
AB 4 4 . 7
AB48.4.1
QUICKREFFRENCE t o B, b y L . G. L . T . Meertens

Numbers are exact or approximate. You get an exact number even if you use
3.14 or 22/7. You get an approximate number if you use E for the ten
power, or if you use the — function (pronounced "about"). For example,
—1000 E 3 , and —0.005 = asE-2. You may also write -(a+b) etc.
Warning: an approximate number is never equal to an exact number. I f you
want to test if you may divide by x, and if you are not very sure that x is ex-
act, i t is not safe to use the test x <>• 0 (which is shorthand for

< 0 OR x > Oh_ You should use —x <>. —O.
If functions like +, * , t and ** work on exact numbers, the result is also
computed exactly, except if the exponent n in x**n is a fraction. (A formula
like a*x**2-1-b*xl-c stands for what is usually written as a x
2
1 - t o x i - e : y o u r
computer cannot stand dancing lines and requires that you write * whenever
you mean multiplication, even in cases like 2*x.) Arithmetic on approximate
numbers gives approximate results (which, for many purposes, are precise
enough, and often are computed much faster). Functions like root, sin and
log always give an approximate result. (So root 4 <> 2 and log 1 ‹ > (7).
More details are given at the functions below.

Touts consist o f characters and are written like 'Jack and Jill' o r
'Jack and Jar. (The characters meant are not Jack and Jill, but the " r ,
"a", etc. You may use any printing character and the space.) Which of the
forms you use, the one with single quotes or the one with double quotes,
makes no difference to your computer. Never confuse the number 747 with
the text '747'. Whereas 747 3*249 , '747' is quite another text than the
taut '3*249', and ' 3
1
* ' 2 4 9 ' i s
n o t
e v e n
a
t e x t
;
t o
y o
u r
c o m
p u t
e r
i
t
i
s
m
e a
n -

ingless. The number 747 can be used to do arithmetic; to your computer it
does not consist of characters and it is written that way only because the
dominant eardtian species has twice five wriggly appendices sprouting from
its upper tentacles and finds this clumsy notation convenient, and because
you are (presumably) a member of that species and your computer tries to
please you. The text '747', on the other hand, cannot be used in arithmetic,
and if you nevertheless try to do so, your computer will warn you. I t really
is three characters in a row. The so-called quotes on the outside do not real-
ly count. They only serve to make clear where the text begins and ends. I f
you say prayers, it does not mean that you say "prayers". But if you say
"prayers", you don't say the quotes, do you? You can find out the length of
a text with the function * . For example, ' t o e ' = 3. I f you use 'before
and after your text, you can only use it inside if you double it thus: " . Your
computer knows that you really mean it only once: 4 t ip"q' = 3. The rules
for" are similar.
But if you use the other quote sign inside than the one you use on the out-
side, you should not double it. So write either: 'He said: "don "if"' or:
"He said: ""don le" .

Inside texts, you can use weirdos (which are known as conversions) of the
form Y o u r computer computes the value and replaces the conversion by
a suitable text. F o r exampk, i f i = 239 a n d j = 4649, then
"I' * "f" = 'isof" = '239 *4649 = 1111111'. Within the conversions the
need to double the outside quotes inside has disappeared: " * I o e "
1 = ' 3 ' .(Don't look too long at it if you don't want to strain your eyes.) On the other
hand, if you use a single a s character in a text, you have to double it.
You can join two texts thus: 'ncrom'here = 'nowhere', and you can repeat a
text as many times as you want: 'ay ' o x ' o x ' = iaxoxox' (just
like x**3 = x*.x*.x). You can take texts apart thus: Ilamplighee4 = 'plight'
(since the "p" is the fourth character) and 'scarface'1.5 'scarf'.
You may combine a n d I: 'BenedictineV1415 = 'edktine'15 = 'edict', and
'Benedictine '1804 = 'Benedicee4 = 'edict'.
Forms with g and I may be used as targets:
if t has as.content 'Benedictine', and you tell your computer to

PUT 'zee.' to 41 .5

it puts 'Benzedrine' in t; if t is 'particOle
1 a n d y o u t e l l
y o u r
c o m p u t e r
t o

PUT " I N Ogg

it puts 'particle' in t; and if t is 'creation' and you tell your computer to

PUT 'm' IN 10410

Otto

PUT int' IN 1144

it puts 'cremation' in t.

AB 48p 8

Compounds are a bunch of values grouped together. For example, if you
want to keep track of which books you have lent when to whom of your
Mends, you may tell your computer to

PUT 'Nettr, 'Mote' IN book
PUT 84, 3, 17 IN date
INSERT book date, 'bearded gnome' IN bookslent

and your computer inserts (('N&P', 'Mote'), (84, 3,17), 'bearded gnome') in
the list of lent books it keeps for you. (Better ask him his name next time,
though.)
You can obtain the fields (as they are called) by putting the compound in a
compound target. In the example, your computer would obey

AB 48p . 9

PUT book IN author, tide

by putting 'NIP' in author and 'Mote' in title.
The following is a neat trick to swap the contents of two targets:

PUT a, b IN b, a.

This tells the computer to make the compound (a, b) and to decompose it
into (b, a).

Lists are like lists you make to do shopping: if you and a friend of yours
each make a list, and your list is

and your friend has

tooth paste
shampoo
cucumbers
yoghurt
muffins
birthday present for linda

birthday present for linda
shampoo
tooth paste
muffins
cucumbers
yoghurt

and you compare lists, you will exclaim: why, we have crew*
, t h e s a m e l i s t .Similarly, your computer considers {t; s; c;)1; nv b} and (b; s; t; m; c; y) as
the same list. In fact, it always sorts the entries in a list from low to high; if
you tell your computer to

PUT (5; 7; 3: 2) IN a
INSERT 4 IN a
WRITE a

you will see (2; .3; 4; 5; 7) written. The same entry may occur several times
in a list. I f you tell your computer to

PUT () IN letters
FOR c M

INSERT c IN letters
WRITE letters

AB 48p 10

it writes back (7'; 7'; 1
1
; 1
1
; 1
m ' ;
' p ' ;
' p ' ;
i s ' ;
1
3 ' ;
' s '
;

You may insert all kinds of values in a list, but for each fist they must all be
the same type of value (all numbers, or all texts, etc.). You may use (1..n) as
shorthand for (1; 2; n - - 1 ; n) and similarly ra'..'z').

Tables are somewhat like dictionaries. A short English-Dutch dictionary (not
sufficient to maintain a conversation) might be

aardvark:
apartheid:
furlough:
of:
or:
van:
yacht:

aardvarken
apartheid
verlof
van
of
bestelwagen
jacht

Table entries, like entries in a dictionary, consist of two parts. The first part
is called the key, and the second the associate. Al l keys must be the same
type of value, and similarly for associates. A table may be written thus:
WV): 1; (sr]: 5; (UV]: 10).
If this table has been put in a target roman, then romanf'XI = 10.
Your computer keeps the tables sorted by key. I f you next tell your comput-
er to

PUT 100 IN romanf'Cl

then roman will contain WC] : / 7 1 : i; . 5 ; fi r] : 101. You can
find out what the keys are with the function keys; in the exampk,
keys roman = ('C'; '1'; 'IP; 'Xi).

PREDEFINED COMMANDS

HOW70 c: commands
tens your computer how to execute your command c. I t must not be used in-
side other commands.

YIELD f: commands
tells your computer what value it must yield for your formula f when it is
computed. I t must not be used inside other commands.

AB 4 4 . 1 1

TEST p: commands
tells your computer whether your proposition p should succeed or fail when it
is tested. I t must not be used inside other commands.

CHECK test
checks if the test succeeds, in which case nothing happens, but aborts if the
test fails.

WRITE e
writes the value of e on the screen. I t gives new lines for any /-signs before
and after e.

READ t EG e
asks an expression from you to put in t. The e tells your computer what type
of expression to ask for (number, text, etc.).

PUT e M t
puts the value of e in t

DRAW t
draws a random number (from —0 up to —1) and puts it in t.

CHOOSE t FROM 1
chooses at random an element from the text, list or table 1 and puts it in t
(The element is not removed front 1.)

SETTANDOM e
sets the random generator, using the value of e.

REMOVE e FROM I
removes the vsdue of e from the list held in 1. The value must occur in that
list. I t is removed only once.

INSERT e M 1
inserts the value of e in the list held in I.

DELETE t
deletes the target t. This is used mostly to delete entries from tables or to kill
permanent targets.

QUIT
quits from a HOW'TO or refinement.

RETURN e
returns the value of e from a YIELD or refinement for further computation.

REPORT test
reports from a TEST or refinement whether the test succeeds or fails.

SUCCEED
reports success from a TEST or refinement.

FAIL
reports failure from a TEST or refinement.

IF test: commands
executes the commands if the test succeeds.

irap 12

SELECT:
test: commands

test: commands
selects the first test to succeed and executes the commands after that test. At
least one test must succeed. Tofmake sure, the last test may be ELSE, which
catches if all other tests fad.

WHILE test: commands
executes the commands if the test succeeds, and keeps repeating this while
the test keeps succeeding. I f it fails the very first time around, the commands
are not executed at all.

FOR t IN c: commands
executes the commands for t ranging over the successive characters of e if e is
a text, entries of e if e is a list, and associates of e if e is a table.

ALLOW t
allows the use o f the permanent t inside a HOW'TO-, YIELD- o r
TEST-body. I t must occur there at the head.

AB 4813.13
PREDEFINED FUNCTIONS AND PREDICATES

Functions on numbers

--x
returns an approximate number, as close as possible in arithmetic magnitude
to x.

x+y
returns the sum of x and y. The result is exact if both operands are exact

-1
1
x
returns the value of x.

x —y
returns the difference of x and y. The result is exact if both operands are ex-
act.

—x
returns minus the value of x. The result is exact if the operand is exact.

xily
returns the product of x and y. The result is exact if both operands are ex-
act.

xiy
returns the quotient of x and y. The value of y must not be zero (Le.,
-.7 <>• -0). The result is exact if both operands are exact

xistioy
returns x to the power y. The result is exact if x is exact and y is an integer.
If x is negative (Le., —x < -0) ,y num be an integer or an =act number with
an odd denominator. I f x is zero, y must not be negative. I f y is zero, the
result is one (exact or approximate).

n root x
returns the same as x**(1/n).

root x
returns the same as 2 root x.

,

abs x
returns the absolute value of x. The result is exact if the operand is exact.

sign x
returns an exact number from (— w i t h the same sign as x (where, e.g.,
sign —0 = sign — —0 = 0).

AB 481).14

floor x
returns the largest integer not exceeding x in arithmetic magnitude (so, even
if perhaps 3 > —3. floor s t i l l returns 3).

ceiling x
returns the same as — floor — x.

n round x
returns the same as (10**—n)ofloor(x*10**n+.5). For example 4 round pi =
3.1416. T h e value o f n must be an integer. I t may be negative:

2) round 666 = 700.

round x
returns the same as 0 round x.

a mod n
returns the same as a—nitfloor(a/n). (Both operands may be approximate,
and n may be negative, but not um)

*x
returns the smallest positive integer q such that vox is an integer. The value
of x mum be an exact number.

*ix
returns the same integer as (/*x)*x. So, if x is exact, x = (*ix)/(/*x).

pi
returns approximately 3.1415926535—

sin x
returns an approximate number by applying the sine function to x.

cos x
returns an approximate number by applying the cosine function to x.

tal l X

returns the same as (sin x) / (aa x).

AB 48p 15
x atan y
returns an approximate number phi, in the range from (about) - p i to +pi,
such that x is approximated by r * cos phi and y by r * sin phi, where r =
root(x*x+yoy). The operands must not both be zero.

atan x
returns the same as 1 atan x.

returns approximately 2.7182818284...

exp x
returns approximately the same as es*x.

/og x
returns an approximate number by applying the natural logarithm function
(with base e) to x. The value of x must be positive.

blogx
returns the mune as (log x) / (log to).

(There should also be a collection of simple matrix functions.)

Functions on texts

A
Ureturns the text consisting of t and u joined. For example, now 'here' =
'nowhere'.

r-n
returns the text consisting of n copies of I joined together. For example,
'Fit 'AA 3 = 'Fil Fil Fil T h e value of n must be an integer that is not nega-
tive.

x<<n
converts x to a text (see 5.1.2.2.b) and adds space characters to the right until
the length is n. For example, 123<<6 ' 1 2 3 I n no case is the text
truncated; if n is too small, the likely effect is that your beautiful lay out is
spoiled. The value of n must be an integer.

x><n
converts x to a text and adds space characters to the right and to the left, in
turn, until the length is n. For example, 123><6 = ' 123 I n no case is
the text truncated. The value of n must be an integer.

x> >n
converts x to a text and adds space characters to the left until the length is n.
For example, 123>>6 = 1 2 3
1
. I n n o
c a s e
i s
t h e
t e x t
t r u n c a
t e d .
T h
e

value of n must be an integer.

Functions and predicates on touts, lists and tables

keys:
roquires a table as operand, and returns a list of all keys in the table. For ex-
ample, keys ((IP I; (4i: 2; 191.• 3) = (1; 4; 9).

* t
accepts texts, lists and tables. For a text operand, its length is returned, and
for a list or table operand, the number of entries is returned (where dupli-
cates in lists are counted).

e*t
accepts texts, fists and tables for the right operand.
For a teat operand, the first operand must be a character, and the number of
times the character occurs i n the text i s returned. F o r example,

= 4.
For a list operand, the number of entries is returned that is equal to the first
operand (which must have the same type al the list entries.) For example,
3 * (1; 3; 3; 4) = 2.
For a table operand, the number of assodates is returned that is equal to the
first operand (which must have the same type as the associates in the table.)
For example, 3 * ([1].- 3; (2): 4; P t 3) = 2.

e in t
accepts texts, lists and tables for the right operand. I t succeeds if e*: > 0
succeeds.

e nol'in t
is the same as (NOT e in I).

AB 48p 16

mint
accepts texts, lists and tables. For a text operand, its smallest (in the ASCII
order) character is returned, for a list operand, its smallest entry is returned,
and for a table operand, its smallest associate is returned. F o r example,
min 'syrupy' = m i n (1; 3; 3; 4) = 1, and min t ill: 3; 4 ; (31: 3) = 3.
The text, list or table must not be empty.

AB 48p 17
e min
accepts texts, lists and tables for the right operand.
For a text operand, the first operand must be a character, and the smallest
character in the text exceeding that character is returned. For example,
1
i'
m
i
n
'
m
i
s
s
i
s
s
i
p
p
l
'
'
m

For a list operand, the smallest entry is returned exceeding the first operand
(which must have the same type as the list entries.) For example, 3 min (1; 3;
3; 4) = 4.
For a table operand, the smallest associate is returned exceeding the first

(which mutt have the same type as the associates in the table.) For
e, 3 min ((Ip 3; Pi: 4; pi: 3) = 4.

There must be a character, list entry or table associate exceeding the first
operand.

max I and e max t
are like ntin, except that they return the largest element, and in the dyadic
case the largest element that is less than the first operand. For example,

max 'Inisshrsippr t 1
1
.n th'el t

requires an integer in (/.. *0 for the left operand, and accepts texts, lists and
tables for the right operand. I t returns the n ith character, list entry or associ-
ate. In fact, n t , for a text t, is mitten as easily son I/. For a table, it is
the same as tin tit'llykeys ty, which is something different from tin], unless,
of course, keys t = (1..*t). For &list, th 'o t is min I.

