
Formal Aspects of Computing (1992) 4:413-424
�9 1992 BCS Formal Aspects

of Computing

Paramorphisms
Lambert Meertens
Department of Algorithmics and Architecture, CWI, Amsterdam, and Department of Computing
Science, Utrecht University, The Netherlands

Keywords: Formal program construction; Initial data type

Abstract. "Catamorphisms" are functions on an initial data type (an inductively
defined domain) whose inductive definitional pattern mimics that of the type. These
functions have powerful calculation properties by which inductive reasoning can
be replaced by equational reasoning. This paper introduces a generalisation
of catamorphisms, dubbed "paramorphisms". Paramorphisms correspond to a
larger class of inductive definition patterns; in fact, we show that any function
defined on an initial type can be expressed as a paramorphism. In spite of this
generality, it turns out that paramorphisms have calculation properties very similar
to those of catamorphisms. In particular, we prove a Unique Extension Property
and a Promotion Theorem for paramorphisms.

1. Introduction

This paper is a small contribution in the context of an ongoing effort directed
towards the design of a calculus for constructing programs. Typically, the
development of a program contains many parts that are quite standard, requiring
no invention and posing no intellectual challenge of any kind. If, as is indeed the
aim, this calculus is to be usable for constructing programs by completely formal
manipulation, a major concern is the amount of labour currently required for such
non-challenging parts.

On one level this concern can be addressed by building more or less specialised
higher-level theories that can be drawn upon in a derivation, as is usual in almost
all branches of mathematics, and good progress is being made here. This leaves us
still with much low-level laboriousness, like administrative steps with little or no
algorithmic content. Until now the efforts in reducing the overhead in low-level

Correspondence and offprint requests to: L. Meertens, CWI, Kruislaan 413, 1048 SJ Amsterdam, The
Netherlands.

414 L. Meertens

formal labour have concentrated on using equational reasoning together with
specialised notations to avoid the introduction of dummy variables, in particular
for "canned induction" in the form of promotion properties for homomorphisms
- which have turned out to be ubiquitous. Recent developments and observations
strongly suggest that further major gains in the proof methods are possible. One
of the most promising developments is that it has become apparent that often
a lengthy administrative calculation can be replaced by a single step by simply
considering the types concerned. In the context of mechanical support for formal
program construction, this can be mechanised in conjunction with mechanical type
inference.

The present paper is concerned with another contribution to avoiding formal
overhead, less dramatic, but probably still important, namely a generalisation of
homomorphisms on initial data types, dubbed paramorphisms. While often much
leverage is obtained by using homomorphisms, the occasions are also numerous
where the gain of the homomorphism approach is less clear. It will be shown below
that for a class of functions that are not themselves homomorphisms, but that
satisfy a similar simple recursive pattern, a short-cut can be made, resulting in
properties that are very similar to well-known properties of homomorphisms, such
as the promotion properties. The recursive pattern involved is well known: it is
essentially the same as the standard pattern used in the so-called elimination rules
for a data type in constructive type theory (see, e.g., [BCM89]). The specific
investigation of which these results form a part is not complete; rather, it has barely
begun. There is some evidence that the approach can be generalised to other
recursive patterns, possibly giving rise to a more elegant theory than expounded in
this snapshot.

A few words on the notation used here are in order. As in all my other papers
in this area, I have taken the liberty to conduct some further notational experiments.
While deviation from "established" notation is hard on the reader, most current
notations were clearly not designed with a view to the exigencies of calculation.
Where notation is concerned, an attempt has been made to make this paper
reasonably self-contained. However, not all non-standard notations are formally
introduced - namely when their meaning can be inferred from the context.

A convention here, as well as in [Mee89], is to treat values of type A as nullary
functions of type A +-4. This makes is possible to denote function application
unambigously as function composition, for which the symbol �9 is used. Within
functional expressions this operator has the lowest precedence.

2. The Problem

Structural induction is the traditional technique for proving the equality of two
functions that are defined on an inductively defined domain. Such functional
equalities can also be proved by calculation in an equational proof style. This is
based on the fact that, under a suitably chosen algebraic viewpoint, these fuctions
are homomorphisms whose source algebra (an "algebraic data type") is initial. It
is then possible to invoke elementary algebraic tools that replace the induction
proofs [Gog80]. In particular, the Unique Extension Property and the Promotion
Theorem for that source algebra provide the same proof-theoretic power as
structural induction.

An examination of the proof obligations under the two approaches - traditional
induction and algebra- reveals that they are ultimately identical. Thus it would

Paramorphisms 415

seem that nothing is gained by using the homomorphic approach. However, the
reduction in the labour needed to record the full proof is striking, especially when
combined with a dummy-free style.

The explanation of this phenomenon is simple. A proof by structural induction
follows a fixed ritual, that is repeated for each next proof. In the algebraic theorems,
this proof has been given once and for all; what remains as the applicability
condition is the heart of the matter. Moreover, the adoption of the algebraic
viewpoint makes it possible to give concise notations for inductively defined
functions [Mee86, Bir87, Bir89, Mal90], reducing the formal labour further.

The straightforward algebraic approach fails, however, when the definitional
pattern of a function does not mimic the structural pattern of its domain. There is
a standard trick that often makes it possible to apply the algebraic methods in such
cases: " tup le" the function concerned together with the identity function, thus
giving another function that is a homomorphism. Unfortunately, this method
entails much formal overhead, making it less attractive for practical use.

In this paper we develop a generic extension of the theory that caters for a
slightly more general class of definitional patterns. The term "generic" here means
that the theory applies to all inductively defined data types.

3. A Simple Example

A simple inductive data type is formed by the naturals, with a unary constructor
succ and a nullary constructor 0. Consider the following pattern of functional
equations (with a function dummy F):

(1) I I (F) := (F .succ = s . F) / x (F .O = z)

This pattern has two yet unbounded function variables, a unary s e A +- A and
a nullary z e A +-~, where A is some type. Given bindings for s and z, a function
satisfying II is a homomorphism from the algebra of the naturals with signature
(succ, 0) to the algebra on A with signature (s, z). Since the algebra of naturals is
defined as the initial algebra in this category, there exists- by the definition of
"ini t ial" - exac t ly one such homomorphism for each choice of (s, z). Therefore this
is a means for defining functions on the naturals. Moreover, given two functions
f , g e A +- N, we have

f = g -,= 1-I(f) A II(g)

This is the Unique Extens ion Proper ty for the naturals. It can be seen that the task
of proving one functional equality is replaced by the obligation of proving two times
(for this data type) two such equalities, which, however, tends to be simpler. To
invoke this instrument, a suitable instantantiation of s and z must be chosen, but
if one of the two functions is inductively defined, not only is the necessary
instantiation known, but we also have for free that that function satisfies II.

After having established H(f) and 1-I(g), to conclude now that f = g the
induction approach still has to go through the following ritual steps:

Basis" f . 0 = g . 0
- {(1). n (f) , n(g)}

Z = Z

- {reflexivity of = }
true

416 L. Meertens

Step: f . succ. n = g. succ. n
= {(1): n (f) , n(g)}

s.f.n = s.g.n
{Leibniz}

f .n =g.n
-= {Induction Hypothesis}

true []

The more complicated the inductive construction of the data type, the longer these
rites.

Of course, in many cases the proof of the equality of two functions can be given
purely equationally without appealing to either induction or these algebraic tools
- otherwise no proof would be possible at all, since the common proof obligation
has the shape of a set of functional equalities. Somewhat surprisingly, it turns out
that often such a proof can also be substantially shortened by appealing to the
Unique Extension Property.

Not all functions on the naturals are homomorphisms. Attempts to prove
a (valid) functional equality for a non-homomorphic function by appeal to the
Unique Extension Property are doomed to fail, and, in fact, even for homo-
morphisms success is not guaranteed. An example is the factorial function fac:
there exists no simple function s such that II(fac) holds. However, there are simple
functions | and z such that HH(fac) holds, where H H is the pattern given by

HH(F) ,= (F .succ = F | A (F .0 = z)

(Here | is a binary function; between two functions returning natureals |
denotes the application of | to the results of these functions.) The instantiation
that gives the factorial function is that in which | is taken to be the operation such
that m | n = m x (succ.n), and z is 1.

Like II before, HI-I has a unique solution for each choice for the unbound
functions, in this case | and z. So the following is a valid statement:

f = g = n n c r) A n n (g)

This can be shown to follow from the Unique Extension Property. But the proof of
this is (even for a simple type like the naturals) non-obvious, lengthy, and in fact a
new ritual that can be avoided by a properly designed extension of the theory.

4. Functors

Category theory provides some concepts that have proven indispensable in the
formulation of generic theory, paramount among which is the notion of a functor.
We give a treatment here slightly geared towards our purposes. In particular, we
handle only the unary case, although the type constructors x and + introduced
below are also (binary) functors.

A functor is a pair of functions, one acting on types, and one on functions, with
some further properties as stated below.

The application of a functor is denoted as a postfix operation. A functor t
assigns to each type A a type A]', and to each function f eA+-B a function
f t e A t + - B t , where the latter mapping preserves function composition and
identity; more precisely,

Paramorphisms 417

(2) (f .g) f = f t . g t
(3) i d t = id

Equality (2) requires that f . g is well-typed; this is viewed as a wellformedness
condition that applies in general to all constituents of functional expressions, and
is from now on left implicit. In denoting an identity function, as in (3), its type is not
stated, but in any context id is assumed to have a specific type, and so (3) stands for
as many equalities as there are types.

An appeal to these equalities will be indicated in the justification of a p roof step
by " func to r" .

An important type construct is x . It has a corresponding action on functions.
(In [Mee89] [used different notations for x on types and on functions, which was
a bad idea.) It is informally defined by

A x B ,= " the type whose elements are the pairs (a, b) for a s A and b e B" ,
f x g ..= " the function that, applied to a pair (a, b), returns the pair ((f. a),

(g. b))"

We have the usual "project ion functions" from A x B to A and B, which are
denoted as

<<eA+-AxB
>>EB+-AxB

We also need the combinator that combines two functions f s A +-C and
g ~ B ~- C into one function

f z x g e A x B + C

(The usual category-theory notation is (f, g).)
It can be characterised by

(4) F z x G = H - F = < < . H A G = > > . H

Its relationship with x is given by

f x g = (f-<<) A (g '>>)

which can in fact be taken as the definition of x on functions. From these equations
all calculational properties of <<, >>, zx and x are easily derived.

The relevant properties that we shall have occasion to use are

(5) FzxG.H = (F .H)A(G .H)
(6) f x g . F A G = (f .F)A(g .G)
(7) ~ . F ~ G = F
(8) <<. F A G = G

A fact that we shall also use is that any mapping A F, i.e., mapping a function
f w i t h the same domain as F to the function f ~ F , is a bijection, so that

(9) f = g - - - f A F = g ~ F

For discussing the application of the theory we need the dual type constructor
+ , which forms the "dis jo int" or " t agged" union. Informally,

A + B := " the type whose elements are the union of the elements of A and
B, tagged with the origin of an element (left or r ight)"

f + g : = " the function that, for a left-tagged value a returns the left-tagged

418 L. Meertens

value f . a, and for a right-tagged value b the right-tagged value
g.b"

There are "injection functions" from each of A and B to A + B, which are
not needed here, and a combinator that combines two functions f e C+-A and
g s C+- B into one function

fvgEC4-A+B

which amounts to applying f to left-tagged, and g to right-tagged values, thereby
losing the tag information. (The usual category-theory notation is [f, g].) There are
similar (but dual) properties to those given for x and friends, which are not listed
here since they will not be used.

From functors and x and + , we can form new functors. Functors can be
formed by the composition of two functors, which is denoted by juxtaposition:

A(i':~) := (A1-)~
f(t~) = (ft)~

If B is some type, x B and + B are functors, defined by

A(xB):=AxB
f (x B) : = f x id

and

A(+B) := A + B
f (+ B) , = f + id

Combining this, we have, e.g., that (• B) (+~) is a functor, with

A ((• = (A x B) + ~

5. Types as Initial Fixed Points

The treatment in this section is mainly based on work by [Mal90]. Functors can
be used to characterise a class of algebras with compatible signatures. If t is a
functor, it characterises the class of algebras (A, ~b), in which A is some type and the
signature is

~beA +-A]"

(For simplicity, we do not consider here the possibility of laws on the algebra. The
theory developed here applies, nevertheless, equally to algebras with laws.)

For example, in the algebra of naturals (N, sue t v 0) the signature has type

suee v O ~ N <- N +1]

(which is equivalent to (succ~ N +-N)A (0e ~ +-4)), so it belongs to the class
characterised by the functor + 4.

If (A, r and (B, ~u) are two %algebras, then h e A +~ B is called a homomorphism
between these algebras when

r = h.~,

We introduce a concise notation for the homomorphic property:

t
(10) Fzr F.~/

Paramorphisms 419

An algebra is called initial in the class of t-algebras if there is a unique
homomorphism from it to each algebra in the class. If two algebras in the same class
are initial, they are isomorphic: each can be obtained from the other by renaming.
We assume that we can fix some representative, which is then called the initial
algebra. For all functors introduced in this paper the class of algebras has an initial
element. The initial algebra for t is denoted by #(~).

If we have

(L, in) = # (t)

then it can be shown (only for the lawless case !) that L and L t are isomorphic,
which is the reason to call the type L the initial fixed point of t.

So the naturals can be defined by

(~ , succ v O) := #(+ 1)

The " s n o c " lists over the base type A can likewise be defined by:

(A,, ~ v D)..= #((x A) (+ ~))

Let (L, in) be the initial algebra #(t) for some functor t . A function ~b ~ A +-At
determines uniquely an algebra (A, ~b), and therefore a unique homomorphism
h e A +- L, that is, a function h satisfying

t
h~b<- in

Denote it by C~b]). It is useful to have a term for these homomorphisms whose
domain is an initial algebra, and to this end we coin the term eatamorphism. So we
now have the following characterisation of catamorphisms :

Catamorphism charaeterisation

t
(11) h=COl)-he~+-in

which we shall also invoke in the equivalent version

(12) h = C~b) = ~b.ht = h.in

obtained by unfolding definition (10), and in the weaker version

(13) ~b. C~b])t = C~bD. in

obtained by taking h := C~bD.
The following two are now (almost) immediate;

Unique Extension Property (UEP)

t t
f = g ~ (f e ~b +-in) A (ge~b +-in)

Identity catamorphism

(14) C i n D = i d e L + - L

Another easy consequence is

Promotion

t
(15) C0D =f'C~uD ~ f e ~ < - ~ u

420 L. Meertens

6. The Tupl ing Tact ic

A function f e A +-L need not be a catamorphism by itself, which means that the
results of the previous section cannot be applied as they stand. But, as we shall see,
the result of tupling such an f with a suitably chosen catamorphism always is; in
particular, tupling with the identity catamorphism achieves the effect. This tactic
makes it possible to use the rules for catamorphisms on the tupled function.

So assume CUeB+-Bt, so that fA([CU])eA x B+-L. We first derive a condition
under which fzx ([CU]) is a catamorphism:

(16) fzx r = ([06A(CU'>>'~)I) = 06"(UA([CUD)'~ = f . in

Proof

f A (ICUD = ([06 ,, (cu" >>t)D
= {(12) : Catamorphism characterisation}

06 A (CU" >>t)" (fA ([cuD)t = fA r in
= {(5):FAG.H= (F.H)zx(G.H)(both sides)}

(06" (fz~ ([CUI))t) A (CU" >>'~" (fzx ~cuD)t) = (f" in) A (([cuD-in)
= {(2)': functor, (13)~: Catamorphism (weak version)}

(06. (f ~ ([cuDt) ,, (cu" (> > ' f = @ D r) = (f" in) ~ (cu. r
- {(8):>>.FAG = G; (9): zxFis a bijection}

06. (fzx ~cuI))~ = f " in []

For brevity, put %=06A(cu.>>t). The first equality in (16), which is then
fzx (~cu]) = @]), can, by virtue of (4), be equivalently expressed in the form

07) f = <<. ~zi) A ~cub = >>" ~ZD

The validity of the first conjunct depends on f , 06 and cu, but the second conjunct is
valid independent of the instantiation. This can be seen as follows:

~cuI) = >>" ~ZI)
{(1 5): Promotion}

t
>>ecu+-Z

-- {(I0): homomorphic property}

cu" >>t = >>'Z
- {definition of Z}

cu.>>? = >>.06~(cu.>>?)

--= {(8):>>.FzxG = G}
cu.>>t = cu '>>t

= {reflexivity of = }
true

Hence, fzx @/i) = @]) = f = <<" @]), and therefore we obtain from (16), writing out
;(in full again:

(18) f = <<-r162 - 06-fA ([cul))~ = f . in

By instantiating cu ,= in in 18, using that by (14) ([in]) = id, we obtain

(19) f = <<-r A (in. >>t)]) = 06" 0cA id)t = f " in

We show, finally, that the second functional equality in (19) is satisfied by taking
06 ,=f . in. >>'~:

Paramorphisms 421

f . i n . > > t - 0 % id)t
= {(2)~: functor; (8): > > . F ~ G = G}

f . in . id t
= {(3): functor; id is identity}

f . in

It follows that all functions f e A +-L can be expressed in the form <<. (IZ]).

7. Paramorphisms

Throughout this and the next section (L, in) denotes the initial algebra/~(~) for
some functor t-

We have seen in the previous section that any function f eA +-L can be
expressed in the form <<'(gg]), in which Z = ~bzx(in->>1") for a suitably chosen
function {b �9 A +- (A x L)t. Note that <<. ~]) depends only on the choice for ~b. In this
section we introduce a notation for expressions of this form, and examine its
properties.

So define, for ~b �9 A +- (A x L)t ,

(20) [~b~ = <<-{I~bzx(in.>>t)])eA+-L

Functions expressed in this form Will be called paramorphisms. The actual notation
used here is provisional, but is chosen to be reminiscent of the notation q~b]) used for
catamorphisms.

The calculational properties of catamorphisms all follow from the charac-
terisation rule (11). Therefore we formulate now, likewise, a unique characterisation
for paramorphisms. From it the other, calculationally possibly more important,
properties follow easily. The characterisation has, in fact, already been given by
(19); all we have to do is to " fo ld" this with the definition (20) of ~b~, thus obtaining

Paramorphism characterisation

(21) f = [[~b~ _= ~b.fzx id)t = f . in

The substitution f , = l~b~ gives the weaker version

(22) ~b.([~b~ zx id)'~ = [[~b~. in

The uniqueness gives us

UEP for Paramorphisms

f = g ~ (e. (f~ id)t = f . in) A (~b. (gzx id)t = g. in)

Whereas for catamorphisms the unique characterisation involves a condition of
the same form as for the promotion law, here we find a divergence. The analogon
of the promotion law for paramorphisms is

Parapromotion

(23) [~b~ = f . ~q/~ ~ ~b.(fx id)t = f . q/

Proof.

- {(21): Paramorphism characterisation}
~b. ((f - [~]) zx id)'~ = f . ~p,~. in

- {id is identity of .}

422 L. Meer tens

~b. ((f. ~) A (id. id))t = f . [[~u]l. in
=- { (6)2(f .F)zx(g .G) = f x g . F a G }

0. (f x id. [~t] A id) t = f . [~t~. in
- {(2): functor}

~b. (f x id) t - ([~q zx id)t = f - [q4" in
= {(22)~: Paramorphism (weak version)}

~b. (f x id)t . (~] zx id) t = f . ~u. ([~u~ A id)~
{Leibniz}

~b. (f x id)1 = f . ~u []

8. Relationship with Catamorphisms

We shall see now two ways in which paramorphisms and catamorphisms are
related. Firstly, paramorphisms can be viewed as a generalisation of cata-
morphisms, in the sense that the characterisation for catamorphisms, (12), follows
formally from that for paramorphisms, (21). To show this we have to express a
catamorphism as a paramorphism. The crucial result is

(24) h = ~b.<<t~ - ~b.ht = h. in

Proof

h = ~r
- {(21) : Paramorphism characterisation}

r <<t" (h A id) t = h" in
- {(2)2 functor}

~b.(<<-hAid)t = h.in
= { (7) : < < . F A G = F }

~b.ht = h.in []

The right-hand side of (24) is precisely the equivalent of h = (I~b]) figuring in (12); in
other words, considering paramorphisms as primitive, [r <<?~ can be viewed as a
new definition of the catamorphism (I~b]). With this definition, then, (24) states the
same as (12).

Secondly, note that the condition in the rule for paramorphism promotion, (23),
can be expressed as a homomorphic property, namely as follows. Let :~ denote the
functor (x L)t , that is,

(25) A:~ = (A x L) t
(26) f ~ = (f x id)t

Then
-?

fe0+-~u
{(10) : homomorphic property}

qb.f$ = f . ~u
{(26)}

~b.fx id) t = f - ~u

which is precisely the condition of (23). So a "parapromotable" function with
respect to t is a true homomorphism in the category of S-algebras.

Put (M, jn) := p($), in which we use jn as notation for the constructor to avoid

Paramorphisms 423

confusion with the constructor in of L. We have]n s M+-M$, or, equivalently,
expanding :~ by means of (25),

jn e M + - (M x L)?

Therefore jn has a type that makes the form [jn] meaningful. We give a name to this
paramorphism :

(27) preds ;= l j n] e M + - L

Now it turns out that all paramorphisms can be formed from this particular one by
the composition with a catamorphism on the type M. To make explicit that these
catamorphisms are defined on the initial S-algebra, rather than the ?-algebra as
until now, we write them as (I~bD~. The result is then

~q)~ = ~r
Proof.

~(~ = @)D~.preds
- {(27) :preds}

limb] = ~bD$ "]l jn]
{(23) : P a r a p r o m o t i o n }

~b. ((I~bD~ x id)? = (~bD~.jn
- {(26)9 $}

- {(13) : Catamorphism (weak version)}
t rue []

This result subsumes the parapromot ion rule (23) in the sense that (23) can easily
be obtained f rom it.

To conclude, we examine what this means for the initial example, the factorial
function fac. Here L := N, which is obtained by taking the initial fixed point of
? := + 1. Putting

| := x �9 (id x succ)
1 ,= s u c c . 0

the recursive definition pattern offac can be expressed as

| v 1 �9 z~ id) + id = fac. suce v 0

which equivales, by (21),

fac = [|

We have, further, $ = (x N) (+ I) . Then (M, jn) is (N * , - K v F q), the algebra of
the finite lists of naturals, and thus predse N . + - N . It satisfies, by (21) with the
proper instantiations, the pattern

-t< v I7. (preds z~ id) + id = preds, succ v 0

which in a more traditional style can be expressed as

preds, succ . n = (preds. n) -K n
preds �9 0 = []

or, informally, preds, n = [0, 1 , n - 1] . Catamorphisms on snoc-lists are also
known as left-reduces, and another way of writing ([| v 1D is | -~ 1 [Bir87, Bir89].
Thus,

fac = | -~1 .preds

424 L. Meertens

References

[BCM89]

[Bir87]

[Bir89]

[Gog80]

[Mal90]

[Mee86]

[Mee89]

Backhouse, R., Chisholm, P., Malcolm, G. and Saaman, E. : Do-it-Yourself Type Theory.
Formal Aspects of Computing, 1, 19-84 (1989).
Bird, R. S. : An introduction to the Theory of Lists. In: Logic of Programming and Calculi
of Discrete Design, M. Broy, (ed.), NATO ASISeries, vol. F36, pp. 5~42, Springer-Verlag,
1987.
Bird, R. S. : Lectures on Constructive Functional Programming. In: Constructive Methods
in Computing Science, M. Broy, (ed.), NATO ASISeries, vol. F55, pp. 151-216, Springer-
Verlag, 1989.
Goguen, J. A. : How to Prove Inductive Hypotheses Without Induction. In: Proc. 5th
Conf. on Automated Deduction, W. Bibel and R. Kowalski (eds), LNCS 87, pp. 356-373,
Springer-Verlag, 1980.
Malcolm, G.: Data Structures and Program Transformation. Science of Computer
Programming, 14, 255-279 (1990).
Meertens, L. : Algorithmics- towards Programming as a Mathematical Activity. In:
Proc. CWI Symp. on Mathematics and Computer Science, J. W. de Bakker, M. Hazewinkel
and J. K. Lenstra (eds), CWIMonographs, vol. 1, pp. 289-334, North-Holland, 1986.
Meertens, L. : Constructing a Calculus of Programs. In: Mathematics of Program
Construction, J. L. A. van de Snepscheut (ed.), LNCS 375, pp. 66-90, Springer-Verlag,
1989.

Received January 1990
Accepted in revised form June 1991 by R. C. Backhouse

