Recurrent Ultracomputers are not log N-Fast

by

Lambert Meertens†

Ultracomputer Research Laboratory
Courant Institute of Mathematical Sciences
715 Broadway, 10th Floor
New York, NY 10003
Ultracomputer Note #2
March, 1979

† Mathematisch Centrum, Amsterdam
ABSTRACT

Ultracomputers are assemblages of processors that are able to operate concurrently and can exchange data through communication lines in, say, one cycle of operation. For physical reasons, the fan in/out of the processors must be limited. This imposes restrictions on the possible communication schemes. To have the ultracomputer operate efficiently as a whole, it is desirable that arbitrary exchanges of information between the processors can be effected in small number of data shifts.

If a really huge ultracomputer is built, it would be nice if it could be constructed by coupling smaller ultracomputers, which in turn are assembled from still smaller ultracomputers, and so on. It will be shown that the latter desire conflicts to a certain extent with the earlier one.

1. Introduction

Ultracomputers [Schwartz, 1979] are assemblages of processors that are able to operate concurrently and can exchange data through communication lines in, say, one cycle of operation. For physical reasons, the fan in/out of the processors must be limited. This imposes restrictions on the possible communication schemes. In order to have the ultracomputer operate efficiently as a whole, it is desirable that arbitrary exchanges of information between the processors can be effected in a small number of data shifts.

If a really huge ultracomputer is built, it would be nice if it could be constructed by coupling smaller ultracomputers, which in turn are assembled from still smaller ultracomputers, and so on. It will be shown that the latter desire conflicts to a certain extent with the earlier one.

For the purposes of this note, a paracomputer is a sequence of directed graphs. (Ultracomputers are paracomputers satisfying a restriction defined below.) Throughout the paper, the sequence G_D, D = 0, 1, ..., stands for a paracomputer. Each G_D is a pair <P_D, L_D>, where P_D is the set of nodes (or "processors") of G_D, and L_D is a set of edges (or "lines") <p_1, p_2> ε P_D x P_D. We define

N_D = #P_D { (the size of G_D) },
φ_D = max_{p ε P_0} #{ <p_1, p_2> ε L_D | p_1 = p or p_2 = p }
(the maximal fan in/out in G_D),
C_D = #L_D,
Γ_D = C_D / N_D.

To exclude uninteresting cases, it is assumed that N_D → ∞. (Here and in the sequel, where limits or orders of magnitude are concerned, there are always understood to be with respect to D → ∞.)

For a paracomputer to be an ultracomputer, the following requirement is imposed:
Lemma 1. (UC) implies that Γ_D is bounded.

Proof: $C_D = \#L_D = \#\{<p_1,p_2> \in L_D \} \leq \frac{1}{2} \sum_{p \in P_D} \#\{<p_1,p_2> \in L_D \mid p_1 = p \text{ or } p_2 = p\} \leq \frac{1}{2} \sum_{p \in P_D} \phi_D = \frac{1}{2} N_D \phi_D,$

so $\Gamma_D = C_D/N_D \leq \frac{1}{2} \phi_D$, which by (UC) is bounded.

The order of magnitude of the number of data shifts required to obtain an arbitrary permutation on P_D will determine how "fast" the paracomputer is. In order to express this in terms of the graph model, we must go through some definitions. The set of basic permutations on G_D is defined by

$$BP_D = \{\pi: \pi \text{ is a permutation on } P_D \mid \pi(p) = p \text{ or } <p,\pi(p)> \in L_D \text{ for all } p \in P_D\}.$$

The permutations $\text{PERM}^{(d)}_D$ of shift depth d, $d \geq 0$, are inductively defined by:

$$\text{PERM}^{(0)}_D = \{\pi_i\}, \text{ where } \pi_i \text{ stands for the identity permutation},$$

$$\text{PERM}^{(n+1)}_D = \{\beta | \beta \in BP_D, \pi \in \text{PERM}^{(n)}_D \} - \bigcup_{k=0}^{n} \text{PERM}^{(k)}_D.$$

(�Note that $BP_D = \text{PERM}^{(0)}_D \cup \text{PERM}^{(1)}_D$.)

The shift depth $sd_D(\pi)$ of a permutation π on P_D is defined by

$$\pi \in \text{PERM}^{(sd_D(\pi))}_D.$$

This definition may leave $sd_D(\pi)$ undefined for a given π, in which case we put $sd_D(\pi) = \infty$.

The maximal shift depth of G_D is now

$$M_D = \max_\pi \text{ sd}_D(\pi),$$

where π ranges over all permutations on P_D. (The treatment of ∞'s should be obvious.)

A paracomputer is called $f(N)$-fast if $M_D = O(f(N_D))$. For example, the ultracomputer as defined in Schwartz [1979] has $N_D = 2^D$ and $M_D \leq 4D-3$ for $D \geq 1$, so it is log N-fast. In fact, it is easily seen to be strictly log N-fast, meaning that it is log N-fast but not $f(N)$-fast for any $f(N) = o(\log N)$. This is the best possible since no ultracomputer can improve on log N-fastness. Note that the lower orders of $f(N)$ correspond to faster operation.

Lemma 2. Let the processors P_D of G_D be partitioned into two sets S and T.

Let $n = \min(\#S,\#T)$ and $c = \#(L_D \cap S \times T)$. Then $n \leq M_D c$.

Proof: Let the permutations on P_D be extended in the natural way to map subsets of P_D on subsets. Define
a(\tau) = \#(\pi(S) \cap T).

We will first show that for \(\beta \in B_{P_D} \), \(a(\beta) \leq c \). For

\[a(\beta) = \#(B(S) \cap T) = \#\{s \in S \mid \beta(s) \in T \} \]

\[= \#\{s \in S \mid \exists \beta(s) \in L_D \cap S \times T \} \leq \#L_D \cap S \times T = c. \]

Let \(\pi \) be a permutation such that \(sd_D(\pi) = d \). It is claimed that \(a(\pi) \leq dc \). The claim is easily shown correct by induction on \(d \) (and, in fact, we have just shown it for the case \(d=1 \)). For \(sd_D(\pi) = 0, \pi = \pi_1 \), so

\[a(\pi) = \#(\pi_1(S) \cap T) = \#(S \cap T) = 0. \]

For \(sd_D(\pi) = 0, \pi \) can be written as \(\beta \pi' \), where

\[sd_D(\pi') = sd_D(\pi) - 1 \] and \(\beta \in B_{P_D} \). Since

\[\pi'(S) = \pi'(S) \cup \pi'(S) \cap T \subset S \cup \pi'(S) \cap T, \]

\[\pi(S) = \beta \pi'(S) = \beta(\pi'(S)) \subset \beta(S \cup \pi'(S) \cap T) \subset \beta(S) \cup \beta(\pi'(S) \cap T), \]

so \(\beta \pi'(S) \cap T \subset \beta(S) \cap T \cup \beta(\pi'(S) \cap T) \cap T \subset \beta(S) \cap T \cup \beta(\pi'(S) \cap T) \). We have

\[a(\pi) = a(\beta \pi') = \#(\beta \pi'(S) \cap T) \leq \#(\beta(S) \cap T \cup \beta(\pi'(S) \cap T) \cap T) \]

\[\leq \#(\beta(S) \cap T) + \#(\beta(\pi'(S) \cap T) + \#(\pi'(S) \cap T)) \]

\[= a(\beta) + a(\pi'). \]

Using \(a(\beta) \leq c, sd_D(\pi') = sd_D(\pi) - 1 \) and the inductive hypothesis, it follows that

\[a(\pi) \leq c + (sd_D(\pi) - 1)c = sd_Dc. \]

Next, choose (arbitrarily) two subsets \(S' \subset S \) and \(T' \subset T \), each of size \(n \). Let \(\pi \) be any permutation such that \(\pi(S') = T' \). Then

\[n = \#T' = \#(\pi(S') \cap T') \leq \#(\pi(S) \cap T) = a(\pi) \]

so, since \(M_D \) is an upper bound of the values of \(sd_D(\pi) \),

\[n \leq a(\pi) \leq sd_D(\pi)c \leq M_Dc, \]

which proves the lemma.

Remark. Although it may not be obvious from the formalism of the proof, the crucial idea is that at any shift \(\beta \) at most \(c \) items from \(S' \) may reach (their destination in) \(T \) across the "boundary" between \(S \) and \(T \). It follows that the lemma will also hold if the processors are not forced to give up their current contents in passing it on to another processor and receiving data from a third. Even an unlimited memory capacity of the processors will not help; the bottle-neck is not the capacity of the processors but that of the lines.

A *recurrent* paracomputer is a paracomputer obeying a recurrence relation

\[G_D = < P_{D-i_1} \cup \cdots \cup P_{D-i_n}, \ L_D' \cup L_{D-i_1} \cup \cdots \cup L_{D-i_n} >. \]

In this scheme the processors \(P_{D-i_k} \) of constituent paracomputers \(G_{D-i_k} \) are considered distinct for different values of \(k \), even if \(i_k \) is the same (by taking copies if necessary), so the unions involved are disjoint unions. We require, moreover,

\[n \geq 2 \] and \(1 = i_1 \leq i_2 \leq \ldots \leq i_n. \]

(An additional requirement, which we do not need however, might be that \(L_D' \subset P_D \times P_D \) is disjoint from each \(P_{D-i_k} \times P_{D-i_k} \)). We shall write \(I \) for \(i_n \).
To get the sequence started, we take \(G_D = \langle \emptyset, \emptyset \rangle \) for \(D < 0 \) and \(G_0 = \langle \{ \Lambda \}, \emptyset \rangle \). (\(\Lambda \) stands for any "atom" to label the processor in the point set \(P_0 \), e.g., the null sequence. For the following considerations the choice of \(P_0 \) is immaterial, as long as \(N_0 > 0 \). Moreover, if \(N_0 = 1 \), the choice of \(L_0^+ \) is immaterial.)

For a recurrent paracomputer we have

\[
N_D = \begin{cases}
0 & \text{for } D < 0; \\
1 & \text{for } D = 0; \\
\sum_{k=1}^{n} N_{D-i_k} & \text{for } D > 0.
\end{cases}
\]

Obviously, \(N_D \) is strictly monotone increasing for \(D \geq 0 \). The solution to a recurrence relation of this type can be written explicitly as

\[
N_D = \sum_{j=1}^{l} a_j \lambda_j^D,
\]

where the \(\lambda_j \) are the roots of the equation \(\sum_{k=1}^{n} \lambda_j^{-i_k} = 1 \). If \(\lambda \) is the largest of these roots, we have

\[
N_D = a\lambda^D + O(\mu^D)
\]

for some positive \(a \) and some \(\mu \) such that \(|\mu| < \lambda \). (If there is a multiple root, the general explicit solution is slightly more complicated. We are concerned with the behavior of \(N_D \), however, and it can be shown that the largest root is larger than 1 and exceeds the other roots in absolute magnitude, and so has multiplicity 1.)

Putting \(C_D = \# L_D \) and \(C_D = \# L_D^+ \), we also have

\[
C_D = \begin{cases}
0 & \text{for } D < 0; \\
C_D + \sum_{k=1}^{n} C_{D-i_k} & \text{for } D \geq 0.
\end{cases}
\]

This recurrence relation is solved by

\[
C_D = \sum_{q=1}^{D} N_{D-q} c_q.
\]

(If \(L_0^+ \neq \emptyset \), the summation should start with \(q = 0 \).)

To give an example of a recurrent paracomputer, consider

\[
G_D = \langle P_{D-1}^{(0)} \cup P_{D-1}^{(1)} \cup L_D^+ \cup L_{D-1}^{(0)} \cup L_{D-1}^{(1)} \rangle.
\]

The superscripts \((0) \) and \((1) \) serve to distinguish the two copies of \(G_{D-1} \). If \(p \) is a processor of \(P_{D-1} \), the corresponding processors of \(P_{D-1}^{(0)} \) and \(P_{D-1}^{(1)} \) are written \(p0 \) and \(p1 \), respectively. \(L_D^+ \) is then defined as
\{<p0, p1> | p \in P_{D-1}\} \cup \{<p1, p0> | p \in P_{D-1}\}.

So \(N_D = 2^D\). Since \(\phi_D = 2D\), this recurrent paracomputer is not an ultracomputer. It is easily shown to be strictly log \(N\)-fast. \(G_D\) is isomorphic to a hypercube (with edges running both ways) of dimension \(D\).

Theorem. Recurrent ultracomputers are not log \(N\)-fast.

Proof: By contradiction. Let the sequence \(G_D\) be a log \(N\)-fast recurrent ultracomputer. We have \(M_D = O(D)\), so at most a finite number of the values of \(M_D\) is infinite. If this should be the case, we augment the corresponding \(L_D^+\) to make \(M_D\) finite. This does not influence property (UC). Now, for some \(\alpha > 0\), \(M_D < \alpha D\).

We can partition \(P_D\) into two sets, \(S = P_{D-i_1}\) and \(T = P_{D-i_2} \cup \cdots \cup P_{D-i_n}\). From \(I = \max i_k, k = 1, \ldots, n\), we have \(\min(#S, #T) \geq N_{D-I}\). Each \(L_{D-i_k}\) contains members of \(P_{D-i_j} \times P_{D-i_j}\), only, so members of \(S \times T\) contained in \(L_D = L_D^+ \cup L_D^{-}\) are members of \(L_D^+\). Consequently, \(#(L_D \cap S \times T) \leq \#L_D^+ = c_D\). Application of Lemma 2 yields now

\[N_{D-I} \leq M_D c_D.\]

Using \(M_D < \alpha D\) and (2), we obtain for \(\Gamma_D\)

\[\Gamma_D > \frac{1}{\alpha} \sum_{q=1}^{D} \frac{N_{D-q} N_{q-1}}{q N_D}.\]

Since \(N_{D-q} N_{q-1}/N_D \to \lambda^{-1}\), we are led to rewrite this as

\[\Gamma_D > \frac{1}{\alpha} \lambda^{-1} \sum_{q=1}^{D} \frac{1}{q} + \frac{1}{\alpha} \sum_{q=1}^{D} \frac{1}{q} \left[\frac{N_{D-q} N_{q-1}}{N_D} - \lambda^{-1}\right].\]

>From (1) it is clear that the sum in the second term has a finite limit, whereas the first term is clearly unbounded, so \(\Gamma_D\) is unbounded. Together with Lemma 1 this yields a contradiction.

Remark. The possibility is still left open that recurrent ultracomputers might exist that are \((\log N)^{1+\varepsilon}\) -fast for arbitrarily small \(\varepsilon > 0\). Note in fact that \(\sum q^{-(1+\varepsilon)}\) is bounded. A mere existence proof, e.g., by enumerating combinations, would not be very helpful; for an ultracomputer to be manageable the lines should definitely exhibit some simple pattern. Note, moreover, that the criterion of boundedness of \(\Gamma_D\) as applied is relatively weak; for example, if \(c_D\) is constant, the reasoning in the proof of the theorem fails completely to reveal that the corresponding ultracomputer is at best \(N\)-fast, for no contradiction is obtained concerning the boundedness of \(\Gamma_D\) for even \((\log N)^{1+\varepsilon}\)-fastness (although the contradiction follows immediately from the intermediate \(N_{D-I} \leq M_D c_D\)). It seems, therefore, entirely plausible that the result of this note could be drastically sharpened.

Reference