the fact that × is a binary functor:

(f × g) • (h× k) = (f•h)× (g•k)
id× id = id

Functional Composition of Functors It is easily verified that the composition of
two unary functors F and G is also a functor. By their composition we mean
the pair of mappings, the first of which maps type a to F (Ga) and the second
maps function f to F (Gf). We use juxtaposition —thus FG— to denote the
composition of unary functors F and G. For example, Maybe Rose denotes the
composition of the functors Maybe and Rose . The order of composition is im-
portant, of course. The functor Maybe Rose is quite different from the functor
Rose Maybe .

It is also possible to compose functors of different arities. For instance we may
want to compose a binary functor like disjoint sum with a unary functor like
List. A simple notational device to help define such a functor is to overload the
meaning of the symbol “+” and write List+List , whereby we mean the functor
that maps x to (List x) + (List x). Similarly we can compose disjoint sum with
two unary functors F and G: we use the notation F+G and mean the functor
that maps x to (F x) + (G x).

Two ways of reducing the arity of a functor are specialisation and duplication.
An example of specialisation is when we turn the binary disjoint sum functor
into a unary functor by specialising its first argument to the unit type. We write
1+Id and mean the functor that maps type a to the type 1+a, and function f to
the function id1+f . Duplication means that we duplicate the argument as many
times as necessary. For example, the mapping x 7→ x+x is a unary functor.

Both duplication and specialisation are forms of functional composition of func-
tors. To formulate them precisely we need to extend the notion of functor so
that the arity of the target of a functor may be more than one. (Up till now we
have always said that a functor maps an n-tuple of types/functions to a single
type/function.) Then a tuple of functors is also a functor, and, for each n, there
is a duplication functor of arity n. In this way duplication and specialisation can
be expressed as the composition of a functor with a tuple of functors. (In the
case of specialisation, one of the functors is a constant functor.)

For our current purposes, a complete formalisation is an unnecessary complica-
tion and the ad hoc notation introduced above will suffice. Formalisations can
be found in [18,19,37,22].
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Polynomial functors A functor built only from constants, extractions, sums,
products and composition is called a polynomial functor.

An example of a polynomial functor isMaybe introduced in section 2.2. Recalling
its definition:

data Maybe a = none | one a

we see that, expressed in the notation introduced above, Maybe = 1+Id

The remaining examples introduced in section 2.2 are not polynomial because
they are defined recursively. We need one more mechanism for constructing func-
tors. That is the topic of the next section.

Exercise 2.6 (5-4 abide) Prove that, for all f , g, h and k,

(f5g)4(h5k) = (f4h)5(g4k) .

2

Exercise 2.7 (Abide laws) The law proved in exercise 2.6 is called the
5-4 abide law because of the following two-dimensional way of writing the law
in which the two operators are written either above or beside each other. (The
two-dimensional way of writing is originally due to C.A.R.Hoare, the catchy
name is due to Richard Bird.)

f 5 g f g
4 = 4 5 4

h 5 k h k

What other operators abide with each other in this way? (You have already
seen examples in this text, but there are also other examples from simple arith-
metic.)

2

Exercise 2.8 Consider the mapping Square that takes a type a to a× a and a
function f to f × f . Check that Square is a functor.

2

Exercise 2.9 In checking that something is a functor, we must check that it
respects composition and identity. The last part may not be omitted, as is shown
by the existence of “almost-functors”. Call F an almost-functor when F is a pair
of mappings on types and functions (just like true functors) that respects typing
and composition, but fails to respect identity: F id 6= id. Can you find a simple
example of such an almost-functor? (Hint: Look at constant mappings.)

2
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Exercise 2.10 If inl :: a→ a+ b and inr :: b→a+ b, what is the typing of id in
the identity rule inl5inr = id?

2

Exercise 2.11 Complete the verification that + is a functor by proving the 5-+
fusion rule and the identity rule (id + id = id). In the calculation you may use
all the other rules stated before these two rules.

2

2.4 Datatypes Generically

By now the notion of a functor should be becoming familiar to you. Also, it
should be clear how to extend the definition of non-inductive datatypes not
involving function spaces to a polynomial functor. In this section we take the
step to inductively defined datatypes.

The basic idea is that an inductively defined datatype is a fixed point of a functor,
which functor we call the pattern functor of the datatype. For the simplest
examples (such as the natural numbers) the pattern functor is polynomial but
for more complicated examples (like the Rose datatype) it is not. We therefore
need to extend the class of functors we can define beyond the polynomial functors
to the so-called regular functors by adding the type functors. The basic technical
device to achieve this is the catamorphism, which is a generalisation of the fold
function on lists.

We begin by discussing pattern functors following which we can, at long last,
define the notion of an F -algebra. Catamorphisms form the next —substantial—
topic, following which we introduce type functors and the class of regular
functors.

Pattern functors and recursion We first look at a simple inductively ( = re-
cursively) defined datatype, that of the Peano naturals, which we also saw in
section 2.1:

data Nat = zero | succ Nat

There is only one number zero, which we can make explicit by:

data Nat = zero 1 | succ Nat

Instead of fancy constructor function names like succ and zero we now employ
boring standard ones:

data Nat = inl 1 | inr Nat

The choice here is that afforded by sum, so we replace this by

data Nat = in(1 + Nat)

in which there is one explicit constructor function left, called “in”.
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Now note that Nat occurs both on the left and the right of the datatype definition
(which is why it is called an inductively defined or recursive datatype). In order
to view this as a fixed point definition, let us abstract from Nat on the right
side replacing it by the variable z. In this way we are led to consider the unary
functor N defined by

N z = 1+ z

(Note that, although we have only defined N explicitly on types, we understand
its extension to a functor. Using the notations introduced earlier, this functor is
expressed as N = 1K+ Id.) The functor N captures the pattern of the inductive
formation of the Peano naturals. The point is that we can use this to rewrite the
definition of Nat to

data Nat = in(N Nat)

Apparently, the pattern functor N uniquely determines the datatype Nat . When-
ever F is a unary polynomial functor, as is the case here, a definition of the form
data Z = in(F Z) uniquely determines Z.

We need a notation to denote the datatype Z that is obtained, and write
Z = µF . So Nat = µN . Replacing Z by µF in the datatype definition, and
adding a subscript to the single constructor function in in order to disambiguate
it, we obtain:

data µF = inF (F µF )

Now inF is a generic function, with typing

inF :: F µF →µF

We can “reconstruct” the original functions zero and succ by defining:

zero = inN •inl :: 1 →Nat
succ = inN •inr :: Nat→Nat

Conversely, inN ::N Nat→Nat is then of course

inN = zero5succ

Playing the same game on the definition of List gives us:

data List a = in(1 + (a× List a))

Replacing the datatype being defined, List a, systematically by z, we obtain the
“equation”

data z = in(1 + (a × z))

Thus, we see that the pattern functor here is (z 7→ 1 + (a × z)). It has a
parameter a, which we make explicit by putting
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L a = (z 7→ 1 + (a × z))

Now List a = µ(L a), or, abstracting from a:

List = (a 7→ µ(L a))

Exercise 2.12 What is the pattern functor for Bin? Is it polynomial? What is
the pattern functor for Rose? Is it polynomial?

2

F -algebras Before we traded in the names of the constructor functions for the
uniform ‘in’, we saw that the algebra naturally corresponding to the datatype
Nat , together with the generic algebra of its class, were:

(Nat , zero, succ), with zero :: 1→Nat , succ :: Nat→Nat
( A , e , f ), with e :: 1→ A , f :: A → A

Using ‘in’, this should be replaced by:

(Nat , inN), with inN :: 1+Nat→Nat
( A , ϕ ), with ϕ :: 1+ A → A

in which the relation between ϕ and the pair (e, f) is, of course,

ϕ = e5f
e = ϕ•inl
f = ϕ•inr

Using the pattern functor N , we can also write:

(Nat , inN), with inN ::N Nat→Nat
( A , ϕ ), with ϕ ::N A → A

In general, for a functor F , an algebra (A, ϕ) with ϕ :: FA→A is called an F -
algebra and A is called the carrier of the algebra. So Nat is the carrier of an
N -algebra, and likewise List a is the carrier of an (La)-algebra.

Catamorphisms In the class of F -algebras, a homomorphism h :: (A, ϕ)→ (B, ψ)
is a function h ::A→B that satisfies:

h•ϕ = ψ•Fh

This can be expressed in a diagram:

FA
ϕ
→ A

î. .. .. .. .. .

FB

Fh

↓

ψ
→ B

↓

h
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The smiley face signifies that the diagram commutes: the two paths from FA to
B are equivalent.

A specific example of such a diagram is given by the homomorphism even from
the natural numbers to the booleans:

1+Nat
zero5succ

→ Nat

î. .. .. .. .. .

1+Bool

1+even

↓

true5not
→ Bool

↓

even

which expresses the equation

even•(zero5succ) = (true5not)•(1+even) .

Rather than use such a diagram, the standard way of defining a function on an
inductive datatype is by “pattern matching” on the argument, giving a clause
for each constructor function. For the naturals, the typical definition has this
form:

data Nat = zero | succ Nat

h zero = e
h (succ n) = f (h n)

For example, the function even is defined by the equations:

even zero = true
even (succ n) = not (even n)

(Exercise 2.13 asks you to show that these two equations are equivalent to the
commuting diagram above.) For lists, the typical pattern-matching has the form:

data List a = nil | cons a (List a)

h nil = e
h (cons x xs) = x ⊕ h xs

In these definitions, the function being defined, h, is “pushed down” recursively
to the components to which the constructor functions are applied. The effect
is to replace the constructor functions by the corresponding arguments in the
definition of h — in the case of the natural numbers, zero is replaced by e and
succ is replaced by f , and in the case of lists nil is replaced by e and cons is
replaced by ⊕.

For the naturals, the function h defined above is determined uniquely by e and f .
Likewise, for lists, h is uniquely determined by e and ⊕, and there is a standard
notation for the function thus defined, namely foldr ⊕ e. Generalizing this, we
get the following:
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data µF = inF (F µF )

h (inF x) = ϕ ((F h) x)

in which simple typing considerations show that ϕ has to have a typing of the
form FA→A, and then h has the typing µF→A; in other words, ϕ is the
operation of some F -algebra whose carrier is the target type of h. The function h
thus defined is uniquely determined by ϕ. We call such functions catamorphisms
and use the following notation: h = ([ϕ]). So ([ ]) is defined by:

([ϕ]) = h where
h (inF x ) = ϕ ((F h) x )

In words, when catamorphism ([ϕ]) is applied to a structure of type µF , this
means it is applied recursively to the components of the structure, and the results
are combined by applying its “body” ϕ. Specialised to lists, the ([ ])-combinator
becomes foldr restricted to finite lists. The importance of having generic catamor-
phisms is that they embody a closed expression for a familiar inductive definition
technique and thereby allow the generic expression of important programming
rules.

Exercise 2.13 Show that the single equation

even • zero5succ = true5not • 1+even

is equivalent to the two equations

even zero = true
even (succ n) = not (even n) .

2

Initial Algebras Catamorphisms enjoy a number of attractive calculational prop-
erties which we now discuss.

We start with giving the typing rule for ([ ]):

ϕ :: Fa→ a

([ϕ]) :: µF → a

Taking the definition

h (inF x ) = ϕ ((F h) x)

we can rewrite this equivalently as:

(h•inF ) x = (ϕ •F h) x

or, abstracting from x :

h • inF = ϕ •F h
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This functional equation in h has a unique solution, so we conclude that ([ϕ]) is
characterised by

h = ([ϕ]) ≡ h • inF = ϕ •Fh

The right-hand side of this equivalence states that h is a homomorphism, and if
A is the carrier of ϕ, we can also express this characterisation as:

h = ([ϕ]) ≡ h :: (µF, inF )→ (A, ϕ)

In words, every F -algebra is the target algebra of a unique homomorphism with
(µF, inF ) as its source algebra, and the catamorphisms consist of these unique
homomorphisms. Source algebras that have the property that there is a unique
homomorphism to any target algebra are known as initial algebras. So (µF, inF )
is an initial algebra. It is easy to prove that all initial algebras in a given algebra
class are isomorphic.

The following diagram expresses the fact that ([ϕ]) :: (µF, in)→ (A, ϕ) (but not
the uniqueness):

F µF
in
→ µF

î. .. .. .. .. .

FA

F ([ϕ])

↓

ϕ
→ A

↓

([ϕ])

In formula form we get the computation rule for catamorphisms:

([ϕ]) • in = ϕ •F ([ϕ])

The function in is itself an F -algebra, so ([in]) is defined. What is it? By substi-
tuting (A, ϕ) := (µF, in) in the last equivalence above, we obtain:

h = ([in]) ≡ h :: (µF, in)→ (µF, in)

But we know that id :: (µF, in)→ (µF, in) ! The conclusion is the identity rule for
catamorphisms:

([in]) = idµF

This generalises the equality for lists: foldr cons nil = id.



60 Roland Backhouse et al.

Further properties of catamorphisms The identity rule is easy to remember if one
thinks of a catamorphism as a function that replaces the constructor functions
of the datatype by the supplied arguments. Thus foldr cons nil is the identity
function on lists because cons is replaced by cons and nil is replaced by nil.
In general, ([in]) replaces all occurrences of in by itself in an element of the
datatype µF .

The identity rule is surprisingly important. As an illustration of its importance,
we prove that in is a bijection between µF and FµF . That is, we use the rule
to construct a function out of type µF → FµF such that in•out = idµF and
out•in = idFµF . Our calculation starts with the first requirement and derives a
candidate for out in a systematic way:

in•out = idµF

≡ { identity rule }

in•out = ([in])

≡ { catamorphism characterisation }

in•out•in = in•F (in•out)

⇐ { cancel in• from both sides }

out•in = F (in•out)

≡ { F respects composition }

out•in = F in • F out

≡ { catamorphism characterisation }

out = ([F in]) .

This completes the first step in the calculation: we have derived the candidate
([F in]) for out.

Note that the identity rule is not used to simplify ([in]) to idµF in this calculation;
rather, it is used in quite the opposite way to complicate idµF to ([in]). There
is a tendency to view algebraic properties as left-to-right rewrite rules, where
the left side is the complicated side and the right side is its simplified form.
Calculations that use the rules in this way are straightforward and do not require
insight. On the other hand, calculations (such as the one above) which include
at least one complication step are relatively difficult and do require insight.
The importance of the identity rule for catamorphisms is its use in introducing a
catamorphism into a calculation (see also the MAG system [38], in which identity
catamorphisms are introduced in calculations in order to be able to apply fusion).
It can require ingenuity to use because it involves replacing an identity function
which is not visible. That is, a step in a calculation may involve replacing some
composition f •g by f •([in])•g, the invisible intermediate step being to replace f •g
by f •idµF •g. This is valid if f has source µF (equivalently, g has target µF ) so
it is important to be aware of the types of the quantities involved.

To complete the calculation we have to check that the candidate ([F in]) we have
derived for out satisfies the second requirement on out. That is, we have to verify
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that ([F in])•in = idFµF . This is an exercise in the use of the computation rule
which we leave to the reader (specifically, exercise 2.14).

As another illustration of the use of the properties of catamorphisms we derive
a condition under which it is possible to fuse a post-composed function with
a catamorphism. The goal of the calculation is to eliminate the catamorphism
brackets from the equation.

h•([ϕ]) = ([ψ])

≡ { characterisation of ([ψ]) }

h•([ϕ])•in = ψ•F (h•([ϕ]))

≡ { computation rule for ([ϕ]) }

h•ϕ•F ([ϕ]) = ψ•F (h•([ϕ]))

≡ { F respects composition }

h•ϕ•F ([ϕ]) = ψ•Fh•F ([ϕ])

⇐ { cancel •F ([ϕ]) from both sides }

h•ϕ = ψ•Fh .

So we have derived the ([ ])-fusion rule:

h • ([ϕ]) = ([ψ]) ⇐ h •ϕ = ψ •Fh

Note that the condition states that h is a homomorphism. So the rule states that
composing a homomorphism after a catamorphism is a catamorphism.

The way this rule is typically used is that we want to fuse a given function h
into a given catamorphism ([ϕ]), for example to improve efficiency. In order to
do so, we try to solve the equation h•ϕ = ψ•Fh for the unknown ψ. If we find
a solution, we know that the answer is ([ψ]).

An example We show this in action on a simple example: sum•concat on lists of
lists of numbers. Recall that the pattern functor of List Nat is

L Nat = (z 7→ 1 + (Nat × z)) .

By definition, concat = ([nil 5 (++)]), so we try to fuse sum and concat into a
catamorphism. Applying the fusion rule we have:

sum•concat = ([ψ])

⇐ { concat = ([nil 5 (++)]), fusion }

sum • nil 5 (++) = ψ • (L Nat) sum .

Now, the pattern functor (L Nat) is a disjoint sum of two functors. Also, the
composition on the left side can be fused together:

sum • nil 5 (++)

= { 5 fusion }

(sum • nil) 5 (sum • (++)) .
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This suggests that we should try instantiating ψ to α5β for some α and β. In
this way, we get:

sum•concat = ([ψ])

⇐ { two steps above, definition of (L Nat) }

(sum • nil) 5 (sum • (++)) = ψ • (id + (id × sum))

≡ { postulate ψ = α5β, fusion }

(sum • nil) 5 (sum • (++)) = (α•id) 5 (β • id×sum)

≡ { 5 is injective, simplification }

sum • nil = α ∧ sum • (++) = β • id×sum .

We now continue with each conjunct in turn. The first conjunct is easy, we have:
sum•nil = zero. For the second conjunct, we have:

sum • (++)

= { property of summation }

(+) • sum×sum

= { × is a binary functor }

(+) • sum×id • id×sum .

And thus we have found that the function β = (+) • sum×id satisfies the equal-
ity sum • (++) = β • id×sum.

Combining everything, we have found that

sum•concat = ([zero 5 ((+) • sum×id)])

or, expressed in a more familiar sty le:

sum•concat = foldr � 0 where
xs � y = sum xs + y

This derivation was not generic but specific for lists of lists. Meertens [37] shows
how to do this generically, and also that the generic solution is no more compli-
cated to obtain than this specific one, whilst being much more general.

Exercise 2.14 We calculated above that out = ([F in]) satisfies in•out = idµF .
Verify that out•in = idFµF .

2

Exercise 2.15 Suppose that (A, ϕ) is an initial F -algebra. Prove that (A, ϕ)
is isomorphic to (µF, inF ). Hint. Consider the unique homomorphism h of type
h :: (A, ϕ)→ (µF, inF ).

2
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Exercise 2.16 Consider the datatype Bin a for some arbitrary type a. The
pattern functor for this type is F where Ff = ida + (f×f). Catamorphisms
over this type take the form ([f5�]) where f is a function and � is a binary
operator.
Define a catamorphism that counts the number of tips in a Bin . Define, in

addition, a catamorphism that counts the number of joins in a Bin . Use the
fusion rule for catamorphisms to determine a relation between the number of
tips and the number of joins in a Bin. That is, derive the definition of a function
f such that

f • NoOfTips = NoOfJoins .

2

Banana split In this subsection we demonstrate the beauty of generic program-
ming. We solve the following problem. Suppose we have two catamorphisms
([f ]) :: µF → a and ([g]) :: µF → b, and we want to have a function that
returns the combined result of both. One solution is the program ([f ]) 4 ([g]), but
this can be inefficient since, computationally, the source data value is traversed
twice, once for each of the two catamorphisms. So the question we want to solve
is: can we combine these two into a single catamorphism ([χ])?

This generic problem is motivated by our knowledge of specific cases. Take, for
example, the problem of finding both the sum and the product of a list of num-
bers. The sum can of course be expressed as a catamorphism —it is the catamor-
phism ([05add]), where add is ordinary addition of real
numbers— . Similarly the product function is a catamorphism, namely ([15mul]),
where mul is the ordinary multiplication of real numbers. Equally obvious is that
it should be possible to combine the sum and product of a list of numbers into
one catamorphism. After all, the function sp = sum4product is straightforward
to express as a fold in Haskell:

sp = foldr � e where
x� (u, v) = (x+ u, x× v)
e = (0, 1)

We can try to derive this special case in our calculus but more effective is to
derive the solution to the generic problem. The benefit is not only that we then
have a very general result that can be instantiated in lots of ways (one of which is
the sum4product problem), but also that the derivation is much simpler because
it omits irrelevant detail.

We begin the calculation of χ as follows:

([f ]) 4 ([g]) = ([χ])

≡ { There is a choice here. We can either use the

characterisation of ([χ]) or the characterisation

of f4g. For no good reason, we choose the latter. }

([f ]) = exl • ([χ]) ∧ ([g]) = exr • ([χ]) .
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This first step involves a difficult choice. At this point in time there is no reason
why the use of one characterisation is preferable to the other (since both are
equivalences). In fact, choosing to use the characterisation of ([χ]) first does lead
to a successful calculation of χ of a similar length. We leave it as an exercise.

We now have to satisfy two conjuncts. Since the two conjuncts are symmetrical
we proceed with just the first.

([f ]) = exl • ([χ])

⇐ { Fusion }

f • F exl = exl • χ

≡ { • χ := α4β . }

f • F exl = exl • α4β

≡ { 4 computation }

f • F exl = α .

The crucial step here (indicated by the bullet) is where we postulate the form
of the solution, the motivation being the step that immediately follows.

In summary we have calculated that

([f ]) = exl • ([χ]) ⇐ χ = α4β ∧ α = f • F exl .

Similarly,

([g]) = exr • ([χ]) ⇐ χ = α4β ∧ β = g • F exr .

Putting everything together, we conclude that

([f ]) 4 ([g]) = ([(f • F exl) 4 (g • F exr)]) .

This is affectionately called the banana-split theorem (because the brackets de-
noting a catamorphism look like bananas, and the 4 operator is pronounced
“split”).

Exercise 2.17 Calculate χ but start by using the characterisation of ([f ]). In
other words, calculate χ as a solution of the equation

([f ]) 4 ([g]) • in = χ • F (([f ]) 4 ([g])) .

(You may find that you get a solution that is equivalent to the one above but
not syntactically identical.)

2



Generic Programming 65

Type functors In general, a binary functor gives rise to a new functor by a com-
bination of parameterisation and constructing an initial algebra. For example,
the binary pattern functor L that maps x and y to 1+(x×y) gives rise to the
functor List . Such functors are called type functors. Here we show how this is
done.

For greater clarity we will use an infix notation for binary functors. Suppose that
� is a binary functor, which we write as an infix operator. That is, for types a
and b, a�b is a type and, for functions f :: a→b and g :: c→d, f�g is a function
of type a�c → b�d. Suppose a is an arbitrary type. Then the pair of mappings
b 7→ a�b and f 7→ ida�f is a functor (the functor formed by specialising the
first operand of � to the type a). We denote this functor by (a�) and call it a
parameterised functor.

Now, since (a�) is a unary functor, we can consider an initial (a�)-algebra with
carrier µ(a�). Abstracting from a we have constructed a mapping from types to
types. Let us introduce a special notation for this mapping:

τ(�) = (a 7→ µ(a�))

So List = τ(L), with L the binary functor defined above.

For τ(�) to be a functor, we need, in addition to the action on types, an action
on functions, which has to satisfy, for a function f :: a→ b,

τ(�) f :: τ(�) a→ τ(�) b .

We derive a candidate for τ(�) f from type considerations. In the calculation,
catamorphisms are (a�) catamorphisms and inb� is an initial (b�)-algebra.

τ(�) f :: τ(�) a → τ(�) b

≡ { definition of τ(�) on types }

τ(�) f :: µ(a�) → µ(b�)

⇐ { • τ(�) f := ([ϕ]) , typing rule for ([ ]) }

ϕ :: a � µ(b�) → µ(b�)

⇐ { • ϕ := inb� • ψ , type of in }

ψ :: a � µ(b�) → b � µ(b�)

⇐ { f :: a→b, idµ(b�) :: µ(b�)→ µ(b�),

� respects typing }

ψ = f � idµ(b�) .

Performing the collected substitutions gives us this candidate definition

τ(�) f = ([inb� • (f � idµ(b�))])

Exercise 2.20 is to show that τ(�) respects composition and identities. According
to the notational convention introduced earlier the action of τ(�) on functions
can also be written mapτ(�).
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A final comment: The parameter a in a parameterised functor may actually be
an n-tuple if functor � is (n+1)-ary, and then τ(�) is an n-ary functor. However,
we only consider unary type functors, derived with τ(�) from binary functors in
these lectures.

Exercise 2.18 Consider the datatype Bool = µ((1+1)K). Define false =
inBool•inl, true = inBool •inr. Examine and explain the meaning of the catamor-
phism ([u5v]) for Bool .

2

Exercise 2.19 (cata-map fusion) Derive a fusion rule of the form

([f ]) • (τ(�) g) = ([h]) .

Hint: instantiate the fusion rule for catamorphisms with F := (b�). Note also
that τ(�)g is a catamorphism.

2

Exercise 2.20 Complete the verification of the fact that τ(�) is a functor
by showing that τ(�) ida = idτ(�)a and τ(�) (f •g) = (τ(�) f) • (τ(�) g). (Hint:
make use of exercise 2.19.)

2

Exercise 2.21 Specialise the definition of τ(�)f for� = L, the bifunctor giving
the type functor List = τ(L), using in = nil5cons, and verify that this is the
familiarmap function for lists. Also, instantiate your solution to exercise 2.19 and
use it to express the sum of the squares of a list of numbers as a catamorphism.
(That is, express the sum of a list of numbers as a catamorphism, and the list
of squares of a list on numbers as a map. Then fuse the two functions together.)

2

Regular Functors and Datatypes We are now in a position to complete our dis-
cussion of the datatypes introduced in section 2.2 by giving a complete analysis
of the definition of the Rose datatype. As we saw in exercise 2.12, its pattern
functor is a�z = a×(List z), or, in terms of the extraction functors Par and
Rec, (�) = Par×(List Rec), which is not a polynomial functor, because of the
appearance of the type functor List . Yet τ(�) is well defined. Incorporating type
functors into the ways of constructing functors extends the class of polynomial
functors to the class of regular functors.

A functor built only from constants, extractions, sums, products, composition
and τ() is called a regular functor. All the datatypes we have seen, including
List and Rose are regular functors, and their constructor functions (combined
together using the 5 combinator) are initial algebras with respect to the pattern
functors of the datatype.

This concludes the theory development. We have shown precisely what it means
to say that a datatype is both an algebra and a functor.
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2.5 A Simple Polytypic Program

We began section 2.2 with four representative examples of datatypes: List ,
Maybe , Bin and Rose. For each of these datatypes we can define a summa-
tion function that sums all the values stored in an instance of the datatype —
assuming the values are numbers. Here is how one would do that in a non-generic
programming style.

sumList nil = 0
sumList (cons u us) = u + sumList us

sumMaybe none = 0
sumMaybe (one u) = u

sumBin (tip u) = u
sumBin (join x y) = sumBin x + sumBin y

sumRose (fork u rs) = u + sumList (mapList sumRose rs)

We now want to replace all these definitions by a single generic definition sumF
for arbitrary unary functor F , which can be specialised to any of the above
datatype constructors and many more by taking F to be List , Maybe , Bin , and
so on. We do this by induction on the structure of the regular functors. That is,
we define summation for a constant functor, for the extraction functors, for the
composition of functors, for disjoint sum and cartesian product, and finally for
a type functor. Let us begin with the type functors since this is where we see
how to formulate the induction hypothesis.

For the type functor τ(�), the requirement is to construct a function sumτ(�) of
type µ(IN�)→ IN. The obvious thing to do here is to define sum as a catamor-
phism, ([f ]) say. In that case, the type requirement on f is that f :: IN�IN → IN.
Note that the two arguments to the binary functor � are both IN. This suggests
the inductive hypothesis that there is a sum function of type F IN→ IN for all
unary regular functors F obtained from an arbitrary non-constant n-ary regular
functor by copying the (single) argument n times. We also need to define sum
for the constant functor 1. With this preparation, we can begin the analysis.

For the constant functor 1, we define

sum1 = 0 .

This is because the sum of zero numbers is zero.

For the extraction functors, it is clear that

sumEx = idIN

since the sum of a single number is that number itself.
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For disjoint sum and cartesian product, we have:

sumF+G = sumF5sumG

sumF×G (x, y) = sumF x + sumG y .

In the case of disjoint sum, either the sumF function has to be applied, or the
sumG function, depending on the type of the argument. In the case of cartesian
product, an element of an F×G structure is a pair consisting of an element of
an F structure and an element of a G structure, and the two sums have to be
added together.

For the composition of two functors, we have:

sumFG = sumF • F sumG .

Here the argument is that an FG structure is an F structure of G structures.
The function F sumG applies sumG to all the individual G structures, and

then sumF adds their values.

The final case is a type functor, which we have already discussed.

sumτ(�) = ([sum�]) .

We leave it to the reader to check that application of the above rules results in
the particular instances of sum given above.

3 PolyP

The previous chapter introduces datatypes and functions on datatypes such as
the catamorphism. The formal language used to introduce datatypes and func-
tions is the language of category theory. The language of category theory is
not a programming language, and although the accompanying text mentions
programming, it is impossible to ‘run’ catamorphisms. This chapter introduces
PolyP, a programming language with which generic functions such as the cata-
morphism can be implemented. The name of PolyP is derived from ‘polytypic
programming’, an alternative name for generic programming.

PolyP is an extension of (a subset of) the functional programming language
Haskell. The extension consists of a new kind of top level definition: the
polytypic construct, which is used to define functions by induction over pattern
functors, which describe the structure of (a subset of) regular datatypes. PolyP
is based on the initial algebra approach to datatypes and work in the Squiggol
community on datatypes. It is a tool that supports polytypic programming, and
as such it has spurred the development of new polytypic programs.

In Haskell, datatypes are defined by means of the data construct, examples of
which have been given in chapter 2. PolyP extracts the pattern functor from a
datatype definition, and uses this structure information to instantiate generic
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programs on particular datatypes. We will use the name polytypic function for
a generic program in PolyP.

PolyP has a number of limitations. The datatypes PolyP can handle are a subset
of the datatypes induced by the regular functors defined in the previous chap-
ter: PolyP’s pattern functors are binary and the type functors are unary which
means that it can only handle datatypes with one type argument. Furthermore,
datatypes cannot be mutually recursive.

Information about PolyP and polytypic programming in general can be found on

http://www.cs.chalmers.se/~patrikj/poly/

The names of pattern functors in PolyP differ slightly from the names in the pre-
vious chapter. Section 3.1 introduces PolyP’s functor names. Section 3.2 gives an
implementation of the polytypic function sum from section 2.5. Section 3.3 de-
fines most of the basic polytypic concepts. Type checking of polytypic functions
is explained in section 3.4. Since we will use a number of polytypic functions in
the rest of these notes, section 3.5 gives more examples of polytypic functions,
and section 3.6 introduces PolyLib: a library of polytypic functions.

3.1 Regular Functors in PolyP

The previous chapter explains how datatypes are defined by means of pattern
functors. A pattern functor is a regular functor, i.e., a polynomial functor possi-
bly extended with a type functor. PolyP defines polytypic functions by induction
over the pattern functor of a datatype. The names for the pattern functors con-
structors used in PolyP differs slightly from the names in the previous chapter.
This section defines the syntax for pattern functors used in PolyP.

PolyP’s functors are specified by the following context-free grammar:

f,g ::= f + g | f * g | Empty | Par | Rec | d @ g | Const t

The following table relates this syntax to the functors introduced in the previous
chapter.

+ * Empty Par Rec d @ g Const t

+ × 1K exl exr a 7→ b 7→ d(g a b) tK

+ and * are the standard sum and product functors lifted to act on functors.
Empty is the constant binary version of functor 1K. Par and Rec are mentioned in
chapter 2, and are exl and exr, respectively. Composition of functors d and g is
denoted by d @ g and is only defined for a unary functor d and a binary functor g.
Finally, Const t is the binary variant of tK. The t stands for a monotype such
as Bool, Char or (Int,[Float]).

In PolyP, as in Haskell, type functors (recursive datatypes) are introduced by
the data construct. Every Haskell datatype constructor d is equal to τ(f) for
some pattern functor f. In PolyP this f is denoted by FunctorOf d. A datatype
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d a is regular (satisfies Regular d) if it contains no function spaces, and if the
argument of the type constructor d is the same on the left- and right-hand side of
its definition. For each one parameter regular datatype d a, PolyP automatically
generates FunctorOf d using roughly the same steps as those used manually in
section 2.4. For example, for

data Error a = Error String | Ok a

data List a = Nil | Cons a (List a)

data Bin a = Tip a | Join (Bin a) (Bin a)

data Rose a = Fork a (List (Rose a))

PolyP generates the following functors:

FunctorOf Error = Const String + Par

FunctorOf List = Empty + Par * Rec

FunctorOf Bin = Par + Rec * Rec

FunctorOf Rose = Par * (List @ Rec)

Pattern functors are only constructed for datatypes defined by means of the
data construct. If somewhere in a program a polytypic function is applied to a
value of type Error (List a), PolyP will generate an instance of the polytypic
function on the datatype Error b, not on the type (Error @ List) a. This
also implies that the functor d in the functor composition d @ g is always a type
functor.

3.2 An Example: psum

PolyP introduces a new construct polytypic for defining polytypic functions by
induction on the structure of a binary pattern functor:

polytypic p :: t = case f of {fi -> ei}

where p is the name of the value being defined, t is its type, f is a functor
variable, fi are functor patterns and ei are PolyP expressions. The explicit
type in the polytypic construct is needed since we cannot in general infer the
type from the cases.

The informal meaning is that we define a function that takes (a representation
of) a pattern functor as its first argument. This function selects the expression in
the first branch of the case matching the functor, and the expression may in turn
use the polytypic function (on subfunctors). Thus the polytypic construct is a
(recursive) template for constructing instances of polytypic functions given the
pattern functor of a datatype. The functor argument of the polytypic function
need not (and cannot) be supplied explicitly but is inserted by the compiler
during type inference.

As an example we take the function psum defined in figure 1. (The subscripts
indicating the type are included for readability and are not part of the defin-
ition.) Function psum sums the integers in a structure with integers. It is the
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psumd :: Regular d => d Int -> Int

psumd = catad fsumFunctorOf d

polytypic fsumf :: f Int Int -> Int

= case f of

g + h -> fsumg ‘either‘ fsumh
g * h -> \(x,y) -> fsumg x + fsumh y

Empty -> \x -> 0

Par -> id

Rec -> id

d @ g -> psumd . (pmapd fsumg)

Const t -> \x -> 0

Fig. 1. The definition of psum

PolyP implementation of the function sum defined in section 2.5. The function
either :: (a -> c) -> (b -> c) -> Either a b -> c (corresponding to 5) and
datatype Either a b (corresponding to a+b) are defined in Haskell’s prelude.
The definition of functions cata and pmap (the implementations in PolyP of
the catamorphism and the map, see chapter 2) will be given later. When psum is
used on an element of type Bin Int, the compiler performs roughly the following
rewrite steps to construct the actual instance of psum for Bin:

psumBin → cataBin fsumFunctorOf Bin

It follows that we need an instance of cata for the type functor Bin, and an
instance of function fsum for the pattern functor FunctorOf Bin = Par + Rec
* Rec. For the latter instance, we use the definition of fsum to transform as
follows:

fsumFunctorOf Bin → fsumPar+Rec∗Rec → fsumPar ‘either‘ fsumRec∗Rec

We transform the functions fsumPar and fsumRec∗Rec separately. For fsumPar we
have

fsumPar → id

and for fsumRec∗Rec we have

fsumRec∗Rec
→ \(x,y) -> fsumRec x + fsumRec y
→ \(x,y) -> id x + id y

The last function can be rewritten into uncurry (+), and thus we obtain the
following function for summing a tree:

cataBin (id ‘either‘ (uncurry (+)))

By expanding cataBin in a similar way we obtain a Haskell function for the
instance of psum on Bin. The function we obtain is the same as the function
sumBin defined in section 2.5.
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3.3 Basic Polytypic Functions

In the definition of function psum we used functions like cata and pmap. This
subsection defines these and other basic polytypic functions.

Since polytypic functions cannot refer to constructor names of specific datatypes,
we introduce the predefined functions out and inn. Function out is used in poly-
typic functions instead of pattern matching on the constructors of a datatype.
For example out on Bin is defined as follows:

outBin :: Bin a -> Either a (Bin a,Bin a)

outBin (Tip x) = Left x

outBin (Join l r) = Right (l,r)

Function inn is the inverse of function out. It collects the constructors of a
datatype into a single constructor function.

out :: Regular d => FunctorOf d a (d a) <- d a

inn :: Regular d => FunctorOf d a (d a) -> d a

Function inn is an implementation of in from chapter 2. The following calculation
shows that the type of inn really corresponds to the type of in:

FunctorOf d a (d a) -> d a

= { d = τ(f) for some regular functor f. }
FunctorOf τ(f) a (τ(f) a) -> τ(f) a

= { Definition of FunctorOf }
f a (τ(f) a) -> τ(f) a

= { Definition of τ() }
f a µ(f a) -> µ(f a)

PolyP generates definitions of inn and out for all datatypes.

As explained in chapter 2, a functor is a mapping between categories that pre-
serves the algebraic structure of the category. Since a category consists of objects
(types) and arrows (functions), a functor consists of two parts: a definition on
types, and a definition on functions. A pattern functor f in PolyP is a function
that take two types and return a type. The part of the functor that takes two
functions and returns a function is called fmapf, see figure 2.

Using fmap we can define the polytypic version of function map, pmap, as follows:

pmap :: Regular d => (a -> b) -> d a -> d b

pmap f = inn . fmap f (pmap f) . out

where out takes the argument apart, fmap applies f to parameters and (pmap f)
recursively to substructures and inn puts the parts back together again. Function
pmapd is the function action of the type functor d.
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polytypic fmapf :: (a -> c) -> (b -> d) -> f a b -> f c d

= \p r -> case f of

g + h -> (fmapg p r) -+- (fmaph p r)

g * h -> (fmapg p r) -*- (fmaph p r)

Empty -> id

Par -> p

Rec -> r

d @ g -> pmapd (fmapg p r)

Const t -> id

(-*-) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

(f -*- g) (x,y) = (f x , g y)

(-+-) :: (a -> c) -> (b -> d) -> Either a b -> Either c d

(f -+- g) = either (Left . f) (Right . g)

Fig. 2. The definition of fmap.

Function cata is also defined in terms of function fmap:

cata :: Regular d => (FunctorOf d a b -> b) -> (d a -> b)

cata f = f . fmap id (cata f) . out

Note that this definition is a copy of the computation rule for the catamorphism
in section 2.4, with in on the left-hand side replaced by out on the right-hand
side.

3.4 Type Checking Polytypic Functions

We want to be sure that functions generated by polytypic functions are type
correct, so that no run-time type errors occur. For that purpose PolyP type
checks definitions of polytypic functions. This subsection briefly discusses how
to type check polytypic functions, the details of the type checking algorithm can
be found in [25].

Functor expressions contain +, *, etc., and such expressions have to be trans-
lated to real types. For this translation we interpret functor constructors as type
synonyms:

type (f + g) a b = Either (f a b) (g a b)

type (f * g) a b = (f a b , g a b)

type Empty a b = ()

type Par a b = a

type Rec a b = b

type (d @ g) a b = d (g a b)

type Const t a b = t
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So, for example, interpreting the functors in the pattern functor for List as type
synonyms, we have:

FunctorOf List a b

= { FunctorOf List = Empty + Par * Rec }
(Empty + Par * Rec) a b

= { Type synonym for + }
Either (Empty a b) ((Par * Rec) a b)

= { Type synonyms for Empty and * }
Either () (Par a b,Rec a b)

= { Type synonyms for Par and Rec }
Either () (a,b)

To infer the type of a polytypic definition from the types of the expressions in
the case branches, higher-order unification would be needed. As general higher-
order unification is undecidable we require inductive definitions of polytypic
functions to be explicitly typed, and we only check that this type is valid. Given
an inductive definition of a polytypic function

polytypic foo :: ... f ...

= case f of

g + h -> bar

...

where f is a functor variable, the rule for type checking these definitions checks
among other things that the declared type of function foo, with g + h substituted
for f, is an instance of the type of expression bar. For all of the expressions in
the branches of the case it is required that the declared type is an instance of
the type of the expression in the branch with the left-hand side of the branch
substituted for f in the declared type. The expression g + h is an abstraction of a
type, so by substituting g + h (or any of the other abstract type expressions) for
f in the type of foo we mean the following: substitute g + h for f, and rewrite
the expression obtained thus by interpreting the functor constructors as type
synonyms. As an example we take the case g * h in the definition of fsum:

polytypic fsum :: f Int Int -> Int

= case f of

...

g * h -> \(x,y) -> fsum x + fsum y

...

The type of the expression \(x,y) -> fsum x + fsum y is (r Int Int, s Int Int)
-> Int. Substituting the functor to the left of the arrow in the case branch, g * h,
for f in the declared type f Int Int -> Int gives (g * h) Int Int -> Int, and
rewriting this type using the type rewrite rules, gives (g Int Int, h Int Int)
-> Int. This type is α-convertible to (and hence certainly an instance of) the
type of the expression to the right of the arrow in the case branch, so this part
of the polytypic function definition is type correct.
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3.5 More Examples of Polytypic Functions

This section describes some polytypic functions that will be used in the sequel.
These functions can be found in PolyLib, the library of PolyP. The next section
gives an overview of PolyLib.

Function flatten takes a value of type d a and flattens it into a list of values
of type [a]. It is defined using function fflatten :: f a [a] -> [a], which
takes a value v of type f a [a], and returns the concatenation of all the values
(of type a) and lists (of type [a]) occurring at the top level in v. The definition
of flatten and fflatten is given in figure 3. As an example, we unfold the

flattend :: Regular d => d a -> [a]

flattend = catad fflattenFunctorOf d

polytypic fflattenf :: f a [a] -> [a]

= case f of

g + h -> either fflatteng fflattenh
g * h -> \(x,y) -> fflatteng x ++ fflattenh y

Empty -> nil

Par -> singleton

Rec -> id

d @ g -> concat . flattend . pmapd fflatteng
Const t -> nil

nil x = []

singleton x = [x]

Fig. 3. The definition of flatten and fflatten.

definition of fflatten when used on the type List a (remember that FunctorOf
List = Empty+Par*Rec):

fflattenEmpty+Par∗Rec
→ either fflattenEmpty fflattenPar∗Rec
→ either nil (\(x,y) -> fflattenPar x ++ fflattenRec y)

→ either nil (\(x,y) -> id x ++ id y)

→ either nil (uncurry (++))

The expression pequal eq x y checks whether or not the values x and y are
equivalent using the equivalence operator eq to compare the elements pairwise. It
is defined in terms of function fequal eq (pequal eq), where the first argument,
eq, compares parameters for equality and the second argument, (pequal eq),
compares the subterms recursively. The third and fourth arguments are the two
(unfolded) terms to be compared. These functions are defined in figure 4.
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polytypic fequalf :: (a -> b -> Bool) -> (c -> d -> Bool) ->

f a c -> f b d -> Bool

= \p r -> case f of

g + h -> sumequal (fequalg p r) (fequalh p r)

g * h -> prodequal (fequalg p r) (fequalh p r)

Empty -> \_ _ -> True

Par -> p

Rec -> r

d @ g -> pequald (fequalg p r)

Const t -> (==)

pequal :: (a -> b -> Bool) -> d a -> d b -> Bool

pequal eq x y = fequal eq (pequal eq) (out x) (out y)

sumequal :: (a -> b -> Bool) -> (c -> d -> Bool) ->

Either a c -> Either b d -> Bool

sumequal f g (Left x) (Left v) = f x v

sumequal f g (Right y) (Right w) = g y w

sumequal f g _ _ = False

prodequal :: (a -> b -> Bool) -> (c -> d -> Bool) ->

(a,c) -> (b,d) -> Bool

prodequal f g (x,y) (v,w) = f x v && g y w

Fig. 4. The definition of pequal and fequal.

3.6 PolyLib: A Library of Polytypic Functions

Using different versions of PolyP (and its predecessors) we have implemented a
number of polytypic programs. For example, we have implemented a polytypic
equality function, a polytypic show function, and a polytypic parser. Further-
more, we have implemented some more involved polytypic programs for pattern
matching, unification and rewriting. These polytypic programs use several basic
polytypic functions, such as the relatively well-known cata and pmap, but also
less well-known functions such as propagate and thread. We have collected
these basic polytypic functions in the library of PolyP: PolyLib [27, app. B]. This
paper describes the polytypic functions in PolyLib, motivates their presence in
the library, and gives a rationale for their design. This section first introduces the
format used for describing polytypic library functions, then it gives an overview
of the contents of the library, followed by a description of each of the submodules
in the library.

Describing Polytypic Functions The description of a polytypic function
consists of (some of) the following components: its name and type; an (in)formal
description of the function; other names the function is known by; known uses of
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the function; and its background and relationship to other polytypic functions.
For example:

pmap :: (a -> b) -> d a -> d b

Function pmap takes a function f and a value x of datatype d a, and
applies f . . . Also known as: map [31], mapn [29]. Known uses:
Everywhere! Background: This was one of the first . . .

A problem with describing a library of polytypic functions is that it is not com-
pletely clear how to specify polytypic functions. The most basic combinators
have immediate category theoretic interpretations that can be used as a specifi-
cation, but for more complicated combinators the matter is not all that obvious.
Thus, we will normally not provide formal specifications of the library functions,
though we try to give references to more in-depth treatments.

The polytypic functions in the library are only defined for regular datatypes d
a. In the type this is indicated by adding a context Regular d => ..., but we
will omit this for brevity.

Library Overview We have divided the library into six parts, see figure 5.
The first part of the library contains powerful recursion combinators such as
map, cata and ana. This part is the core of the library in the sense that it is
used in the definitions of all the functions in the other parts. The second part
deals with zips and some derivates, such as the equality function. The third part
consists of functions that manipulate monads (see section 4.1). The fourth and
fifth parts consist of simpler (but still very useful) functions, like flattening and
summing. The sixth part consists of functions that manipulate constructors and
constructor names. The following sections describe each of these parts in more
detail.

Recursion Operators

pmap :: (a -> b) -> d a -> d b
fmap :: (a -> c) -> (b -> d) -> f a b -> f c d

Function pmap takes a function f and a value x of datatype d a, and applies f
recursively to all occurrences of elements of type a in x. With d as a functor acting
on types, pmapd is the corresponding functor action on functions. Function fmapf
is the corresponding functor action for a pattern functor f. Also known as:
map [31], mapn [29]. In charity [13] mapd f x is written d{f}(x). Known uses:
Everywhere! Function fmap is used in the definition of pmap, cata, ana, hylo,
para and in many other PolyLib functions. Background: The map function
was one of the first combinators distinguished in the work of Bird and Meertens,
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pmap, fmap, cata
ana, hylo, para
crush, fcrush

(a) Recursion op’s

pzip, fzip
punzip, funzip

pzipWith, pzipWith’
pequal, fequal
(b) Zips etc.

pmapM, fmapM, cataM
anaM, hyloM, paraM
propagate, cross
thread, fthread
(c) Monad op’s

flatten, fflatten
fl par, fl rec, conc

(d) Flatten functions

psum, size, prod
pand, pall

por, pany, pelem

(e) Miscellaneous

constructorName, fconstructorName
constructors, fconstructors

constructor2Int, fconstructor2Int
int2constructor, int2fconstructor

(f) Constructor functions

Fig. 5. Overview of PolyLib

[12,35]. The traditional map in functional languages maps a function over a list
of elements. The current Haskell version of map is overloaded:

map :: Functor f => (a->b) -> f a -> f b

and can be used as the polytypic pmap if instance declarations for all regular
type constructors are given. Function pmap can be used to give default instances
for the Haskell map.

cata :: (FunctorOf d a b -> b) -> (d a -> b)
ana :: (FunctorOf d a b <- b) -> (d a <- b)
hylo :: (f a b -> b) -> (c -> f a c) -> (c -> b)
para :: (d a -> FunctorOf d a b -> b) -> (d a -> b)

Four powerful recursion operators on the type d a: The catamorphism, cata,
“evaluates” a data structure by recursively replacing the constructors with func-
tions. The typing of cata may seem unfamiliar but with the explanation of
FunctorOf above it can be seen as equivalent to:

cata :: (f a b -> b) -> (τ(f) a -> b)

The anamorphism, ana, works in the opposite direction and builds a data struc-
ture. The hylomorphism, hylo, is the generalisation of these two functions that
simultaneously builds and evaluates a structure. Finally, the paramorphism,
para, is a generalised form of cata that gives its parameter function access
not only to the results of evaluating the substructures, but also the structure
itself. Also known as:
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PolyLib Functorial ML [9] Squiggol charity [13]
cata i fold1 i ([i]) {| i |}

ana o - [(o)] (| o |)

Functions cata and para are instances of the Visitor pattern in [21]. Known
uses: Very many polytypic functions are defined using cata: pmap, crush,
thread, flatten, propagate, and all our applications use it. Function para
is used in rewrite. Background: The catamorphism, cata, is the generalisa-
tion of the Haskell function foldr and the anamorphism, ana, is the (category
theoretic) dual. Catamorphisms were introduced by Malcolm [33,34]. A hylo-
morphism is the fused composition of a catamorphism and an anamorphism
specified by: hylo i o = cata i . ana o. The paramorphism [36], para, is the
elimination construct for the type d a from Martin–Löf type theory. It captures
the recursion pattern of primitive recursive functions on the datatype d a.

crush :: (a->a->a) -> a -> d a -> a
fcrush :: (a->a->a) -> a -> f a a -> a

The function crush op e takes a structure x and inserts the operator op from
left to right between every pair of values of type a at every level in x. (The
value e is used in empty leaves.) Known uses: within the library see section 6.
Many of the functions in that section are then used in the different applications.
Background: The definition of crush is found in [37]. For an associative oper-
ator op with unit e, crush op e can be defined as foldr op e . flatten. As
crush has the same arguments as fold on lists it can be seen as an alternative
to cata as the generalisation of fold to regular datatypes.

Zips

pzip :: (d a,d b) -> Maybe ( d (a,b) )
punzip :: d (a,b) -> (d a,d b)
fzip :: (f a b,f c d) -> Maybe ( f (a,c) (b,d) )
funzip :: f (a,c) (b,d) -> (f a b,f c d)

Function punzip takes a structure containing pairs and splits it up into a pair of
structures containing the first and the second components respectively. Function
pzip is a partial inverse of punzip: it takes a pair of structures and zips them
together to Just a structure of pairs if the two structures have the same shape,
and to Nothing otherwise. Also known as: zipm [29], zip.×.d [23], Known
uses: Function fzip is used in the definition of pzipWith. Background: The
traditional function zip

zip :: [a] -> [b] -> [(a,b)]
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combines two lists and does not need the Maybe type in the result as the longer
list can always be truncated. (In general such truncation is possible for all types
that have a nullary constructor, but not for all regular types.) A more general
(“doubly polytypic”) variant of pzip: transpose (called zip.d.e in [23])

transpose :: d (e a) -> e (d a)

was first described by Fritz Ruehr [43]. For a formal and relational definition,
see Hoogendijk & Backhouse [23].

pzipWith :: ((a,b) -> Maybe c) -> (d a,d b) -> Maybe (d c)
pzipWith’ :: (FunctorOf d c e -> e) -> ((d a,d b) -> e) ->

((a,b) -> c) -> (d a,d b) -> e

Function pzipWith op works like pzip but uses the operator op to combine the
values from the two structures instead of just pairing them. As the zip might
fail, we also give the operator a chance to signal failure by giving it a Maybe-type
as a result.6

Function pzipWith’ is a generalisation of pzipWith that can handle two
structures of different shape. In the call pzipWith’ ins fail op, op is used as
long as the structures have the same shape, fail is used to handle the case when
the two structures mismatch, and ins combines the results from the substruc-
tures. (The type of ins is the same as the type of the first argument to cata.)
Also known as: zipopm [29]. Known uses: Function pzipWith’ is used in the
definition of equality, matching and even unification. Background: Function
pzipWith is the polytypic variant of the Haskell function zipWith

zipWith :: (a->b->c) -> [a] -> [b] -> [(a,b)]

but pzipWith’ is new. Function pzip is just pzipWith Just.

pequal :: (a->b->Bool) -> d a -> d b -> Bool
fequal :: (a->b->Bool) -> (c->d->Bool) -> f a c -> f b d -> Bool

The expression pequal eq x y checks whether or not the structures x and y are
equivalent using the equivalence operator eq to compare the elements pairwise.
Known uses: fequal is used in the unification algorithm to determine when
two terms are top level equal. Background: An early version of a polytypic
equality function appeared in [44]. Function pequal can be instantiated to give
a default for the Haskell Eq-class for regular datatypes:

6 The type constructor Maybe can be replaced by any monad with a zero, but we didn’t
want to clutter up the already complicated type with contexts.
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(==) :: Eq a => d a -> d a -> Bool

(==) = pequal (==)

In Haskell the equality function can be automatically derived by the compiler,
and our polytypic equality is an attempt at moving that derivation out of the
compiler into the prelude.

Monad Operations

pmapM :: Monad m => (a -> m b) -> d a -> m (d b)
pmapMr :: Monad m => (a -> m b) -> d a -> m (d b)
fmapM :: Monad m => (a->m c) -> (b->m d) -> f a b -> m (f c d)
cataM :: Monad m => (FunctorOf d a b->m b) -> (d a -> m b)
anaM :: Monad m => (b->m (FunctorOf d a b)) -> (b -> m (d a))
hyloM :: Monad m => (f a b->m b) -> (c->m (f a c)) -> c -> m b
paraM :: Monad m => (d a->FunctorOf d a b->m b) -> d a -> m b

Function pmapM is a variant of pmap that threads a monad m from left to right
through a structure after applying its function argument to all elements in the
structure. Function pmapMr is the same but for threading a monad m from right to
left through a structure. For symmetry’s sake, the library also contains a function
pmapMl, which is equal to pmapM. Furthermore, the library also contains the left
and right variants of functions like cataM etc. A monadic map can, for example,
use a state monad to record information about the elements in the structure
during the traversal. The other recursion operators are generalised in the same
way to form even more general combinators. Also known as: traversals [29].
Known uses: in unify and in the parser. Background: Monadic maps and
catamorphisms are described in [20]. Monadic anamorphisms and hylomorphisms
are defined in [39]. The monadic map (also called active traversal) is closely
related to thread (also called passive traversal):

pmapM f = thread . pmap f

thread = pmapM id

propagate :: d (Maybe a) -> Maybe (d a)
cross :: d [a] -> [d a]

Function propagate propagates Nothing to the top level. Function cross is the
cross (or tensor) product that given a structure x containing lists, generates a list
of structures of the same shape. This list has one element for every combination of
values drawn from the lists in x. These two functions can be generalised to thread
any monad through a value. Known uses: propagate is used in the definition
of pzip. Background: Function propagate is an instance of transpose [43],
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and both propagate and cross are instances of thread below.

thread :: Monad m => d (m a) -> m (d a)
fthread :: Monad m => f (m a) (m b) -> m (f a b)

Function thread is used to tie together the monad computations in the elements
from left to right. Also known as: distd [20]. Known uses: Function thread
can be used to define the monadic map: pmapM f = thread . pmap f. Function
fthread is also used in the parser to thread the parsing monad through different
structures. Function thread can be instantiated (with d = []) to the Haskell
prelude function

accumulate :: Monad m => [m a] -> m [a]

but also orthogonally (with m = Maybe) to propagate and (with m = []) to
cross.

Flatten Functions

flatten :: d a -> [a]
fflatten :: f a [a] -> [a]
fl par :: f a b -> [a]
fl rec :: f a b -> [b]

Function flatten x traverses the structure x and collects all elements from left
to right in a list. The other three function are variants of this for a pattern
functor f. Also known as: extractm,i [29], listify [23]. Known uses: fl rec
is used in the unification algorithm to find the list of immediate subterms of a
term. Function fflatten is used to define flatten

flatten = cata fflatten

Background: In the relational theory of polytypism [23] there is a membership
relation mem.d for every relator (type constructor) d. Function flatten can
be seen as a functional implementation of this relation:

a mem.d x ≡ a ‘elem‘ (flattend x)
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Miscellaneous A number of simple polytypic functions can be defined in terms
of crush and pmap. For brevity we present this part of PolyLib below by pro-
viding only the name, the type and the definition of each function.

psum :: d Int -> Int

prod :: d Int -> Int

conc :: d [a] -> [a]

pand :: d Bool -> Bool

por :: d Bool -> Bool

psum = crush (+) 0

prod = crush (*) 1

conc = crush (++) []

pand = crush (&&) True

por = crush (||) False

size :: d a -> Int

flatten :: d a -> [a]

pall :: (a->Bool) -> d a -> Bool

pany :: (a->Bool) -> d a -> Bool

pelem :: Eq a => a -> d a -> Bool

size = psum . pmap (\_->1)

flatten = conc . pmap (:[])

pall p = pand . pmap p

pany p = por . pmap p

pelem x = pany (\y->x==y)

Constructors

constructorName :: d a -> String
fconstructorName :: f a b -> String
constructors :: [d a]
fconstructors :: [f a b]
constructor2Int :: d a -> Int
fconstructor2Int :: f a b -> Int
int2constructor :: Int -> d a
int2fconstructor :: Int -> f a b

Function constructorName takes a value of type d a and returns its outer-
most constructor name. Function constructors returns a list with all the con-
structors of a datatype d a. For example, for the datatype Bin it returns [Tip
undefined,Join undefined undefined]. The functions constructor2Intand
int2constructor take constructors to integers and vice versa. Known uses:
constructorName is used in pshow, the polytypic version of the derived show
function in Haskell, constructors is used in showing, parsing and compress-
ing values, and both int2constructor and constructor2Int in compressing
values.

4 Generic Unification

This chapter presents a substantial application of the techniques that have been
developed thus far. The topic is a generic unification algorithm.

Briefly, unification is the process of making two terms (such as arithmetic ex-
pressions or type expressions) equal by suitably instantiating the variables in the
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terms. It is very widely used in, for example, pattern matching, type checking
and theorem proving. For those who haven’t already encountered it, let us first
give an informal explanation before giving a summary of the development of the
generic algorithm.

We explain the process in terms of a specific case before considering the generic
version. Consider the datatype definition

data Expr = var V
| number Nat
| plus Expr Expr
| times Expr Expr

This can be read as the datatype of abstract syntax trees for a context-free
grammar

E ::= V | N | (E +E ) | (E *E )

for terms like “((1+x)*3)” when V produces variables andN produces numbers.

Another view is that a term of the datatype Expr is a tree with the constructors
var, number, plus and times at the nodes, and numbers and variables at the
leaves. In this view, the constructors are uninterpreted, which means that trees
corresponding to equal but non-identical arithmetic expressions are considered
different. For example, the trees corresponding to ((1+x)*3) and (3+(x*3)) are
different. It is this view of terms as tree structures that is used in unification.
Nevertheless, for ease of writing we shall use the concrete syntax of arithmetic
expressions to write terms.

Now consider two terms, say ((1+x)*3) and ((y+z)*3). “Unifying” these terms
means substituting terms for the variables x, y and z so that the terms become
identical. One possibility, in this case, is to substitute z for x and 1 for y. After
this substitution both terms become equal to ((1+z)*3). There are many other
possibilities. For example, we could substitute 1 for all of x, y and z, thus unifying
the two terms in the term ((1+1)*3). This latter substitution is however less
general than the former. Unification involves seeking a “most general” unifier
for two given terms. Of course, some pairs of terms are not unifiable: a trivial
example is the pair of terms 0 and 1. These are not unifiable because they
contain no variables. The pair of terms x and (1+x) is also not unifiable, but
for a different reason: namely, the first term will always have fewer constructors
than the second whatever substitution we make for x.

We have described unification for arithmetic expressions but unification is also
used for other term algebras. A major application is in polymorphic type in-
ference, as in most modern functional languages. In this application it is type
expressions that are unified. Suppose that a program contains the function ap-
plication f x, and at that stage the term representing the type inferred for f is
(p->q), and for x it is r. Then first p and r are unified. If that fails, there is
a type error. Otherwise, let (p′->q′) be the result of applying the most general
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unifier to (p->q). That is the new type inferred for f, while we get p′ for x, and
q′ for the application f x.

In a generic unification algorithm we make the term structure a parameter of
the algorithm. So, one instance of the algorithm unifies arithmetic expressions,
another type expressions. In order to formalise this we use F to denote a functor
(the pattern functor of the constant terms we want to unify) and show how to
extend F to a functor F ? such that F ?V , for type V of variables, is the set of
all terms. We also define substitution of variables, and most general unifiers.

The functor F ? is (the functor part of) a monad. In the last ten years, mon-
ads have been recognised to be an important concept in many applications of
functional programming. We therefore begin in section 4.1 by introducing the
concept at first without reference to unification. There is much that can be said
about monads but our discussion is brief and restricted to just what we need to
present the unification algorithm. The monad F ? defined by an arbitrary functor
F is then discussed along with the definition of a substitution.

The discussion of the unification algorithm proper begins in section 4.2. Here
the discussion is also brief since we assume that the non-generic algorithm is
known from the literature. In order to compare the calculational method of
proof with traditional proofs, chapter 5 presents a generic proof of one aspect of
the algorithm’s correctness, namely that a non-trivial expression is not unifiable
with any variable that occurs properly in it.

4.1 Monads and Terms

Monads and Kleisli composition A monad is a concept introduced in category
theory that has since proved its worth in functional programming. It is a general
concept which we introduce via a particular instance, the Maybe monad.

Suppose we have two functions

f :: a→Maybe b
g :: b→Maybe c

Think of these total functions as modelling partial functions: f computes a b-
value from an a-value, or fails, and likewise, g computes a c-value from a b-value,
or fails. Can we combine these functions into a single function

g � f :: a→Maybe c

that combines the computations of f and g when both succeed, and fails when
either of them fails? The types don’t fit for normal composition, but here is how
to do it:

(g � f) x = h (f x) where
h none = none
h (one y) = g y



86 Roland Backhouse et al.

This form of composition is calledKleisli composition. Kleisli composition shares
some pleasant properties with normal composition. First, the operation is asso-
ciative:

f � (g �h) = (f � g) � h

for f , g and h such that the expressions involved are well-typed. We may there-
fore drop the parentheses in chains of Kleisli compositions and write f � g � h.
Moreover, � has neutral element one, which we call the Kleisli identity :

one � f = f = f � one .

Kleisli composition gives a convenient way to fit functions together that would
not fit together with normal composition. Kleisli composition is not just pos-
sible for Maybe , but for many other functors as well. A functor with a Kleisli
composition and Kleisli identity —that satisfy a number of laws to be discussed
shortly— is called a monad. A trivial example is the functor Id: take normal
function composition as its Kleisli composition. A less trivial example is the
functor Set . For this functor, Kleisli composition takes the form

(f�g)x = {z | ∃(y:: y∈gx ∧ z∈fy)} .

Its Kleisli identity is the singleton former { }. We shall encounter more monads
later.

Formally, the triple (M, � , η) is a monad, where M is a functor, � and η are its
Kleisli composition and Kleisli identity, if the following properties hold. First, �
is a function of polymorphic type

(b→Mc)×(a→Mb)→ (a→Mc)

and η is a function of polymorphic type

a→Ma .

Second, � is associative with η as neutral element. Finally, the following rules
are satisfied:

Mf • (g � h) = (Mf • g) � h
(f � g) •h = f � (g •h)
(f • g) � h = f � (Mg • h)

In fact, these equalities are automatically satisfied in all the monads that we
consider here. They are consquences of the so-called free theorem for � . Their
validity depends on a property called (polymorphic) parametricity that is sat-
isfied by Haskell restricted to total functions which we discuss in section 5.2.

Exercise 4.1 Let (M, � , η) be a monad. Express Mf in terms of Kleisli
composition and identity. Define

mul = id � id ::MMa→ Ma
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(The function mul is called the multiplier of the monad.) What is the function
mul for the case M = Set?
Prove that f � g = mul •Mf • g. Also prove the following three equalities:

mul • mul = mul •Mmul

mul • η = id = mul •Mη .

2

Terms with variables Recall the datatype Expr introduced at the beginning of
this section. We can regard it as a datatype for terms involving numbers, addition
and multiplication to which has been added an extra alternative for variables.

Let F be the pattern functor corresponding to the definition of Expr without
variables. Then Expr = µG, where Ga = V +Fa. This can be done generically.
Consider, for unary functor F , the unary functor V K+F . This, we recall, is
defined by

(V K+F )a = V + Fa

where a ranges over types, and

(V K+F )f = idV + Ff

where f ranges over functions. For fixed F , the mapping a 7→ µ(aK+F ) is a
functor, namely the type functor τ(�) of the bifunctor a�b = a+Fb. Denote this
type functor by F ? (so F ?V = µ(V K+F ))7. Its action on functions is as follows.
For f :: a→ b:

F ?f = ([aK+F ; inbK+F • f+id])

Note that we have specified the pattern functor “aK+F ” inside the catamorphism
brackets here since there is a possibility of confusion between different algebras.
Note also that

(V K+F )F ?V = V + FF ?V

so that

inV K+F :: V + FF ?V → F ?V .

Given a datatype µF , we can then extend it with variables by switching to F ?V .
We define two embeddings by:

emblV :: V → F ?V

emblV = inV K+F • inl

embrV :: F F ?V → F ?V

embrV = inV K+F • inr

7 The star notation is used here to suggest a link with the Kleene star, denoting
iteration in a regular algebra. F ? can be seen as iterating functor F an arbitrary
number of times. More significantly, the notation highlights a formal link between
monads and closure operators. See, for example, [3] for more details.
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The functor F ? forms the substitution monad (F ?,�,η) with, for some functions
f :: a→ F ?b and g :: b→ F ?c,

g�f = ([bK+F ; g 5 embrc]) • f

η = embl .

Note that the catamorphism in the definition of g�f has pattern functor bK+F ,
as indicated by the parameter before the semicolon. We omit explicit mention of
this information later, but it is vital to the correct use of the computation and
other laws. In addition we omit type information on the initial algebra, although
again it is vitally important.

Exercise 4.2 Take F to be a× for some type a. What is the type (a×)?1?
What is the multiplier, what is Kleisli identity and what is Kleisli composition?
(Hint: use exercise 4.1 for the last part of this exercise.)

2

Exercise 4.3 Consider the case F = (1+). Show that (1+)?V ∼= IN×(V+1).
Specifically, construct an initial algebra.

in :: V + (1 + (IN×(V+1))) → IN×(V +1)

and express catamorphisms on elements of type IN×(V+1) in terms of catamor-
phisms on IN.

2

Exercise 4.4 Verify that Kleisli composition as defined above is indeed asso-
ciative and that embl is its neutral element.

2

Assignments and Substitutions An assignment is a mapping of variables to terms,
for example { x := (y+x) ,y := 0 }. An assignment can be performed on a term.
This means a simultaneous and systematic replacement of the variables in the
term by the terms to which they are mapped. For example, performed on the
term (x+y) our example assignment gives ((y+x)+0) . We model assignments
as functions with the typing V → F ?V . Because we want functions to be to-
tal, this means we also have to define the assignment for all variables in V .
If V = { x , y , z }, we can make the above assignment total by writing it as
{ x := (y+x) , y := 0 , z := z }. Note that to the left of “:=” in an assignment we
have an element of V , and to the right an element of F ?V . So to be precise,
if assignment f has “ z := z ”, this means that f z = η z . In particular, the
(empty) identity assignment is η.

Given an assignment f :: V → F ?V , we want to define the substitution subst f
as a function performing f on a term. The result is again a term. The term
consisting of the single variable x is η x. Applying subst f to it, the result should
be f x. So
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(subst f) • η

= { desired result }

f

= { Kleisli identity }

f � η

= { monad equality }

(f�id) • η .

Since subst f is clearly a catamorphism that distributes through constructors —
for example, (substf)(x+y) = ((substf x)+(substf y))— it is fully determined
by its action on variables. We have found:

subst :: (V→F ?V )→ (F ?V→F ?V )

subst f = f�id

Two substitutions can always be merged into a single one:

(subst f) • (subst g)

= { definition of subst }

(f � id) • (g � id)

= { monad equalities }

f � (id • (g � id))

= { id is identity of • }

f � (g � id)

= { � is associative }

(f � g) � id

= { definition of subst }

subst (f � g) .

4.2 Generic Unification

Unifiers Two terms x and y containing variables can be unified if there is some
assignment f such that performing f on x gives the same result as performing
f on y. For example, the two terms

(u+((1*v)*2)) and ((w*v)+(u*2))

can be unified by the assignment

{u := (1*(z+3)), v := (z+3), w := 1}

into the unification

((1*(z+3))+((1*(z+3))*2))
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Such a unifying assignment is called a unifier of the terms. Unifiers are not
unique. Another unifier of the same two terms of the example is

{u := (1*z), v := z, w := 1}

which results in the unification

((1*z)+((1*z)*2))

This last unification is more general. If f is a unifier, then, for any assignment
h, the combined substitution h � f is also a unifier, since

h � f is a unifier of (x,y)

≡ { definition of unifier }

subst (h � f) x = subst (h � f) y

≡ { combined substitutions }

(subst h) (subst f x) = (subst h) (subst f y)

⇐ { cancel (subst h) }

subst f x = subst f y

≡ { definition of unifier }

f is a unifier of (x,y) .

In the example, the first, less general unifier, can be formed from the more general
one by taking h = {v := (z+3)}. This notion of generality gives a pre-ordering
on unifiers (and actually on all assignments): define

f v g ≡ ∃(hsuch thatf = h � g)

The relation v is obviously transitive and reflexive, but in general not anti-
symmetric. If two unifiers are equally general: f v g ∧ g v f , then f and g can
be different. But they are to all intents and purposes equivalent: they differ at
most in the choice of names for the variables in the result.

If two terms are unifiable at all, then among all unifiers there is a most general
unifier. That term is commonly abbreviated to mgu. Clearly, any two mgu’s are
equivalent. In the example, the second unifier is an mgu.

A generic shell for unification We develop the unification algorithm in two
stages. In this stage we give a generic “shell” in terms of type classes. In the
second stage, we show how to make any regular functor into an instance of the
classes involved.

Terms may have children, they may happen to be variables, and we should be
able to see if superficially —at the top level of the term trees— the construc-
tors are equal. As before, we assume a fixed type V for variables. Here are the
corresponding class declarations:

class Children t where children :: t→List t
mapChildren :: (t→ t)→ (t→ t)

class VarCheck t where varcheck :: t→Maybe V
class TopEq t where topEq :: t× t→Bool

class (Children t,VarCheck t ,TopEq t) ⇒ Term t



Generic Programming 91

We give a concrete instantiation as an example — illustrating some fine points
at the same time. Let C be some type for representing constructors. Here is the
datatype we will use to instantiate the classes:

data T = Var V | Con C (List T )

First we make T into an instance of Children:

instance Children T where
children (Var v ) = nil
children (Con c ts) = ts
mapChildren f (Var v ) = Var v
mapChildren f (Con c ts) = Con c (List f ts)

Note here that mapChildren f only maps function f over the immediate children
of its argument. No recursion is involved.

Here is how T fits in the VarCheck class:

instance VarCheck T where
varcheck (Var v ) = one v
varcheck (Con c ts) = none

For TopEq we assume that eq is an equality test on C and on V :

instance TopEq T where
topEq (Var v0 ,Var v1 ) = eq v0 v1
topEq (Con c0 ts0 ,Con c1 ts1 ) = eq c0 c1 ∧

length ts0 = length ts1
topEq ( , ) = false

Note that for this test the children of the terms are irrelevant. This is why we
give it the name topEq .

Having made T an instance of the three superclasses of Term, we can now
proudly announce:

instance Term T

So much for this concrete instantiation. We continue with the generic problem.
Here is a function to collect all subterms of a term in the Term class (or actually
the Children class):

subTerms :: Children t ⇒ t→List t
subTerms x = cons x (concat (List subTerms (children x)))

and here is a function that uses a list comprehension to collect all variables
occurring in a term:

vars :: Term t ⇒ t→List V
vars x = [ v | one v ← List varCheck (subTerms x) ]
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Earlier we saw a treatment of assignments as functions. Here we introduce a class
for assignments, so that it is also possible to make other concrete representations
into instances. The parameter t stands for terms.

class Assig t where idAssig :: V → t
modBind :: V × t → ((V → t)→ (V → t))
lookupIn :: (V → t)× V → Maybe t

The type F ?V can be made into a generic instance by:

instance Assig (F ?V ) where
idAssig = embl
modBind (v, x) = (f 7→ (v′ 7→ if eq v′ v then x else f v′))
lookupIn (f, v) = if eq (f v) (idAssig v) then none else one (f v)

in which we see both the Kleisli identity embl of the substitution monad, and
one of the Maybe monad. The result none signifies that v is mapped to itself
(embedded in the term world).

We have chosen a particular implementation for assignments: assignments are
functions. If Haskell would allow multiple parameter type classes we could ab-
stract from the particular implementation, and replace the occurrences of V → t
in the types of the functions of the class Assig by a type variable a. Thus we
could obtain a more concrete instance of Assig by taking list of pairs (v, x), with
v a variable and x a term, instead of functions. Then idAssig is the empty list,
modBind can simply cons the pair onto the list, and lookupIn looks for the first
pair with the given variable and returns the corresponding term. If the given
variable is not found, it fails. An efficient implementation of Assig would use
balanced trees, or even better hash tables. With the class mechanism the imple-
mentation can be encapsulated, that is, hidden to the rest of the program, so that
the program can first be developed and tested with a simple implementation. It
can later be replaced by a more efficient sophisticated implementation without
affecting the rest of the program. It should be clear that this is an important
advantage.

The unification algorithm proper We give the algorithm — which is basically the
algorithm found in the literature — without much explanation. As to notation,
we use the monad (Maybe , � , η).

unify :: (Term t ,Assig t) ⇒ t× t→Maybe (V → t)
unify ′ :: (Term t ,Assig t) ⇒ t× t→ ((V → t)→Maybe (V → t))
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The definition of unify is now simply to start up unify′ with the empty as-
signment. The function unify ′ is defined as a higher order function, threading
“assignment transformations” together with � .

unify (x, y) = unify ′ (x, y) idAssig
unify ′ (x, y) = uni (varCheck x , varCheck y) where
uni (none , none ) | topEq (x , y) = uniTerms (x , y)

| otherwise = const none
uni (one u , one v) | eq u v = η
uni (one u , ) = u 7→ y
uni ( , one v) = v 7→ x

uniTerms (x , y) =
threadList(List unify ′ (zip (children x) (children y)))

All the right-hand sides here are functions that return maybe an assignment,
given an assignment. The function threadList is simply the list catamorphism
with Kleisli composition:

threadList :: Monad m⇒ List (a→ m a)→ (a→ m a)

threadList = foldr (�) η

The auxiliary operator (7→) should “modBind” its arguments into the unifier
being collected, but there are two things to be taken care of. No binding may be
introduced that would mean an infinite assignment. This is commonly called the
occurs check. And if the variable is already bound to a term, that term must be
unified with the new term, and the unifier obtained must be threaded into the
assignment being collected.

(7→) :: (Term t ,Assig t) ⇒ V × t→ ((V → t)→Maybe (V → t))
(v 7→ x) s = if occursCheck (v , s, x)

then none
else case lookupIn (s, v) of

none → (η •modBind (v , x)) s
one y → ((η •modBind (v , x)) � unify ′ (x , y)) s

The following is a hack to implement the occurs check. This is basically a reach-
ability problem in a graph — is there a cycle from v to itself?, or rather: are we
about to create a cycle? We must take account both of the unifier collected al-
ready, and the new term. Because we know no cycles were created yet, the graph
is more like a tree, so any search strategy terminates. The approach here is not
optimally efficient, but in practice quite good with lazy evaluation (and horrible
with eager evaluation). There exist linear-time solutions, but they require much
more bookkeeping.

occursCheck :: (Term t ,Assig t) ⇒ V × (V → t)× t→Bool
occursCheck (v , s, x) = v ∈ reachlist (vars x) where
reachlist vs = vs ++ concat (List reachable vs)
reachable v = reachlist (mayvars (lookupIn (s, v)))
mayvars none = [ ]
mayvars (one y) = vars y
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Here, reachlist collects the variables reachable from a list of variables, while
reachable collects the variables reachable from a single variable.

The generic Term instance All we have to do now is make F ?V an instance of
the Term class. That is surprisingly easy. For the Children class:

instance Children (F ?V ) where
children = ((nil • !) 5 fl rec) • out
mapChildren f = in • (idV + Ff) • out

where fl rec is defined in PolyLib, see Section 6. For the VarCheck class:

instance VarCheck (F ?V ) where
varcheck = (one 5 (none • !)) • out

For TopEq we use the fact that fequal tests on equality of functor structures.
fequal is defined in PolyLib, see Section 6.

instance TopEq (F ?V ) where
topEq (t, t′) = fequal (==) (x 7→ y 7→ True) (out t) (out t′)

For a complete implementation of the generic unification program, see [26].

5 From Functions to Relations

In the preceding chapter we have done what we ourselves have decried: we have
presented an algorithm without even a verification of its correctness, let alone
a construction of the algorithm from its specification. An excuse is that a full
discussion of correctness would have distracted from the main goal of that chap-
ter, which was to show how the generic form of the —known to be correct—
algorithm is implemented. That is, however, only an excuse since, so far as we
know, no proof of correctness of the generic algorithm has ever been constructed.
In section 5.4 we remedy this lacuna partially by presenting one lemma in such a
proof of correctness. To that end, however, we need to extend the programming
calculus from total functions to relations.

5.1 Why Relations?

In a summer school on advanced functional programming, it may seem odd to
want to introduce relations but there are several good reasons for making it
an imperative. In the first place, specifications are typically relations, not total
functions. The specification of the unification algorithm is a case in point since it
embodies both nondeterminism and partiality. Nondeterminism is embodied in
the requirement to compute a most general unifier, not the most general unifier.
It would be infeasible to require the latter since, in general, there is no single
most general unifier of two terms. Partiality is also present in the fact that a most
general unifier may not exist. Partiality can be got around in the implementation
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by using the Maybe monad as we did here, but avoiding nondeterminism in the
specification is undesirable.

A second reason for introducing relations is that termination arguments are
typically based on well-founded relations. Our discussion of the correctness of
the unification algorithm in section 5.4 is based on the construction of a well-
founded relation, although in this case termination is not the issue at stake.

A third, compelling reason for introducing relations is that the “free theorem”
for polymorphic functions alluded to above and discussed in detail below is based
on relations on functions and necessitates an extension of the concept of functor
to relations. Also, the most promising work we know of that aims to be precise
about what is really meant by “generic” is that due to Hoogendijk [22] which is
based on a relational semantics of higher-order polymorphism .

5.2 Parametric Polymorphism

Space does not allow us to consider the extension to relations in full depth and so
we will have to make do with a brief account of the issues involved. For more de-
tail see [11,1]. We believe, nevertheless, that a discussion of generic programming
would be incomplete without a summary of Reynolds’ [40] abstraction theorem
which has since been popularised under the name “theorems for free” by Wadler
[45]. (This summary is taken from [23] which may be consulted for additional
references.)

Reynolds’ goal in establishing the abstraction theorem was to give a precise
meaning to the statement that a function is “parametrically polymorphic”. Sup-
pose we have a polymorphic function f of type Tα for all types α. That is, for
each type A there is an instance fA of type TA. The action of T is extended
—in a way to be made precise shortly— to binary relations, where if relation
R has type A ∼ B, relation TR has type TA ∼ TB. Then parametricity of the
polymorphism of f means that for any binary relation R of type A ∼ B we have
(fA , fB) ∈ TR. Reynolds’ abstraction theorem is the theorem that any poly-
morphic function expressible in the language defined in his paper is parametric.
Wadler called this a “theorem for free” because, as we show shortly, the para-
metricity of a polymorphic function predicts algebraic properties of that function
just from knowing the type of the function! Another way of viewing the theorem
is as a healthiness property of functions expressible in a programming language
— a programming language that guarantees that all polymorphic functions are
parametric is preferable to one that cannot do so.

In order to make the notion of parametricity completely precise, we have to be
able to extend each type constructor T in our chosen programming language to
a function R 7→ TR from relations to relations. Reynolds did so for function
spaces and product. For product he extended the (binary) type constructor ×
to relations by defining R×S for arbitrary relations R of type A ∼ B and S of
type C ∼ D to be the relation of type A×C ∼ B×D satisfying

((u, v) , (x, y)) ∈ R×S ≡ (u, x) ∈ R ∧ (v, y) ∈ S .
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For function spaces, Reynolds extended the → operator to relations as follows.
For all relations R of type A ∼ B and S of type C ∼ D the relation R→S is
the relation of type (A→C) ∼ (B→D) satisfying

(f, g) ∈ R→S ≡ ∀(x, y:: (x, y) ∈ R ⇒ (fx, gy) ∈ S) .

Note that if we equate a function f of type A→B with the relation f of type
B ∼ A satisfying

b = fa ≡ (b, a) ∈ f

then the definition of f×g, for functions f and g, coincides with the defini-
tion of the cartesian product of f and g given in section 5. Thus, not only
does Reynolds’ definition extend the definition of product beyond types, it also
extends the definition of the product functor. Note also that the relational com-
position f•g of two functions is the same as their functional composition. That
is, a = f(gc) ≡ (a, c) ∈ f •g. So relational composition also extends functional
composition. Note finally that h→k is a relation even for functions h and k. It
is the relation defined by

(f, g) ∈ h→k ≡ ∀(x, y:: x = hy ⇒ fx = k(gy)) .

Simplified and expressed in point-free form this becomes:

(f, g) ∈ h→k ≡ f•h = k•g .

Writing the relation h→k as an infix operator makes the rule easy to remember:

f (h→k) g ≡ f•h = k•g .

An example of Reynolds’ parametricity property is given by function application.
The type of function application is (α→β)×α→ β. The type constructor T is
thus the function mapping types A and B to (A→B)×A→ B. The extension
of T to relations maps relations R and S to the relation (R→S)×R → S. Now
suppose @ is any parametrically polymorphic function with the same type as
function application. Then Reynolds’ claim is that @ satisfies

(@A,C , @B,D) ∈ (R→S)×R → S

for all relations R and S of types A ∼ B and C ∼ D, respectively. Unfolding the
definitions, this is the property that, for all functions f and g, and all c and d,

∀(x, y:: (x, y) ∈ R ⇒ (fx, gy) ∈ S) ∧ (c, d) ∈ R ⇒ (f@c, g@d) ∈ S .

The fact that function application itself satisfies this property is in fact the basis
of Reynolds’ inductive proof of the abstraction theorem (for a particular lan-
guage of typed lambda expressions). But the theorem is stronger because func-
tion application is uniquely defined by its parametricity property. To see this,
instantiate R to the singleton set {(c, c)} and S to the singleton set {(fc , fc)}.
Then, assuming @ satisfies the parametricity property, (f@c , f@c) ∈ S. That
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is, f@c = fc. Similarly, the identity function is the unique function f satisfy-
ing the parametricity property (fA , fB) ∈ R→R for all types A and B and all
relations R of type A ∼ B —the parametricity property corresponding to the
polymorphic type, α→α for all α, of the identity function—, and the projec-
tion function exl is the unique function f satisfying the parametricity property
(fA,B , fC,D) ∈ R×S → R for all types A, B, C and D and all relations R
and S of types A ∼ B and C ∼ D, respectively —the parametricity property
corresponding to the polymorphic type, α×β → α for all α and β, of the exl
function.

The import of all this is that certain functions can be specified by a parametric-
ity property. That is, certain parametricity properties have unique solutions.
Most parametricity properties do not have unique solutions however. For ex-
ample, both the identity function on lists and the reverse function satisfy the
parametricity property of function f , for all R :: A ∼ B ,

(fA , fB) ∈ List R → List R .

Here List R is the relation holding between two lists whenever the lists have the
same length and corresponding elements of the two lists are related by R.

Free Theorem for Monads Let us show the abstraction theorem at work on
Kleisli composition. Kleisli composition is a polymorphic function of type

(b→Mc) × (a→Mb)→ (a→Mc)

for all types a, b and c. If it is parametrically polymorphic then it satisfies the
property that, for all relations R, S and T and all functions f0, f1, g0 and g1, if

((f0 , g0) , (f1 , g1)) ∈ (S→MT ) × (R→MS)

then

(f0�g0 , f1�g1) ∈ R→MT .

This assumes that we have shown how to extend the functor M to relations.
For our purposes here, we will only need to instantiate R, S and T to functions,
and it simplifies matters greatly if we use the point-free definition of h→k given
above. Specifically, we have, for all functions h, k and l,

((f0 , g0) , (f1 , g1)) ∈ (k→Ml) × (h→Mk)

≡ { definition of × }

f0 (k→Ml) f1 ∧ g0 (h→Mk) g1

≡ { point-free definition of → for functions }

f0 • k = Ml • f1 ∧ g0 • h = Mk • g1 .

In this way, we obtain the property that for all functions f0 , f1 , g0, g1, h, k
and l, if

f0 • k = Ml • f1 ∧ g0 • h = Mk • g1(1)
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then

(f0�g0) • h = Ml • (f1�g1) .(2)

With its seven free variables, this is quite a complicated property. More man-
ageable properties can be obtained by instantiating the functions in such a way
that the premise becomes true. An easy way to do this is to reduce the premise
to statements of the form

fi = . . . ∧ gj = . . . ,

where i and j are either 0 or 1, by instantiating suitable combinations of h,
k and l to the identity function. For instance, by instantiating h and k to the
identity function the premise (1) reduces to

f0 = Ml • f1 ∧ g0 = g1 .

Substituting the right sides for f0 and g0 in the conclusion (2) together with the
identity function for h and k, we thus obtain

(Ml • f1) � g1 = Ml • (f1�g1) .

for all functions l, f1 and g1. This is the first of the “free theorems” for Kleisli
composition listed in section 4.1.

Exercise 5.1 Derive the other two “free theorems” stated in section 4.1
from the above parametricity property. Investigate other properties obtained by
setting combinations of f0 , f1 , g0, g1 to the identity function.

2

Exercise 5.2 Instantiating M to the identity functor we see that the free
theorem for Kleisli composition predicts that any parametrically polymorphic
function with the same type as (ordinary) function composition is associative.
Can you show that function composition is uniquely defined by its parametricity
property?

2

Exercise 5.3 Derive the free theorem for catamorphisms from the polymor-
phic type of f 7→ ([f ]). Show that the fusion law is an instance of the free
theorem.

2
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5.3 Relators

As we have argued, an extension of the calculus of datatypes to relations is
desirable from a practical viewpoint. In view of Reynolds’ abstraction theorem,
it is also highly desirable from a theoretical viewpoint, at least if one’s goal is
to develop generic programming. We have also shown how the product functor
is extended to relations. In a relational theory of datatypes, all functors are
extended to relations in such a way that when restricted to functions all their
algebraic properties remain unchanged. Functors extended in this way are called
relators.

The formal framework for this extension is known as an allegory . An allegory
is a category with additional structure, the additional structure capturing the
most essential characteristics of relations. The additional axioms are as follows.
First of all, relations of the same type are ordered by the partial order ⊆ and
composition is monotonic with respect to this order. That is,

S1•T1 ⊆ S2•T2 ⇐ S1 ⊆ S2 ∧ T1 ⊆ T2 .

Secondly, for every pair of relations R , S :: A ∼ B, their intersection (meet)
R∩S exists and is defined by the following universal property, for
each X :: A ∼ B,

X ⊆ R ∧ X ⊆ S ≡ X ⊆ R ∩ S .

Finally, for each relation R :: A ∼ B its converse R
∪ :: B ∼ A exists. The

converse operator satisfies the requirements that it is its own Galois adjoint,
that is,

R
∪
⊆ S ≡ R ⊆ S

∪
,

and is contravariant with respect to composition,

(R•S)
∪
= S

∪
• R

∪
.

All three operators of an allegory are connected by the modular law , also known
as Dedekind’s law [41]:

R•S ∩ T ⊆ (R cap T •S
∪
) • S .

Now, a relator is a monotonic functor that commutes with converse. That is,
the functor F is a relator iff,

FR • FS = F (R•S) for each R :: A ∼ B and S :: B ∼ C,(3)

F idA = idFA for each A,(4)

FR ⊆ FS ⇐ R ⊆ S for each R :: A ∼ B and S :: A ∼ B,(5)

(FR)
∪
= F (R

∪
) for each R :: A ∼ B.(6)
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Relators extend functors A design requirement which led to the above definition
of a relator [4,5] is that a relator should extend the notion of a functor but in
such a way that it coincides with the latter notion when restricted to functions.
Formally, relation R :: A ∼ B is everywhere defined or total iff

idB ⊆ R
∪
•R ,

and relation R is single-valued or simple iff

R•R
∪
⊆ idA .

A fu nction is a relation that is both total and simple. It is easy to verify that total
and simple relations are closed under composition. Hence, functions are closed
under composition too. In other words, the functions form a sub-category. For
an allegory A, we denote the sub-category of functions by Map(A). Moreover,
it is easily shown that our definition guarantees that relators preserve simplicity
and totality, and thus functionality of relations.

Having made the shift from categories to allegories, the extension of the func-
tional theory of datatypes in chapter 2 is surprisingly straightforward (which is
another reason why not doing it is short-sighted). The extension of the disjoint
sum functor to a disjoint sum relator can be done in such a way that all the prop-
erties of + and 5 remain valid, as is the case for the extension of the theory of
initial algebras, catamorphisms and type functors. For example, catamorphisms
with relations as arguments are well-defined and satisfy the fusion property, the
map-fusion property etc. There is, however, one catch — the process of dualising
properties of disjoint sum to properties of cartesian product is not valid. Indeed,
almost all of the properties of cartesian product that we presented are not valid,
in the form presented here, when the variables range over arbitrary relations.
(The banana split theorem is a notable exception.)

An example of what goes wrong is the fusion law. Consider id4id • R and R4R,
where R is a relation. If R is functional —that is, if for each y there is at most
one x such that (x, y) ∈ R then these two are equal. This is an instance of the
fusion law presented earlier. However, if R is not functional then they may not
be equal. Take R to be, for example, the relation {(0, 0) , (1, 0)} in which both
0 and 1 are related to 0. Then,

id4id • R = {((0, 0) , 0) , ((1, 1) , 0)}

whereas

R4R = {((0, 0) , 0) , ((1, 1) , 0) , ((0, 1) , 0) , ((1, 0) , 0)} .

The relation id4id is the doubling relation: it relates a pair of values to a single
value whereby all the values are equal. Thus, id4id • R relates a pair of equal
values to 0. On the other hand, R4R relates a pair of values to a single value,
whereby each component of the pair is related by R to the single value. The
difference thus arises from the nondeterminism in R.
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In conclusion, extending the functional theory of datatypes to relations is desir-
able but not without pitfalls. The pitfalls are confined, however, to the properties
of cartesian product. We give no formal justification for this. The reader will just
have to trust us that in the ensuing calculations, where one or more argument
is a relation, that the algebraic properties that we exploit are indeed valid.

Membership We have argued that a datatype is not just a mapping from types
to types but also a functor. We have now argued that a datatype is a relator.
For the correctness of the generic unification algorithm we also need to know
that a membership relation can be defined on a datatype.

The full theory of membership and its consequences has been developed by
Hoogendijk and De Moor [24,22]. Here we give only a very brief account.

Let F be a relator. A membership relation on F is a parametrically polymor-
phic relation mem of type a ∼ Fa for all a. Parametricity means that for all
relations R,

mem • FR ⊇ R • mem .

In fact, mem is required to be the largest parametrically polymorphic relation
of this type.

The existence of a membership relation captures the idea that a datatype is a
structured repository of information. The relationmema holds between a value x
of type a and an F -structure of a’s if x is stored somewhere in the F -structure.
The parametericity property expresses the fact that determining membership
is independent of the type a, and the fact that mem is the largest relation of
its type expresses the idea that determining membership is independent of the
position in the data structure at which a value is stored.

The parametricity property has the following consequence which we shall have
occasion to use. For all (total) functions f of type a→b,

f • mema = memb • Ff .

5.4 Occurs-In

This section contains a proof of the generic statement that two expressions
are not unifiable if one occurs in the other. We define a (generic) relation
occurs properly in and we then show that occurs properly in is indeed a proper or-
dering on expressions (that is, if expression x occurs properly in expression y then
x and y are different). We also show that the occurs properly in relation is invari-
ant under substitution. Thus, if expression x occurs properly in expression y no
substitution can unify them. To show that occurs properly in is proper we define
a (generic) function size of type F ?V → IN and we show that size is preserved
by the relation occurs properly in. The definition of size involves a restriction on
the relator F which is used to guarantee correctness of the algorithm8.

8 A more general proof [7] using the generic theory of F -reductivity [15,14,16] avoids
this assumption and, indeed, avoids the introduction of the size function altogether.
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Definition 7 The relation occurs properly in of type F ?V ∼ F ?V is defined by

occurs properly in = (mem • embrV
∪)+ .

(Recall that mem is the membership relation of F and that embrV = inV K+F • inr
where (F ?V , inV K+F ) is an initial algebra.) Informally, the relation embrV

∪

(which has type FF ?V ∼ F ?V ) destructs an element of F ?V into an F structure
and then mem identifies the data stored in that F structure. Thus mem • embrV

∪

destructs an element of F ?V into a number of immediate subcomponents. Ap-
plication of the transitive closure operation repeats this process thus breaking
the structure down into all its subcomponents.

2

In our first lemma we show that the occurs properly in relation is closed under
substitutions. That is, for all substitutions f ,

x occurs properly in y ⇒ (fx) occurs properly in (fy) .

The property is formulated without mention of the points x and y and proved
using point-free relation algebra.

Lemma 8 For all substitutions f ,

occurs properly in ⊆ f∪ • occurs properly in • f .

Proof Suppose f is a substitution. That is, f = g�id for some g. Since the
relation occurs properly in is the transitive closure of the relation mem • embrV

∪

it suffices to establish two properties: first, that f∪ • occurs properly in • f is
transitive and, second,

mem • embrV
∪ ⊆ f∪ • occurs properly in • f .

The first of these is true for all functions f (i.e. relations f such that
f • f∪ ⊆ id). (To be precise, if R is a transitive relation and f is a function
then f∪ • R • f is transitive.) We leave its simple proof to the reader. The sec-
ond is proved as follows:

f∪ • occurs properly in • f

⊇ { R+ ⊇ R }

f∪ • mem • embrV
∪
• f

⊇ { embrV is a function, definition of embrV }

f∪ • mem • embrV
∪
• f • in • inr • embrV

∪

= { f = g�id = ([g5embrV ]), computation }

f∪ • mem • embrV
∪
• g5embrV • id+Ff • inr • embrV

∪

= { computation }

f∪ • mem • embrV
∪
• embrV • Ff • embrV

∪

= { embrV
∪
• embrV = id }
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f∪ • mem • Ff • embrV
∪

⊇ { parametricity of mem }

mem • Ff∪ • Ff • embrV
∪

⊇ { F is a relator and f is a total function.

Thus, Ff∪ • Ff ⊇ id }

mem • embrV
∪ .

2

We now define a function size of type F ?V → IN by

size = ([zero 5 (succ • Σmem)]) .

Here, Σ is the summation quantifier. That is, for an arbitrary relation R with
target IN,

(ΣR)x = Σ(m: m R x: m) .

The assumption in the definition of size is that F is finitely branching: that is,
for each F structure x, the number of m such that m mem x is finite.

Expressed in terms of points, the next lemma says that if a term x occurs
properly in a term y then the size of x is strictly less than the size of y.

Lemma 9

occurs properly in ⊆ size∪ • < • size .

Proof Note that occurs properly in and < are both transitive relations. This
suggests that we use the leapfrog rule:

a • b∗ ⊆ c∗ • a ⇐ a•b ⊆ c•a

which is easily shown to extend to transitive closure:

a • b+ ⊆ c+ • a ⇐ a•b ⊆ c•a .

We have:

occurs properly in ⊆ size∪ • < • size

≡ { size is a total function,

definition of occurs properly in }

size • (mem • embrV
∪)+ ⊆ < • size

⇐ { < is transitive. Thus, < = <+ .

Leapfrog rule }

size • mem • embrV
∪ ⊆ < • size

≡ { embrV is a total function }

size • mem ⊆ < • succ • embrV

≡ { definition of size, embrV and computation }
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size • mem ⊆ < • succ • Σmem • F size

≡ { < • succ = ≤ }

size • mem ⊆ ≤ • Σmem • F size

⇐ { property of natural numbers: for all R, R ⊆ ≤ • ΣR

That is, m R x ⇒ m ≤ Σ(m: m R x: m). }

size • mem ⊆ mem • F size

≡ { size is a total function,

parametricity of mem for functions }

true .

2

Corollary 10 Suppose F is a finitely branching relator. Then

x occurs properly in y ⇒ x 6= y .

Proof By the above lemma,

x occurs properly in y ⇒ size x < size y .

Thus, since m < n⇒ m 6= n,

x occurs properly in y ⇒ x 6= y .

2

Corollary 11 If x occurs properly in y then x and y are not unifiable.

Proof By lemma 8, if x occurs properly in y then, fx occurs properly in fy, for
every substitution f . Thus, for every substitution f , fx 6= fy.
2

Exercise 5.4 Take F to be (1+). What is occurs properly in? Show that the
relation is proper. (Note that the membership relation for (1+) is inr∪.)
Take F to be a× for some fixed a. What is occurs properly in?

2

6 Solutions to Exercises

1.1 Take ⊗ to be set intersection, ⊕ to be set union, 0 to be the empty set and
1 to be the universe of all colours. The initial value of a[i, j] is the singleton set
containing the edge colour as its element
2
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2.5
mapError f (error s) = error s
mapError f (ok x) = ok (fx)

mapDrawing f (above x y) = above (mapDrawing f x) (mapDrawing f y)
mapDrawing f (beside x y) = beside (mapDrawing f x) (mapDrawing f y)
mapDrawing f (atom x) = atom (f x)

2

2.6

(f5g)4(h5k) = (f4h)5(g4k)

≡ { 4-characterisation }

f5g = exl • (f4h)5(g4k) ∧ h5k = exr • (f4h)5(g4k)

≡ { 5-fusion }

f5g = (exl • (f4h)) 5 (exl • (g4k))

∧ h5k = (exr • (f4h)) 5 (exr • (g4k))

≡ { injectivity of 5 }

f = exl • (f4h) ∧ g = exl • (g4k)

∧ h = exr • (f4h) ∧ k = exr • (g4k)

≡ { 4- computation }

true .

2

2.7 The most obvious example is multiplication and division in ordinary arith-
metic. (Indeed this is where the two-dimensional notation is commonly used.)
Addition and subtraction also abide with each other.
Examples in the text are: disjoint sum and composition, and cartesian prod-

uct and composition. (Indeed all binary functors abide with composition.)
The example used by Hoare was conditionals. The binary operator if p, where

p is a proposition, (which has two statements as arguments) abides with if q,
where q is also a proposition.
2

2.11 First, the 5-+ fusion rule:

f5g • h+k = (f •h) 5 (g•k)

≡ { 5 characterisation }

f5g • h+k • inl = f •h•inl ∧ f5g • h+k • inr = g•k•inr

≡ { computation rules (applied four times) }

true .

Second, the identity rule:

id+id



106 Roland Backhouse et al.

= { definition of + }

inl5inr

= { above }

id .

2

2.12 The pattern functor for Bin is Exl + (Exr×Exr) and the pattern functor
for Rose is (Exl × (List Exr)) . That is, for Bin it is the binary functor mapping
a and z to a + (z×z), which is polynomial, and for Rose it is the binary functor
mapping a and z to a × (List z), which is not polynomial.
2

2.13

even • zero5succ = true5not • 1+even

≡ { 5 fusion and 5-+ fusion,

definition of functor +1 }

(even•zero) 5 (even•succ) = (true•id1) 5 (not•even)

≡ { true•id1 = true, 5 is injective }

even•zero = true ∧ even•succ = not•even

≡ { extensionality, identifying values zero and true

with functions zero and true with domain 1 }

even(zero) = true ∧ ∀(n:: even(succ n) = not(even n)) .

2

2.14

out•in

= { definition of out }

([F in])•in

= { computation rule }

F in•F ([F in])

= { F is a functor }

F (in•([F in]))

= { definition of out }

F (in•out)

= { in•out = idµF }

F idµF

= { F is a functor }

idFµF .

2
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2.16 We have

NoOfTips = ([1K5add0])

where add0(m, n) = m+n, and

NoOfJoins = ([0K5add1])

where add1(m, n) = m+n+1. Now,

f • NoOfTips = NoOfJoins

⇐ { definitions and fusion }

f • 1K5add0 = 0K5add1 • id + (f×f)

≡ { fusion }

(f • 1K) 5 (f • add0) = 0K 5 (add1 • f×f)

≡ { injectivity }

f • 1K = 0K ∧ f • add0 = add1 • f×f

≡ { pointwise definitions, for all m and n }

f1 = 0 ∧ f(m+n) = fm+1+fn

⇐ { arithmetic, for all m }

fm = m−1 .

We conclude that there is always one less join in a Bin than there are tips.
2

2.17

([f ]) 4 ([g]) • in = χ • F (([f ]) 4 ([g]))

≡ { 4 fusion }

(([f ]) • in) 4 (([g]) • in) = χ • F (([f ]) 4 ([g]))

≡ { catamorphism computation }

(f • F ([f ])) 4 (g • F ([g])) = χ • F (([f ]) 4 ([g]))

≡ { 4 characterisation }

f • F ([f ]) = exl • χ • F (([f ]) 4 ([g]))

∧ g • F ([g]) = exr • χ • F (([f ]) 4 ([g])) .

Once again, we continue with just one of the conjuncts, the other being solved
by symmetry.

f • F ([f ]) = exl • χ • F (([f ]) 4 ([g]))

≡ { postulate χ = α4β }

f • F ([f ]) = exl • α4β • F (([f ]) 4 ([g]))

≡ { 4 computation }

f • F ([f ]) = α • F (([f ]) 4 ([g]))
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≡ { postulate α = f •γ }

f • F ([f ]) = f • γ • F (([f ]) 4 ([g]))

⇐ { F respects composition, 4 computation }

γ = F exl .

Combining the two postulates with the final statement, we get

([χ]) = ([f ]) 4 ([g]) ⇐ χ = (f•F exl) 4 (g•F exr) .

2

2.19 Substituting (a�) for F in the catamorphism rule we get the rule:

h•([ϕ]) = ([ψ]) ⇐ h•ϕ = ψ • ms1id�h .

This is the fusion rule used below.

([f ]) • (τ(�) g) = ([h])

≡ { τ(�) g = ([in • g�id]) }

([f ]) • ([in • g�id]) = ([h])

⇐ { fusion rule }

([f ]) • in • g�id = h • id�([f ])

≡ { catamorphism computation }

f • id�([f ]) • g�id = h • id�([f ])

≡ { � is a binary functor. Thus,

id�([f ]) • g�id = g�([f ]) = g�id • id�([f ]) }

f • g�id • id�([f ]) = h • id�([f ])

⇐ { cancellation }

f • g�id = h .

We have thus established the rule:

([f ]) • (τ(�) g) = ([f • g�id]) .

2

2.20 First,

τ(�) ida

= { definition }

([in • id�id])

= { � respects identities,

identity is the unit of composition }

([in])

= { identity rule }

idτ(�) a .
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Second,

τ(�) (f •g)

= { definition }

([in • (f •g)�id])

= { id = id•id, � respects composition }

([in • f�id • g�id])

= { exercise 2.19 }

([in • f�id]) • (τ(�) g)

= { definition }

(τ(�) f) • (τ(�) g) .

2

4.1 To express Mf we use the last of the three monad equalities:

Mf

= { identities }

η � (Mf • id)

= { monad equality }

(η • f) � id .

Using mul = id�id, we obtain that, for the functor Set ,

mul x = {z | ∃(y:: z∈y ∧ y∈x)} .

The equalities are proven as follows: First,

mul • Mmul

= { mul = id�id }

(id�id) • Mmul

= { 2nd monad equality, id is identity of composition }

id�Mmul

= { id is identity of composition,

3rd monad equality, id is identity of composition }

mul�id

= { mul = id�id, Kleisli composition is associative,

mul = id�id }

id�mul

= { id is identity of composition, 2nd monad equality }

(id�id) • mul

= { mul = id�id }

mul • mul .
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Second,

mul • η

= { mul = id�id, 2nd monad equality }

id�η

= { η is unit of Kleisli composition }

id .

Third,

mul • Mη

= { mul = id�id, 2nd monad equality }

id�Mη

= { id is identity of composition, 3rd monad equality,

id is identity of composition }

η�id

= { η is unit of Kleisli composition }

id .

2

4.2 (a×)?1 is List a. The Kleisli identity is the function mapping x to [x].
The multiplier is the function concat that concatenates a list of lists to a list,
preserving the order of the elements. The Kleisli composition g�f first applies
f to a value x of type a, which results in a list of b’s. Then g is mapped to all
the elements of this list, and the resulting list of lists of c’s is flattened to a list
of c’s.
2

4.3 Since (1+)?∅ = IN we obtain from the fusion theorem that

(1+)?V = IN×(V +1).

Specifically,

IN×(V +1) is an initial X:: V +(1+X) algebra

⇐ { fusion, IN is an initial 1+ algebra }

∀(X:: (1+X)×(V +1) ∼= V +(1+(X×(V +1))))

⇐ { rig }

true .

The witness to the last step, rig, is the inverse of a natural isomorphism rig of
type

Y+(1+(X×(Y+1)))→ (1+X)×(Y +1) .
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It is easily constructed:

rig = ((inl•!)4inl) 5 ((inl4inr) 5 (inr×id)) .

The initial algebra is in(1+)? = (zero5succ) × id • rig.
2

4.4

f�(g�h) = (f�g)�h

≡ { definition }

([f 5 embr]) • (g�h) = ([(f�g) 5 embr]) • h

⇐ { definition of f�g, cancel •h }

([f 5 embr]) • ([g 5 embr]) = ([(f�g) 5 embr])

⇐ { fusion, definition of embr }

([f 5 embr]) • g 5 (in • inr) = (f�g) 5 (in • inr) • id + F ([f 5 embr])

≡ { fusion properties of disjoint sum,

5 is injective }

([f 5 embr]) • g = f�g

∧ ([f 5 embr]) • in • inr = in • inr • F ([f 5 embr])

≡ { definition of f�g, computation laws }

true .

The verification that embl is its neutral element is a straightforward use of the
computation rules.
2

5.1 Substituting the identity function for h and l, we get

f0 � (Mk • g1) = (f0 • k) � g1 .

Substituting the identity function for k and h, we get

(f0 � g0) • l = f1 � (g0 • l) .

2

5.2 Suppose ◦ is a function that has the same polymorphic type as function
composition. Then, if it satisfies the parametricity property of composition, it is
the case that, for all relations R, S and T and all functions f0, f1 , g0 and g1, if

(f0 , f1) ∈ S→R ∧ (g0 , g1) ∈ T→S

then

(f0◦f1 , g0◦g1) ∈ T→R .

Take R to be the singleton set {(f(gc) , f(gc))}, S to be the singleton set
{(gc , gc)} and T to be the singleton set {(c, c)}, where f and g are two func-
tions, and c is some value such that f(gc) is defined. Then (f , f) ∈ S→R
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and (g , g) ∈ T→S. So (f◦g , f◦g) ∈ T→R. That is, (f◦g)(c) = f(gc). Thus,
by extensionality, f◦g = f•g. The parametricity property does indeed uniquely
characterise function composition!
2

5.3 The type of an F -catamorphism is

(Fa→a)→ (µF → a) .

The free theorem is thus that, for all relations R and all functions f and g, if

(f , g) ∈ FR→R

then

(([f ]) , ([g])) ∈ idµF→R .

Taking R to be a function h and use the point-free definition of →, this is the
statement that

f • Fh = h • g ⇒ ([f ]) = h • ([g]) .

2

5.4 Instantiating F to (1+) we get

occurs properly in1+
= { definition }

(mem1+ • (in(1+)? •inl)
∪)+

= { mem1+ = inr
∪, in(1+)? = (zero5succ) × id • rig }

((zero5succ) × id • rig • inl • inr)∪+

= { definition of rig, computation }

(succ × id)∪+ .

A pair (m, x) “occurs properly in” a pair (n, y) if m < n and x = y. This par-
ticular instance of occurs properly in is thus proper in the sense that if u “occurs
properly in” v then u and v are not equal.

F ?1 is List a, membership is the projection exr and occurs properly in is the
relation “is a (proper) tail of”.
2
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