J.W. De Bakker and L.G.L. Th. Meertens

Simple Recursive Program Schemes and Inductive Assertions

2e boerhaavestraat 49 amsterdam
Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.
ABSTRACT

By an unpublished result of Scott, the inductive characterization of the while statement (due to Hoare) is equivalent to its minimal fixed point characterization. In order to obtain a generalization of this result for recursive procedures, a refinement of Floyd's technique of inductive assertions is proposed. The new technique features the use of assertions depending upon the history of the computation. Technically, this is achieved by indexing the assertions with expressions representing the stack of currently active procedures.

The investigation is set in the framework of program schematology. Proofs about simple - i.e., one-variable only - schemes are given by means of Scott's induction rule which is stated and proved somewhat more abstractly and rigorously than before. The main tool is the regularization theorem stating, roughly, that for each "context free" program scheme an equivalent (infinite) "regular" scheme can be constructed. The inductive assertion theorem then provides the above mentioned generalization.
CONTENTS

1. Introduction .. 1
2. Origin of the problem 4
3. Simple recursive program schemes 8
 3.1. Language and interpretation 9
 3.2. The union theorem 14
 3.3. The induction theorem 20
4. Inductive assertions 23
 4.1. Attempts that failed 24
 4.2. The regularization theorem 25
 4.3. The inductive assertion theorem 33
Appendix: Derivatives and traces 38
References ... 40
1. INTRODUCTION

Our paper reports an investigation of the foundations of simple recursive program schemes and their associated inductive assertions. Simple recursive program schemes were first introduced in Scott and De Bakker [16]. In that paper, the notion of minimal fixed point structure of recursive procedures - used synonymously, there and here, for simple recursive program schemes - was developed, and a powerful rule of proof, Scott's fixed point induction rule, was derived from it. The variety and multitude of applications of this rule have shown it to be a worthy successor to McCarthy's classical rule of recursion induction [12].

Proofs based on the minimal fixed point characterization were proposed independently by Bekic [4], Morris [13] and Park [15]. In subsequent work De Bakker [1,2], De Bakker and De Roever [3], Hitchcock and Park [6], Manna and Cadiou [8], Manna, Ness and Vuillemin [9], Manna and Vuillemin [11], Milner [14] and others have been concerned with the development of formal systems in which Scott's rule can be embedded, with the completeness of such systems, with application to correctness and termination proofs about programs, with the relationship between the fixed point characterization and various rules of computation, with the implementation of the rule in an interactive program proving system, and with other applications.

Our study of simple recursive program schemes in relation to inductive assertions arose out of a problem inspired by work of Hoare [7]. Incidentally, so did the original paper by Scott and De Bakker. *) The problem is explained in section 2. Roughly, we became interested in the relationship between the inductive characterization of the while statement and its minimal fixed point characterization. The equivalence of these two characterizations was shown by Scott (unpublished). The question then arose how to generalize this result for recursive procedures. The answer to this question is the main achievement of the present paper, beside a number of tech-

*) The reader who takes this reminder as a gentle admonition to the practical program correctness provers, the advocates of structured programing, their company and followers, that there is more to Hoare's axiom system than meets the eye, is right.
niques used in the proof which may have some independent interest. In particular, we develop a strategy for proving properties of programs by means of inductive assertions depending upon the history of the computation. In the course of our investigations we were led to a new development of part of the material contained in the papers Scott and De Bakker [16], and De Bakker and De Roever [3]. The novelty consists mainly in a more abstract and general version of the previous expositions. In particular, we state our results throughout for infinite systems of declarations (this will be needed in section 4), our statement of the union theorem, yielding the construction of the minimal fixed point by means of successive approximations, has a more general form than before, and the induction theorem, justifying Scott's induction rule, is proved without an explicit appeal to continuity. The main new results follow in section 4. There we prove the equivalence between the inductive assertion - and the minimal fixed point characterizations of systems of recursive procedures. The central tool is a certain indexing technique used first in the proof of the so-called regularization theorem which states that for each recursive program scheme an equivalent (but always infinite) scheme can be constructed which is regular in structure (in the sense that the grammar which is associated with the scheme in a rather natural way is regular). Half of the inductive assertion theorem may be viewed as a justification of a generalization of Floyd's technique [5] of proving global properties of a program from a collection of local properties. This generalization is twofold. Firstly, as minor point, we have that the technique applies to systems of recursive procedures and not to flow charts (cf. the - different - generalization of Manna and Pnueli [10]). Secondly, and more importantly, we construct a system of inductive assertions consisting, in a sense, of the minimal set of assumptions about local properties needed to prove the global assertions. The minimality is obtained by introducing assertions which depend upon the stage of the computation: Let A be an elementary component of the program. Usually one requires that, for some pre-(post)condition p(q), if A is entered with input x for which p(x) is true, q(y) is true for output y from A. In our system, however, we use an indexed set \(p^\sigma, q^\sigma, \sigma \) reflecting the stack of currently active procedures, and require that, for each relevant \(\sigma, p^\sigma, q^\sigma \) and A
satisfy the relationship described for \(p, q \) and \(A \) above. We first prove for this highly structured collection of inductive assertions that Floyd's theorem holds. But, moreover, we can now also prove the converse, i.e., that each system of relations satisfying the collection necessarily coincides with the recursive procedures as declared by the scheme. Thus we obtain the generalization of the result for while statements we set out to prove.

As remarked above, the proofs in section 4 rely heavily on a certain strategy of indexing procedures in various auxiliary systems in such a way that the history of the computation leaves its trace in the index; also, we introduce segments of initial computation, preceding an inner call of a procedure at a given level of recursion depth. The relationship between this notion and the notion of derivative introduced by Hitchcock and Park [6] is settled (without proof) in the Appendix.

For the reader who is not happy with our restriction to simple schemes only, we announce work in progress by W.P. de Roever in which, among other results, section 3 of the present paper is generalized to polyadic relations.

Our paper is rather abstract and mathematical in nature. Another unhappy reader, who wants to see what can be done with these techniques in practical programming situations, is referred to the literature mentioned above, e.g. De Bakker [1], De Bakker and De Roever [3], Manna and Vuillemin [11], or Milner [14].

We acknowledge many helpful discussions with P. van Emde Boas. In particular, we are indebted to him for lemma 3.5.
2. ORIGIN OF THE PROBLEM

Let P be a program. The computation prescribed by P maps input x to output y, with x, y elements of some domain V of state vectors, information structures, internal objects, or whatever one chooses to call them. Articulating the structure of the objects in V is not of our concern here at all; that of P is analysed only in a highly global manner, abstracting from most of the properties of its constituent components. In fact, we study only the essential flow of control structure of P, and investigate it from a mathematical as opposed to an operational or implementation-oriented point of view. The mapping P is a partially defined (programs may be nonterminating) function from V to V, or, rather, taking non-deterministic programs into account, a binary relation over V. We write \((x, y) \in P\), or, more often, \(xPy\). Thus, \(xPy_1, xPy_2\) and \(y_1 \neq y_2\) may coexist.

Many correctness assertions on programs can be formulated as: If x satisfies property p, than y satisfies property q, i.e., \(\forall x, y[p(x) \land xPy \rightarrow q(y)]\). Concepts of the programming language used for the writing of P can be characterized semantically by correctness assertions. As an example, we consider the while statement while p do A, with p a boolean expression, A a program. As short-hand we use \(p^*A\). Hoare [7] has proposed what amounts to the following characterizing properties:

\[
(2.1) \quad \forall u[\forall x, y[u(x) \land p(x) \land xAy \rightarrow u(y)] + \forall x, y[u(x) \land x p^*A y \rightarrow u(y)]]
\]

\[
(2.2) \quad \forall x, y[x p^*A y \rightarrow \neg p(y)]
\]

In words, (2.1) expresses an induction property: If performing A once (for input with p true) does not change property u, then performing it zero or more times (by \(p^*A\)) does not change it either. Observe that (2.1) is a

1) The considerations of this section are mostly informal in nature. In a more precise form they return in the sequel of the paper.
formula in second order predicate logic. (2.2) is clearly valid, since the
very termination of the while statement implies that its controlling
expression is no longer satisfied.

Formulae such as (2.1), (2.2) can be written more concisely by using a
number of abbreviations together establishing a transliteration from predi-
cate - to relational calculus. The predicate $P(x,y)$ is true iff (x,y) is an
element of the relation P. Thus, for $\forall x,y \ [xP_1y \rightarrow xP_2 y]$ we write $P_1 \subseteq P_2$.
The meaning of $P_1 = P_2$, $P_1 \cap P_2$ and $P_1 \cup P_2$ should be clear. $xP_1;P_2 y$ is
short for $\exists z \ [xP_1z \land zP_2y]$; i.e., ":" denotes the operation of relational
composition. For the identity (empty) relation we write $E(\Omega)$, i.e., xEy iff
$x=y$, and $x\neq y$ for no $x, y \in \mathcal{V}$. Moreover, with each unary predicate p (possibly
partial) we associate two subsets of E, viz. p and \overline{p}, such that $p \cup \overline{p} \subseteq E$,
$p \cap \overline{p} \subseteq \Omega$, with the following intended correspondence: $p(x)$ holds iff
$(x,x) \in p$, $\neg p(x)$ holds iff $(x,x) \in \overline{p}$, and $p(x)$ is undefined iff $(x,x) \in
E \setminus (p \cup \overline{p})$. Using these abbreviations we can write for (2.1), (2.2):

(2.3) \quad \forall u \ [\text{If } p;u;A \subseteq A;u \text{ then } u;p* A \subseteq p* A;u]

(2.4) \quad p* A \subseteq p* A;\overline{p}.

These two formulae are not yet the whole story about the while statement.
Clearly, there is at least one other essential fact to be noted, expressed by

(2.5) \quad p* A = p;A;p* A \cup \overline{p}

or, in perhaps more familiar terms, $p* A$ is equivalent with (in fact, may be
said to be defined recursively by) if p then begin $A;p* A$ end else E, where
E is nothing but the "dummy statement". However, (2.5) is not the whole
truth either. This will be brought out by consideration of the special case
$p*E$, where we have taken for the as yet unspecified program A, the dummy
statement E. We know that, if p is true of the input, then $p*E$ loops
ininitely (the relation between input and output being empty in this case),
i.e., \(p^*E = \text{if } p \text{ then } \Omega \text{ else } E = p;\Omega \cup \overline{p} = \overline{p} \), However, this fact is not contained in the corresponding instance of (2.5). Specifically, (2.5) only expresses that \(p^*A \) is a solution of the functional (or, rather, relational) equation \(X = p;A;X \cup \overline{p} \), whereas our example emphasizes that we need its minimal solution: We have to require

(2.6) \[\forall S[\text{If } p;A;S \cup \overline{p} = S, \text{ then } p^*A \subseteq S] \]

One is now confronted with the question: What is the relationship between (2.3), (2.4) on the one hand, and (2.6) on the other hand. The answer is provided by the following theorem:

THEOREM 2.1 (Scott). Let \(R \) satisfy: \(R = p;A;R \cup \overline{p} \). Then the two assertions (2.7a,b) are equivalent with (2.8):

(2.7a) \[\forall u[\text{If } p;u;A \subseteq A;u \text{ then } u;R \subseteq R;u] \]

(2.7b) \[R \subseteq R;\overline{p} \]

(2.8) \[\forall S[\text{If } p;A;S \cup \overline{p} = S, \text{ then } R \subseteq S]. \]

In words, for fixed points \(R \) of the while statement characteristic equation, the inductive characterization (2.7) and the minimality characterization (2.8) are equivalent, i.e., imposing either (2.7) or (2.8) upon such \(R \) implies that \(R = p^*A \).

PROOF

1. \((2.7) \Rightarrow (2.8).\)

First we show the following: Let \(A^* \overset{df}{=} E \cup A \cup A;A \cup \ldots \), and let \(X \) be an arbitrary relation over \(V \) satisfying: \(\forall u[\text{If } u;A \subseteq A;u, \text{ then } u;X \subseteq X;u] \).

Then \(X \subseteq A^* \). Proof: Choose a fixed \(x_0 \in V \). Define \(u_0(s) \leftrightarrow \forall t[sA^*t \rightarrow x_0A^*t]. \)

1) A (generalized) theorem to this effect is proved in section 3.2
It is easily verified, using \(A;A^* \subseteq A^* \), that \(u_0;A \subseteq A;u_0 \). Hence by
\(u_0;X \subseteq X;u_0 \), or, \(\forall x,y[u_0(x) \land xxy + u_0(y)] \). Assume \(x_0xy \).
Clearly, \(u_0(x_0) \) is true. Thus, \(u_0(y) \), i.e., \(\forall t[yA^*t + x_0A^*t] \) holds.
Taking \(t = y \) we obtain, since \(B \subseteq A^* \), the result that \(x_0xy \to x_0A^*y \). Since
\(x_0 \) was arbitrary, the proof of \(X \subseteq A^* \) is completed. Using this auxiliary
result the proof of (2.7) \(\implies \) (2.8) is easily established as follows:
From (2.7a), \(\forall u[if \ u;(p;A) \subseteq (p;A);u, \ then \ u;R \subseteq R;u] \). Therefore,
\(R \subseteq (p;A)^* \), whence, \(R;\overline{p} \subseteq (p;A)^*;\overline{p} \), from which, by (2.7b), \(R \subseteq (p;A)^*;\overline{p} \)
is obtained. Now suppose that \(S = p;A;S \cup \overline{p} \). In order to show that then
\(R \subseteq S \), it is sufficient to show that each of \(E;\overline{p}, p;A;\overline{p}, p;A;\overline{p}, \ldots, \)
\((p;A)^i;\overline{p}, \ldots \) is included in \(S \). This follows by:
\(S \supseteq p;A;S \supseteq \ldots \supseteq \supseteq (p;A)^i;S = (p;A)^i;S \cup \overline{p} \supseteq (p;A)^i;\overline{p} \).

2. (2.8) \(\implies \) (2.7).

By the Knaster-Tarski theorem [18], as mentioned e.g. in de Bakker [1]
or Park [15], we have that (2.8) is equivalent with

\(\forall S[If \ p;A;S \cup \overline{p} \subseteq S, \ then \ R \subseteq S] \).

Let \(R \) satisfy (2.8) and, hence, (2.9). Let \(u \) be such that \(p;u;A \subseteq A;u \).
We show that then \(u;R \subseteq R;u \), or, equivalently, that:
\(\forall x,y[xxy \to [u(x) + u(y)]] \). Let \(xxy \overset{df}{=} [u(x) + u(y)] \). By (2.9), it will
be sufficient to show \(p;A;S \cup \overline{p} \subseteq S \). Clearly, \(\overline{p} \subseteq S \). Also, in order to
show \(p;A;S \subseteq S \), we must prove \(\forall x,y,[xpy \land xAy \land [u(y) + u(z)] \to [u(x) + u(z)]] \). Assume \(x(x), xAy, u(y) + u(z), \) and \(u(x) \). Since
\(p;u;A \subseteq A;u \), we have \(u(y) \). Thus, \(u(z) \) follows from the assumption, as
desired. This completes the proof of (2.8) \(\implies \) (2.7a). That of (2.8) \(\implies \)
(2.7b) is left to the reader.

We can now state the origin of the investigation leading to the present
paper: We wanted to solve the problem: Generalize theorem 2.1 for recursive
procedures.
3. SIMPLE RECURSIVE PROGRAM SCHEMES

A simple recursive program scheme is an abstract form of a program containing a system of declarations of recursive procedures. In an ALGOL-like language the structure of such a program might be

\[
\text{begin} \\
\quad \text{procedure } P_1; \text{<statement 1>;} \\
\quad \text{procedure } P_2; \text{<statement 2>;} \\
\quad \ldots \\
\quad \text{procedure } P_n; \text{<statement n>;} \\
\quad \text{<statement>} \\
\text{end}
\]

where <statement 1>, ..., <statement n>, and <statement> each may contain occurrences (i.e.; "calls") of \(P_1, P_2, \ldots, P_n \).

In section 3.1 we first give a precise description of the language in which the abstract statements, i.e., statement schemes are written. Informally, the language allows construction from certain elementary statements - either "atomic" actions or procedure calls - by means of composition, denoted by the go-on operator "\(;\)" , or by means of the union operator "\(\cup\)". For our use of "\(\cup\)" compare the previous section, where it was indicated how the conditional statement \(\text{if } p \text{ then } S_1 \text{ else } S_2 \) is represented by \(p;S_1 \cup \neg p;S_2 \).

For the moment, we do not yet bring these \(p \)'s into the formal language. They can wait till section 4.

After the introduction of the formal language, we define how a program scheme written in it can be interpreted as prescribing a computation.

Starting with an initial interpretation of the atomic actions and the constants (\(\mathcal{G} \) and \(\mathcal{E} \)) as mappings (relations) over some domain, we construct from this initial interpretation the interpretation of the scheme as a whole, using the notion of computation sequence, the definition of which embodies, among others, the "copy rule" for procedures.

Finally, after having prescribed the form of the assertions we shall be
interested to make about program schemes, we define the notion of validity
of assertions. The fundamental theorems about program schemes are then
derived in sections 3.2 and 3.3.

3.1 Language and interpretation

The basic components of program schemes are the two classes of symbols
introduced in

DEFINITION 3.1 (Basic symbols)
a. The class of relation symbols \(R = A \cup X \cup C \), where \(A = \{ A_1, A_2, \ldots \} \),
 \(X = \{ X_1, X_2, \ldots \} \), and \(C = \{ \Omega, E \} \). Arbitrary elements of \(R \) \((A, X)\) are deno-
ted by \(R, R_1, R_2, \ldots \), \((A_1, A_2, \ldots ; X, X_1, X_2, \ldots)\). The elements of \(C \) are
denoted by \(\Omega \) and \(E \) respectively.
b. The class of procedure symbols \(P = \{ P_1, P_2, \ldots \} \) with arbitrary elements
denoted by \(P, P_1, P_2, \ldots \).

Remark: The distinction between \(A \) and \(X \) is introduced only for the technical
reason of making available a convenient substitution mechanism; as to their
interpretation, \(A \) and \(X \) are treated in the same way.
From the classes \(R \) and \(P \) we construct the classes of statement schemes \(SS \),
of declaration schemes \(DS \), and of program schemes \(PS \).

DEFINITION 3.2 (Schemes)
a. The class of statement schemes \(SS \) (arbitrary elements \(S, S_1, \ldots, S', \ldots \)):
 1. \(R \cup P \subseteq SS \)
 2. If \(S_1, S_2 \in SS \), then \((S_1; S_2)\) and \((S_1 \cup S_2) \in SS \).
b. The class of declaration schemes \(DS \) (arbitrary elements \(D, D_1, \ldots \)):
 A declaration scheme is a set of pairs \(\{ P \in S \} \), with \(\pi \) a (not
 necessarily finite) index set, and, for each \(\pi \), \(P \in S \), \(S \in SS \).
c. The class of program schemes \(PS \) (arbitrary elements \(T, T_1, \ldots, T', \ldots \)):
 A program scheme is a pair \((D, S)\) with \(D \in DS \), \(S \in SS \).
A program scheme \(T = (D, S) = \{ \{ P, S \} \mid p \in \pi \} \) will usually be displayed as

\[
\begin{array}{c}
\vdots \\
p \iff S \\
\vdots \\
p \in \pi \\
\end{array}
\]

\(P \)

\(S \)

e.g., for \(\pi = \{1, 2\} \) we might have

\[
\begin{align*}
P_1 & \iff A_1; P_1; A_2; P_2; A_3 \cup \omega; P_2 \cup E \\
P_2 & \iff A_2; P_1; P_2; A_4 \cup \omega; P_1 \cup A_5 \\
P_1; A_2; P_2 & \\
\end{align*}
\]

where we have dropped the parentheses of definition 3.2, clause a2. These may be restored by using "associativity" and the convention that ";" has priority over "\cup": \(S_1; S_2 \cup S_3 \) is restored as \((S_1; S_2) \cup S_3\).

Often, for a program scheme \(T = (D, S) \), we shall identify \(T \) and \(S \) when it is clear from the context which \(D \) is meant. \(S, S_1, \ldots, T, T_1, \ldots \) will then each range both over \(SS \) and \(PS \).

The language allows us to state certain facts about program schemes in the form of **assertions**:

DEFINITION 3.3 (Assertions)

a. An **atomic formula** is of the form \(T_1 \leq T_2 \), with \(T_1, T_2 \in PS \).

b. A **formula** is a set of atomic formulae: \(\{ T_{1,r} \leq T_{2,r} \}_{r \in \wp} \), with \(\wp \) a, not necessarily finite, index set.

c. An **assertion** is of the form \(\phi \vdash \psi \), with \(\phi, \psi \) formulae.
Examples:
1. $x_2^1 A_2 \subseteq P$, \((A_1^1 x_2^1 u^S) A_2 \subseteq P \)
2. $\{ x_1, r \subseteq x_2, r \in \rho \} \vdash \{ A_1^1 x_1, r \subseteq A_1^1 x_2, r \}$

(No confusion should be caused by the - unavoidable - mixture of object-language and metalanguage in the second assertion).

Remark: $T_1 = T_2$ will be used as abbreviation for $T_1 \subseteq T_2$, $T_2 \subseteq T_1$.

The following notation will be used for substitution: For $S, S_1 \in SS$, and $X \in X$, $S_1[S/X]$ denotes the result of substituting S for all occurrences of X in S_1. Also, for π any index set, $S, S_1 \in SS$ ($p \in \pi$), and $X \in X$, $p \in X$ ($p \in \pi$), $S[S_1/p \in \pi] \in SS$ denotes the result of simultaneously substituting, for each $p \in \pi$, S_1 for all occurrences of X in S. The notation is extended in an obvious way to atomic formulae, formulae and assertions. E.g.,

\((T_1 \subseteq T_2) [S/X] \) is short for $T_1[S/X] \subseteq T_2[S/X]$, and \((\phi \vdash \psi)[S/X] \) for

\(\phi[S/X] \vdash \psi[S/X] \).

We now relate the program schemes as formal objects to their intended meaning. A program scheme $T \in PS$ prescribes a class of computations. By choosing firstly a domain over which the computation is to take place, and secondly the concrete realizations of the relation symbols in R over this domain, an interpretation - depending upon these choices - is assigned to T. The precise definitions follow in definitions 3.4 to 3.6.

DEFINITION 3.4 (Initial interpretation)

An initial interpretation c_0 is given by its domain V (an arbitrary non-empty set) and a mapping (also denoted by c_0) from the elements of R to binary relations over V satisfying the condition that $c_0(\emptyset)$ is the empty relation over V and $c_0(E)$ the identity relation.
The extension of an initial interpretation \(c_0 \) to an (extended) interpretation \(c \) needs the notion of a computation sequence.

DEFINITION 3.5 (Computation sequence)

A computation sequence with respect to the declaration scheme

\[D = \{ P_p, S_p \}_{p \in \pi} \]

and the initial interpretation \(c_0 \) with domain \(V \) is a finite sequence

\[(3.1) \quad x_1 S_1 x_2 S_2 \ldots x_n S_n x_{n+1} \]

with \(n \geq 1, x_i \in V \) \((1 \leq i \leq n+1)\), \(S_i \in SS \) \((1 \leq i \leq n)\), satisfying the condition:

For each \(i \), \(1 \leq i \leq n \), one of the following six cases applies:

- **a1.** \(S_i = R \). Then \(i = n \), and \((x_i, x_{i+1}) \in c_0(R) \).
- **2.** \(S_i = S' \cup S'' \). Then \(S_{i+1} = S' \) or \(S_{i+1} = S'' \), and \(x_{i+1} = x_i \).
- **3.** \(S_i = P_p \). Then \(S_{i+1} = S_p \), where \((P_p, S_p) \in D \), and \(x_{i+1} = x_i \).

- **b1.** \(S_i = R; S' \). Then \(S_{i+1} = S' \) and \((x_i, x_{i+1}) \in c_0(R) \).
- **2.** \(S_i = (S' \cup S'') ; S \). Then \(S_{i+1} = S' ; S \) or \(S_{i+1} = S'' ; S \), and \(x_{i+1} = x_i \).
- **3.** \(S_i = P_p ; S \). Then \(S_{i+1} = S_p ; S \), where \((P_p, S_p) \in D \), and \(x_{i+1} = x_i \).

Example: Let \(D \) be

\[P_1 \iff A_1; P_1; A_2 \cup A_3; P_2 \]
\[P_2 \iff A_4; P_2 \cup E. \]

A possible computation sequence with respect to \(D \) and a given \(c_0 \) is

\((S_1 = A_5; P_1) \):

\[x_1 A_5; P_1 x_2 P_1 x_3 A_1; P_1 A_2 \cup A_3; P_2 x_4 A_1; P_1 A_2 x_5 P_1 A_2 \]
\[x_6 (A_1; P_1; A_2 \cup A_3; P_2); A_2 x_7 A_3; P_2 A_2 x_8 P_2 A_2 \]
\[x_9 (A_4; P_2 \cup E); A_2 x_{10} A_4; P_2 A_2 x_{11} P_2 A_2 x_{12} (A_4; P_2 \cup E) A_2 \]
\[x_{13} E; A_2 x_{14} A_2 x_{15} \]

with \((x_1, x_2) \in c_0(A_2) \), \(x_2 = x_3 \), \(x_3 = x_4 \), \((x_4, x_5) \in c_0(A_1) \), etc..

Remarks:

1. The definition of computation sequence is an elaboration of a proposal

 by Scott [17].
2. A computation sequence such as (3.1) may be viewed as follows: Each S_i, 1≤i≤n, is the program which remains to be executed, at stage i, with current "state" x_i. The execution is completed when the last statement - which is necessarily an element of R - is performed (clause a1). Clauses a2 and b2 describe a choice between two potential continuations. Clauses a3 and b3 give the copy rule for procedures: replace the procedure identifier by its body, and continue with the thus modified program. Clauses b1 to b3 contain the usual meaning of ";" prescribing continuation.

We are now sufficiently prepared to define the interpretation of a program scheme.

DEFINITION 3.6 (Interpretation)

Let $T = (D, S)$ be a program scheme and let c_0 be an initial interpretation. Then the interpretation c (which is said to extend c_0) is defined by:

For each $x, y \in V$, $(x, y) \in c(T)$ iff there exists a computation sequence $x_1 S_1 x_2 S_2 \ldots x_n S_n x_{n+1}$ with respect to D and c_0 such that $x_1 = x$, $x_{n+1} = y$, and $S_1 = S$.

Usually, we are interested in assertions about program schemes which hold for all interpretations, i.e., which are valid:

DEFINITION 3.7 (Validity)

a. An atomic formula $T_1 \subseteq T_2$ satisfies an interpretation c, iff $c(T_1) \subseteq c(T_2)$ holds. If $T_1 \subseteq T_2$ satisfies all c, it is called valid.

b. A formula Φ satisfies c (is valid) iff all its elements satisfy c (are valid).

c. An assertion $\Phi \vdash \psi$ such that, for all c, if Φ satisfies c then ψ satisfies c, is called valid.

Remarks:

1. Note the distinction between definition 3.7c and the alternative:

 $\Phi \vdash \psi$ is called valid iff validity of Φ implies validity of ψ. The
alternative is not adopted.

2. From the definitions it follows that if \(\phi \vdash \psi \) is a valid assertion, for arbitrary \(S \), \((\phi \vdash \psi)[S/X]\) is also valid.

Examples of valid assertions

a. With respect to \(D = \{ P_1 \iff P_1 \} \)
 \[P_1 = \emptyset \]

b. With respect to \(D = \{ P_1 \iff A_1; P_1 \cup A_2 \}
 \quad P_2 \iff A_1; P_2 \cup B \}
 \]
 \[P_1 = P_2; A_2; \quad \text{and} \quad X_1 \vdash P_2; A_2 \iff A_1; X_1 \cup A_2 \subseteq P_2; A_2 \]

The main result of section 3 is a rule for proving validity of assertions (Scott's induction rule). An important tool in the proof of this rule is the union theorem, dealt with in the next subsection.

3.2 The union theorem

We begin with a simple lemma stating some direct consequences of the definition of interpretation.

Lemma 3.1

a. If \(T \in R \), then \(c_0(T) = c(T) \)

b. \(c(T_1; T_2) = c(T_1); c(T_2) \)

c. \(c(T_1 \cup T_2) = c(T_1) \cup c(T_2) \)

d. \(c(P_p) = c(S_p) \), for each \(p \in \pi \).

Proof. We prove only part d.

1. \(\subseteq \). Assume \((x,y) \in c(P_p) \). Then there is a computation sequence
 \[x_1 S_1 x_2 S_2 \ldots x_n S_n x_{n+1} \], with \(x_1 = x \), \(x_{n+1} = y \), and \(S_1 = P_p \). By definition 3.4, then \(S_2 = S_p \), and \(x_2 = x_1 \). Therefore, \(x_2 S_2 \ldots x_n S_n x_{n+1} \) is also a computation sequence; hence, \((x,y) = (x_2, x_{n+1}) \in c(S_p) = c(S_p') \).

1) The lemmas of this and the following subsections always refer to suitably defined statement, declaration, or program schemes. In particular, we always assume given the declaration scheme \(D = \{ P_p; S_p \} \) such that none of the \(S_p \) contains any occurrence of an \(X \in X \).
2. Assume \((x,y) \in \text{c}(S^p)\). Thus, there is a computation sequence
\[x_1, x_2, x_3, \ldots, x_n = x, \quad x_{n+1} = y, \quad \text{and} \quad S_1 = S^p. \]
Then the sequence \(x'_1, x'_2, x'_3, \ldots, x'_m = x, \quad x'_{m+1} = y, \quad \text{and} \quad S'_1 = S^p_i, \quad S'_i = S^p_{i-1}, \]
i = 2, 3, ..., m, \(x'_i = x_i, \quad x'_{i-1} = x_i - 1, \quad i = 2, 3, ..., m+1, \) is also a computation sequence, whence \((x,y) \in \text{c}(S^p)\) follows.

Remarks.

1. The result of lemma 3.1 \(\alpha\), is not as obvious as it may seem. In fact, it
does not necessarily hold in certain treatments of the non-monadic case,
as has been pointed out by Manna and Cadiou [8].

2. From the definitions and lemma 3.1, the validity of standard properties
of program schemes, such as \(\Omega \subseteq T, (S_1; S_2); S_3 \subseteq S_1; (S_2; S_3), \quad E; T = T, \) if
\(S_1 \subseteq S_2\) then \(S_1; S_3 \subseteq S_1; S_2\) etc., easily follows. These and similar
properties will be used in the sequel without explicit mentioning. We do
mention separately the monotonicity property in its two most used forms:

Lemma 3.2 (Monotonicity)

a. \(S_1 \subseteq S_2 \vdash S[S_1/X] \subseteq S[S_2/X]\)

b. \(\{S_1, r \subseteq S_2, r \in \rho \} \vdash S[S_1, r/X] \subseteq S[S_2, r/X] \) for each \(r \in \rho\)

but we omit its proof, which proceeds by an inductive argument on the
complexity of the statement schemes concerned.

We now come to the more interesting part. First we introduce some
auxiliary concepts and notation.

Definition 3.3.

a. A statement scheme \(S\) is called **closed** if it contains no occurrences of
any \(X \in X\).

b. Let \(\tilde{S}\) be a statement scheme. \(\tilde{S}\) denotes the result of replacing, in \(S,\)
all occurrences of a procedure symbol \(P^p\) by \(X_p\) for each \(p \in \pi\).
LEMMA 3.3

a. For closed \(T \), \(\tilde{T}[P/X]_P \in \pi = T \)

b. For arbitrary \(T \):

\[
\{ S \subseteq P \} \cap \tilde{T}[P/X]_P \subseteq \tilde{T}[S/X]_P \in \pi
\]

PROOF. Follows from the definitions, properties of substitution and monotonicity.

Next we need, for each \(T \), two sequences of substitution results \(T[k] \) and \(T(k) \), \(k = 0,1,2,\ldots \).

DEFINITION 3.9

a. \(T[0] = T \)

\[
T[k+1] = \tilde{T}[S[k]/X]_P \in \pi, \quad k = 0,1,2,\ldots
\]

b. \(T(0) = \Omega \)

\[
T(k+1) = \tilde{T}[S(k)/X]_P \in \pi, \quad k = 0,1,2,\ldots
\]

We immediately have

LEMMA 3.4

a. \(P(k+1) = S(k) \), \(k = 0,1,2,\ldots \)

b. \(T(k+1) = T[k] \; [\Omega/X]_P \in \pi, \quad k = 0,1,2,\ldots \)

c. \(T[k+1] = (T[k])[1] \).

PROOF. a and c are left to the reader.

b. We use induction on \(k \).

(i) \(k = 0 \), \(T(1) = \tilde{T}[S(0)/X]_P \in \pi = \tilde{T}[\Omega/X]_P \in \pi = T[0]\; [\Omega/X]_P \in \pi \)
(ii) Assume the result for \(k-1 \). We have
\[
\begin{align*}
\tilde{T}^{[k]}_{\pi} [\omega/X_p]_{P \in \pi} &= \tilde{T}^{[k-1]}_{\pi} [\omega/X_{P, q}]_{P \in \pi}, \\
\tilde{T}^{[k-1]}_{\pi} [\omega/X_{P, q}]_{P \in \pi} &= \tilde{T}^{[k-1]}_{\pi} [\omega/X_{P, q}]_{P \in \pi} = (\text{ind. hypothesis}), \\
\tilde{T}^{(k)}_{\pi} [\omega/X_{P, q}]_{P \in \pi} &= \tilde{T}^{(k+1)}_{\pi}.
\end{align*}
\]

The next two definitions are preparatory to the three main lemmas of this section, lemmas 3.5 to 3.7. The definitions are of a technical nature and are used only in the proofs of these lemmas.

DEFINITION 3.9 (Executable occurrence)
A procedure symbol \(P_p \) is said to occur executable in a computation sequence \(x_1 \ S_1 \ x_2 \ S_2 \ldots x_n \ S_n \ x_{n+1} \), if, for some \(1 \leq i \leq n \), \(S_i = P_p \) or \(S_i = P_p \; \S \).

DEFINITION 3.10 (to Identify)
Let \(x_1 \ S_1 \ x_2 \ S_2 \ldots x_n \ S_n \ x_{n+1} \) be a computation sequence. We say that a procedure symbol \(P_p \) occurring in some \(S \) contained in \(S_i \), \(1 \leq i \leq n \), directly identifies the corresponding occurrence of \(P_p \) in \(S \) contained in \(S_{i+1} \), in each of the following cases

a. \(S_i = S \; \cup \; S' \) and \(S_{i+1} = S \), or \(S_i = S' \; \cup \; S \), and \(S_{i+1} = S \).

b. \(S_i = R \; ; \; S \) and \(S_{i+1} = S \).

c. \(S_i = (S' \; \cup \; S'') \; ; \; S \) and \(S_{i+1} = S' \; ; \; S \) or \(S'' \; ; \; S \), or \(S_i = (S' \; \cup \; S') \; ; \; S'' \) and \(S_{i+1} = S \; ; \; S'' \).

d. \(S_i = P_p \; ; \; S \) and \(S_{i+1} = S \; ; \; S \), for some \(q \in \pi \).

The relationship to identify is defined as the reflexive and transitive closure of the relationship to identify directly.
LEMMA 3.5 (Van Emde Boas)
Let

\[(3.2) \quad x_1 S_1 x_2 S_2 \ldots x_n S_n x_{n+1}\]

be a computation sequence with \(\delta > 0\) executable occurrences of a procedure symbol. Moreover, we assume that \(S_1\) (and, therefore, each \(S_i\), \(i \geq 2\)) is a closed statement scheme. Then there exists a computation sequence

\[x'_1 S'_1 x'_2 S'_2 \ldots x'_m S'_m x'_m,\]

such that \(x'_1 = x_1\), \(x'_{m+1} = x_{n+1}\), \(S'_1 = S_1\), and, moreover, such that for the number \(\delta'\) of executable occurrences of a procedure symbol in this sequence we have \(\delta' \leq \delta - 1\).

PROOF. We introduce the following transformation on the computation sequence (3.2):

Step 1. Consider, for each \(p \in \pi\), all occurrences of the procedure symbol \(P_p\) in (3.2) which are identified by an occurrence of \(P_p\) in \(S_1\).

Step 2. Mark all those considered occurrences which are executable.

Step 3. Replace all other considered occurrences of \(P_p\) by \(S_p\), for each \(p \in \pi\).

Step 4. Replace, for each \(p \in \pi\), all combinations

\[\ldots x_j P_p^* x_{j+1} P_p x_{j+2} \ldots\]

or

\[\ldots x_j P_p^* x_{j+1} S_p x_{j+2} \ldots,\]

where \(P_p^*\) is an occurrence of \(P_p\), marked as a result of Step 2, by

\[\ldots x_j S_p x_{j+2} \ldots,\]

or by

\[\ldots x_j S_p x_{j+2} \ldots,\]

respectively.

It can be verified that the result of applying this transformation to (3.2) is again a computation sequence which has at least one executable occurrence of some \(P_p\) less than (3.2). In fact, at least the left-most executable occurrence of this \(P_p\) has been deleted. Moreover, it is clear that for the resulting sequence we have, by step 3 or 4, that \(S'_1 = S_1 [S / x_j P_p]_{p \in \pi} = S'[1]\).

LEMMA 3.6
Let \(x_1 S_1 x_2 S_2 \ldots x_n S_n x_{n+1}\) be a computation sequence with closed \(S_i\), \(1 \leq i \leq n\), and without any executable occurrence of a procedure symbol. Then, for arbitrary \(R_p \in R, p \in \pi\), we have that
\[x_1 \tilde{S}_1[R/X]_{p \in \pi} x_2 \tilde{S}_2[R/X]_{p \in \pi} \ldots x_n \tilde{S}_n[R/X]_{p \in \pi} x_{n+1} \]

is also a computation sequence.

PROOF. Since none of the \(p \) is executable, each of its occurrences may be replaced by an arbitrary \(R \) without changing the computation.

LEMMA 3.7

Let \(T \) be a closed statement scheme, and let \((x,y) \in c(T) \). Then there exists \(k > 0 \) such that \((x,y) \in c(T^{(k)}) \).

PROOF. By assumption, there is a computation sequence \(x_1 S_1 x_2 S_2 \ldots \ldots x_n S_n x_{n+1} \), with \(x_1 = x, x_{n+1} = y \), and \(S_1 = T \). Since \(S_1 = T \) is closed, each \(S_i \) is closed. Repeatedly applying lemmas 3.5 and 3.4c yields, for some \(k > 0 \), a computation sequence \(x'_1 S'_1 \ldots x'_m S'_m x'_{m+1} \), such that \(x'_1 = x_1, x'_{m+1} = y \), and such that this computation sequence does not contain any executable occurrence of a procedure symbol. Then, by lemma 3.6, we have that

\[x'_1 S'_1[k]_{p \in \pi} x'_2 \ldots x'_m S'_m[k]_{p \in \pi} x'_{m+1} \]

is also a computation sequence. By lemma 3.4, part b, \(S'_1[k]_{p \in \pi} = S_1^{(k+1)} \). Thus, we have shown that \((x,y) \in c(S_1^{(k+1)}) \).

LEMMA 3.7 provides the main result for the proof of

THEOREM 3.1 (Union theorem)

Let \(T \) be a closed statement scheme. Then, for all \(c \),

\[c(T) = \bigcup_{k=0}^{\infty} c(T^{(k)}) \]

PROOF.

a. \(\subseteq \). This follows directly from lemma 3.7.

b. \(\supseteq \). First we show that, for each \(p \in \pi \), and each \(k, p^{(k)} \leq p \), we use induction on \(k \).
(i) \(k = 0 \). Clear.

(ii) Assume the result for \(k \). Then:
\[
P(p^{k+1}) = (\text{lemma 3.4})
\]
\[
S(p) = S(p^k/X_p) = S(p^k/X_p) \subseteq \tilde{S}(p^k/X_p) \quad \text{(ind. hypothesis)}
\]

Next, we show that
\[
T(k) \subseteq T \quad \text{(lemma 3.3)}
\]
Thus, \(\bigcup_{k=0}^{\infty} T(k) \subseteq T \) follows, whence the proof of part b.

Remark: In the sequel we shall abbreviate the statement "For all \(c \),
\(c(T) = \bigcup_{k=0}^{\infty} c(T(k)) \)" to:
\(T = \bigcup_{k=0}^{\infty} T(k) \).

As a corollary to theorem 3.1, we immediately obtain the minimal fixed point property of procedures:

COROLLARY 3.1
\[
\{S(p^k/X_p) \mid p \in \pi \} \subseteq \{S'(p) \mid p \in \pi \}
\]

PROOF. We use \(S(p) = \bigcup_{k=0}^{\infty} S(k) \) and induction on \(k \).

(i) \(S(0) \subseteq S' \) is clear.

(ii) Assume the result for \(k \). Then, for each \(p \in \pi \),
\[
P(p^{k+1}) = S(p^k) \subseteq \tilde{S}(p^k/X_p) \quad \text{(ind. hypothesis)}
\]

Finally, we are now in a position to prove the induction theorem, the importance of which justifies devoting a separate section to it:

3.2. The induction theorem

THEOREM 3.2 (Scott's induction theorem)

Let \(\phi \) be a closed formula. Then:
If
\[\phi \vdash \psi[\alpha/X]_{p \in \pi} \]
and
\[\phi, \psi \vdash \psi[S/X]_{p \in \pi} \]
are valid, then
\[\phi \vdash \psi[P/X]_{p \in \pi} \]
is valid.

PROOF. It is sufficient to show the following:
If (\(\ast \)) \((T_1 \subseteq T_2)[\alpha/X]_{p \in \pi}\), and (\(\ast \ast \)) \(T_1 \subseteq T_2 \vdash (T_1 \subseteq T_2)[S/X]_{p \in \pi}\) are valid, then \((T_1 \subseteq T_2)[P/X]_{p \in \pi}\) is valid. Observe that the \(T_1, T_2\) may contain occurrences of the \(P\); in other words, we do not necessarily have that
\[T_1[P/X]_{p \in \pi} = T_1, \ i = 1, 2, \ldots \] The proof proceeds in four steps:

a. We show that \(T_1[S(k)/X]_{p \in \pi} \leq T_2[S(k)/X]_{p \in \pi}\), \(k = 0, 1, 2, \ldots\), by induction on \(k\). The case \(k = 0\) follows from (\(\ast \)). Next, assume as induction hypothesis that \(T_1[S(k)/X]_{p \in \pi} \leq T_2[S(k)/X]_{p \in \pi}\) holds. By (\(\ast \ast \)) we have that \(T_1 \subseteq T_2 \vdash (T_1 \subseteq T_2)[S(k)/X]_{p \in \pi}\). From this,
\(T_1[S(k)/X]_{p \in \pi} \leq T_2[S(k)/X]_{p \in \pi}\) follows. Combination with the induction hypothesis yields that \(T_1 \subseteq T_2[S(k+1)/X]_{p \in \pi}\) holds.

b. For \(k = 0, 1, 2, \ldots\), and any \(T\), we have \((T[P/X]_{p \in \pi})^{(k+1)} \leq T[S(k)/X]_{p \in \pi}\), since \((T[P/X]_{p \in \pi})^{(k+1)} = T[P/X]_{p \in \pi} [S(k)/X]_{p \in \pi} \leq T[S(k)/X]_{p \in \pi}\), by lemma 3.4.

c. By b, \(\bigcup_{k=0}^{\infty} (T[P/X]_{p \in \pi})^{(k+1)} \leq \bigcup_{k=0}^{\infty} T[S(k)/X]_{p \in \pi} \leq T[P/X]_{p \in \pi}\). Also, by theorem 3.1, which applies since \(T[P/X]_{p \in \pi}\) is closed, we have that
\(\bigcup_{k=0}^{\infty} (T[S(k)/X]_{p \in \pi})^{(k+1)} = T[P/X]_{p \in \pi}\). Thus, we obtain that
\(\bigcup_{k=0}^{\infty} T[S(k)/X]_{p \in \pi} = T[P/X]_{p \in \pi}\)
d. Combination of parts a and c completes the proof of the induction theorem.

Example: Let \(\pi = \{1,2\} \) and \(I = \{P_1 \iff A_1; P_1 \cup A_2, P_2 \iff A_1; P_2 \cup E\} \). We show that \(P_1 = P_2; A_2 \) (this standard example was used first in [16]).

1. \(\leq \). Take for \(\phi \) the empty list and for \(\psi: X_1 \leq P_2; A_2 \). Then, for this \(\psi \), \(\psi[\alpha/X_1]_{P, \pi \in \{1,2\}} \) is the assertion \(\Omega \leq P_2; A_2 \), which is clearly valid. Next, we have as instance of \(\psi \vdash \psi[\tilde{S}/X_1]_{P, \pi \in \{1,2\}} \):

\[
X_1 \leq P_2; A_2 \vdash A_1; X_1 \cup A_2 \leq P_2; A_2.
\]

Since, by lemma 3.1.d, \(P_2 = A_1; P_2 \cup E \), we must prove

\[
X_1 \leq P_2; A_2 \vdash A_1; X_1 \cup A_2 \leq (A_1; P_2 \cup E); A_2 = A_1; P_2; A_2 \cup A_2
\]

which is valid by monotonicity. We conclude that \(\psi[\alpha/X_1]_{P, \pi \in \{1,2\}} \), i.e., \(P_1 \leq P_2; A_2 \), holds.

2. \(\geq \). Take \(\phi \) again empty and for \(\psi: X_2; A_2 \leq P_1 \). Validity of \(\psi[\alpha/X_1]_{P, \pi \in \{1,2\}} \) is clear. Also, \(\psi \vdash \psi[\tilde{S}/X_1]_{P, \pi \in \{1,2\}} \) takes the form

\[
X_2; A_2 \leq P_1 \vdash (A_1; X_2 \cup E); A_2 \leq P_1 (= A_1; P_1 \cup A_2)
\]

and the desired result follows again by monotonicity, implying, by theorem 3.2, the validity of \(\psi[\alpha/X_1]_{P, \pi \in \{1,2\}} \), i.e., of \(P_2; A_2 \leq P_1 \).

A large number of examples, in varying degrees of difficulty, of applying the rule, is contained in the papers mentioned at the end of the introduction. Section 4 will provide another - more advanced - application.
4. INDUCTIVE ASSERTIONS

In this section we introduce the notion of a system of inductive assertions associated with a simple recursive program scheme, and we prove the main theorem about them which states the equivalence of characterizing recursive procedures in terms of inductive assertions, and in terms of the minimality of fixed points.

Our terminology is derived from the "inductive assertion method" of Floyd [5], which may be viewed as a technique for deriving global properties of a program from local properties of its components. The form in which this method is presented here is more abstract and general than the usual one. Observe that our description of it in the framework of recursive program schemes has the flow chart definition as a special case (each flow chart can be described by a (regular, see section 4.2) system of recursive procedures). Note also that the usual requirement of having at least one assertion "breaking each loop" for the flow chart case has no counterpart here, since it is dealt with automatically if a system of recursive procedures is associated in the usual way with a flow chart.

One half of the main theorem (theorem 4.2, part 1) is a generalization of theorem 6.1 from De Bakker and De Roever [3].

Our formal treatment of Floyd's method needs an extension of our formal language in order to deal with the entrance - and exit conditions of the program and its components.

Therefore, we extend the formal language by adding to \mathcal{R} a special class of relation symbols, the class $\mathcal{A}_p = \{p_1, p_2, \ldots \}$ of predicate symbols, arbitrary elements of which are denoted by $p, p_1, \ldots, q, q_1, \ldots$. This extension of \mathcal{R} needs an extension of the definition of initial interpretation (definition 3.4): We require that, for each $p \in \mathcal{A}_p$, $c_0(p) \subseteq c_0(E)$; i.e., each p is interpreted as a subset of the identity relation. In this way we can find, for each inductive assertion formulated as a sentence in predicate calculus: $\forall x, y[p(x) \land xAy \rightarrow q(y)]$ an equivalent formula in our language: $p; A \leq A; q$, with the property that, for each model in which this sentence is true, we can find an initial interpretation c_0 with extension c such $p; A \leq A; q$ satisfies c, and vice versa.
With section 4.1 we hope to provide the reader with some feeling for the problem of proving the second half of our main theorem (theorem 4.2, part 2).

4.1. Attempts that failed

In section 2, we considered the while statement \(p;A = p;A_1;A_2 \oplus p \). In terms of program schemes, the characterizing theorem for while statements (theorem 2.1) can be reformulated as: Let \(P \) be declared by: \(P \Leftarrow A_1;P \cup A_2 \). Then for each \(T \), the following assertion

\[
\begin{align*}
& p;A_1 \leq A_1;p \\
& p;A_2 \leq A_2;q \\
\Rightarrow & p;T \leq T;q
\end{align*}
\]

is equivalent with \(T \leq P \). Now for its generalization. Let us consider \(P_1 \) declared by \(P_1 \Leftarrow A_1;P_1;A_2 \cup A_3 \). One might, as first attempt, try to prove the equivalence of \(T \leq P_1 \) and

\[
\begin{align*}
& p;A_1 \leq A_1;p \\
& q;A_2 \leq A_2;q \\
& p;A_3 \leq A_3;q \\
& p;T \leq T;q
\end{align*}
\]

but this fails. E.g., \(T = A_1;A_2;A_3;A_2 \) satisfies the inductive assertions requirement, but it is not true that \(T \leq P_1 \). As next trial we use an infinity of \(p_i;q_i \), \(i = 0,1,2,... \), each \(i \) reflecting the current recursion depth:

\[
\begin{align*}
{p_1;A_1 \leq A_1;p_{i+1}} \\
{q_{i+1};A_2 \leq A_2;q_i} \\
{p_1;A_3 \leq A_3;q_i} \\
\quad i=0,1,2,... \quad & \quad \{p_i;T \leq T;q_i\}_{i=0,1,2,...}
\end{align*}
\]

and, indeed, \(T \leq P_1 \) is now valid. How to generalize this once more? Consider \(P_2 \Leftarrow A_1;P_2;A_2;P_2;A_3 \cup A_4 \). Directly taking over the \(\{p_i;q_i\}_{i=0,1,2,...} \) approach is easily seen to fail. One soon realizes that one has to distinguish the two occurrences of \(P_2 \) at the right hand side, and one might
try to use two systems \(\{ p_i, q_i \}_{i=0, 1, \ldots} \) and \(\{ r_i, s_i \}_{i=0, 1, \ldots} \) with assertion

\[
\begin{align*}
&\begin{cases}
p_i; A_i \leq A_i; p_{i+1} \\
r_i; A_i \leq A_i; r_{i+1} \\
q_{i+1}; A_2 \leq A_2; q_{i+1} \\
\{ s_{i+1}; A_3 \leq A_3; s_i \\
p_i; A_4 \leq A_4; q_i \\
r_i; A_4 \leq A_4; s_i
\end{cases}
\end{align*}
\]

\[
\begin{align*}
&\begin{cases}
p_i; T \leq T; q_i \\
r_i; T \leq T; s_i
\end{cases}
\end{align*}
\]

This does not work either. Counterexample: \(T = A_1; A_4; A_2; A_4; A_3; A_3; A_2; A_4; A_4 \).

So far for the attempts that failed. The reader may have developed some understanding for the complexity of the remaining sections, in particular for the need to refine the indexing strategy for the predicates in order to keep a closer eye on the history of the computation.

The successful attempt begins with the development of the important auxiliary theorem of the next subsection.

4.2. The regularization theorem

Consider the declaration scheme \(D = \{ p_p S_p \}_{p \in \pi} \), with each \(S_p \) a statement scheme over \(\{ p_p \}_{p \in \pi} \cup R \). There is a natural correspondence between \(D \) and a (infinite, if \(\pi \) is infinite) context free grammar \(G \), established as follows: \(R \) is the class of terminal symbols of \(G \), \(\{ p_p \}_{p \in \pi} \) is the class of non-terminals, \(D' \) is its set of production rules, where \(D' \) is obtained from \(D \) by rewriting \(S_1; (S_2 \cup S_3) \) as \(S_1; S_2 \cup S_1; S_3 \), by dropping everywhere the ";"s, and by replacing, e.g., \(P_p \leftarrow S_1 \cup S_2 \) by the two production rules \(P_p \rightarrow S_1 \), \(P_p \rightarrow S_2 \), etc.. As designated nonterminal of \(G \) any \(P_p \) may be selected.

Clearly, the typology of grammars carries over to declaration schemes. In particular, this gives us the notion of a regular scheme: \(D \) is regular, iff its corresponding grammar \(G \) is regular. E.g., with reference to subsection
4.1, the scheme for P is regular, but those for P_1 and P_2 are not.
The theorem of this subsection tells us, roughly speaking, that for each
(finite or infinite) context free declaration scheme an equivalent (but
always infinite) regular declaration scheme can be constructed. This theorem
will be the main tool in our proof of the inductive assertion theorem below.

Theorem 4.1 (The regularization theorem)

Let π be an index set, and let $D_\pi = \{P_p, S_p \mid P_p \in \pi\}$ be a closed declaration
scheme, with each S_p a statement scheme over $\{P_p \mid P_p \in \pi\} \cup R$. Then there is an
index set ρ and a closed declaration scheme $D_\rho = \{P_r, S_r \mid r \in \rho\}$, each S_r a
statement scheme over $\{P_r \mid r \in \rho\} \cup R$, such that

- D_ρ is regular.
- There is a mapping λ from π into ρ such that $P_\lambda(p) = P_r$, for each $p \in \pi$.

(The last equivalence should be understood as stating equivalence under all
interpretations based upon computation sequences with respect to the decla-
ration scheme $D = D_\pi \cup D_\rho$.)

Proof. By, if necessary, repeatedly applying $S;s'(S'\cup S''') = S;S' \cup S;S''$, we
may assume that, for each $p \in \pi$, S_p has the form

$$S_p = S_{p,1} \cup S_{p,2} \cup \ldots \cup S_{p,M_p},$$

where M_p is some integer ≥ 1, and where, for each $p \in \pi$, $1 \leq j \leq M_p$, $S_{p,j}$ has the form \ldots (raising subscripts for typographical reasons):

$$\begin{align*}
S(p,j) &= R(p,j,0);P(p,j,1);R(p,j,1);\ldots;P(p,j,K_{p,j});R(p,j,K_{p,j})
\end{align*}$$

with $K_{p,j}$ some integer ≥ 0, with $R(p,j,k) \in R$, $0 \leq k \leq K_{p,j}$, and

$$P(p,j,k) \in \{P_p \mid P_p \in \pi\}, 1 \leq k \leq K_{p,j}.$$

[1] Observe that it may be necessary to insert some E's or auxiliary P's
declared as E, in the originally given S_p, in order to obtain this form.
Let us put

$$\Sigma_0 = \{(p,j,k) \mid p \in \pi, 1 \leq j \leq M_p, 1 \leq k \leq K_p,j\}$$

and let us define the function \(h: \Sigma_0 \to \pi\) by \(h(p,j,k) = q\) iff \(P(p,j,k) = q\). Observe that each occurrence of a procedure symbol \(P_q\) in some \(P_p\) is uniquely identified by the index triple \((p,j,k)\).

Example: Let \(D\) be:

\[
\begin{align*}
P_1 & \leftarrow A_1; P_1; A_2; P_2; A_3 \cup A_4; P_2; A_5, \\
P_2 & \leftarrow A_6; P_1; A_7 \cup A_6
\end{align*}
\]

Then \(\Sigma_0 = \{(1,1,1),(1,1,2),(1,2,1),(2,1,1)\}\), and \(h(1,1,1) = 1, h(1,1,2) = 2, h(1,2,1) = 2, \) and \(h(2,1,1) = 1\). Let \(\Sigma_0^*\) be the set of all finite sequences of elements of \(\Sigma_0\), including the empty word \(\epsilon\). We define the language \(\Sigma\), consisting of words in \(\Sigma_0^*\), by means of a context free grammar with productions

\[
\begin{align*}
\sigma & \to \epsilon \\
\{\sigma \to \sigma_p\}_{p \in \pi} \\
\left[\begin{align*}
\sigma_p & \to (p,j,k) \\
\sigma_p & \to (p,j,k) \sigma_{h(p,j,k)} \end{align*}\right]_{(p,j,k) \in \Sigma_0}
\end{align*}
\]

\(\Sigma\) is the collection of all words in \(\Sigma_0^*\) produced by \(\sigma\). \(\sigma\) will also be used to denote an arbitrary element of \(\Sigma\).

Example: For the \(D\) just mentioned, possible \(\sigma\) are: \(\epsilon, (1,1,1), (1,1,1)(1,1,2)(2,1,1), (2,1,1)(1,2,1)(2,1,1)\), etc.

Observe that each \(\sigma \in \Sigma\), produced with an application of the rule \(\sigma \to \sigma_p\) as first step, may be viewed as defining a path in the tree of incarnations of the procedures of the system with \(P_p\) as root, or, alternatively, \(\sigma\) represents the stack of currently active procedures, each triple in \(\sigma\) representing one procedure call. Compare the following figure (with respect to \(D\) again)
The sequence $\sigma = (1,1,1)(1,1,2)(2,1,1)$ represents the calling structure indicated by the drawn lines, where the first component of the first triple in σ — here 1 — is the index of the root of the tree.

Σ is used in the construction of the index set ρ we are looking for in the following manner: ρ is defined as:

$$\rho = \pi \times \Sigma \times \{1,2\}$$

i.e., each P_r, $r \in \rho$, is of one of the two forms $P_{(p,\sigma,1)}$, or $P_{(p,\sigma,2)}$, with $p \in \pi$, $\sigma \in \Sigma$, and $1,2 \in \{1,2\}$.

Moreover, we define, for each $p \in \pi$, $\lambda(p)$ as: $\lambda(p) = (p,\varepsilon,2) \in \rho$. For easier readability, we use the notation P_{σ}^P for $P_{(p,\sigma,1)}$, and Q_{ε}^P for $P_{(p,\sigma,2)}$. Thus, in this notation

$$P_{\lambda(p)} = P_{(p,\varepsilon,2)} = Q_{\varepsilon}^P.$$

We now have to define, for each $r \in \rho$, the statement scheme S_r, and to prove that the system $\{P_r, S_r\}_{r \in \rho}$ has the desired properties, in particular, that $P_{\pi} = Q_{\varepsilon}^P$.

The definition of the S_r, for $r = (p,\sigma,1)$, is given inductively on the length of the σ:

$$P_{\sigma}^P \iff E$$

$$P_{h(p,j,1)} \iff P_{\sigma}^P \iff R(p,j,0)$$

$$P_{h(p,j,k+1)} \iff h(p,j,k) \iff P_{\sigma}^P \iff R(p,j,k), \quad \text{for } 1 \leq k < K_{p,j,1}$$
and for $r = (p, \sigma, 2)$ by

$$(4.4) \quad Q_g^p \leftarrow \bigcup_{j=1}^{M_g} \begin{cases} P_g^p R(p, j, 0) & \text{if } K_{p, j} = 0 \\ h(p, j, K_{p, j}) & \text{if } K_{p, j} > 0 \\ Q_o(p, j, K_{p, j}) R(p, j, K_{p, j}) & \end{cases}$$

Example: Let $\pi = \{1, 2\}$, and let P be declared by $P \leftarrow A_1 ; P ; A_2 ; P ; A_3 \cup A_4$. We have, omitting complications in the indices which are unnecessary for this simple scheme, and taking $E = \{0, 1\}^*$, as regular scheme:

$$\begin{align*}
P & \leftarrow E \\
P_0 & \leftarrow P_0 ; A_1 \\
P_1 & \leftarrow Q_0 ; A_2 \\
Q_g & \leftarrow Q_0 ; A_3 \cup P_0 ; A_4.
\end{align*}$$

From these definitions we have:

$$\begin{align*}
Q_e & = Q_1 ; A_3 \cup P_e ; A_4 = (Q_{11} ; A_3 \cup P_1 ; A_4) ; A_3 \cup A_4 \\
& = Q_{11} ; A_3 \cup A_3 \cup Q_0 ; A_2 ; A_4 ; A_3 \cup A_4 \\
& = \ldots \cup (Q_{01} ; A_3 \cup P_0 ; A_4) ; A_2 ; A_4 ; A_3 \cup A_4 \\
& = \ldots \cup \ldots \cup P_0 ; A_4 ; A_2 ; A_4 ; A_3 \cup A_4 \\
& = \ldots \cup \ldots \cup P_0 ; A_1 ; A_4 ; A_2 ; A_4 ; A_3 \cup A_4 \\
& = \ldots \cup \ldots \cup A_1 ; A_4 ; A_2 ; A_4 ; A_3 \cup A_4.
\end{align*}$$

This suggests that $Q_e = P$, as will indeed follow by the theorem we are in the process of proving.
Remarks:

1. Observe the distinction between the notation $h(p,j,k)$ denoting the result of applying the function h to $(p,j,k) \in \Sigma_0$, yielding an element of π, and $\sigma(p,j,k)$ denoting the result of concatenating the elements $\sigma \in \Sigma$ and $(p,j,k) \in \Sigma_0$.

2. For each $p \in \pi, \sigma \in \Sigma, \sigma P_0^f$ has the following intuitive meaning. Let, for some $s \geq 0$, $\sigma = (p_0,j_0,k_0) \ldots (p_s,j_s,k_s)$, with $p = h(p_s,j_s,k_s)$. As we saw above, σ keeps track of a specific path through the tree of incarnation with P_0 as root, leading to the inner call of P_0. Then the computation prescribed by σP_0^f is precisely the computation starting with the outermost call of P_0, and up to, but not including, this inner call.

Example: Referring to the figure on page 28 we have

$$P_{(1,1,1)(1,1,2)(2,1,1)} = A_1; A_1; P_1; A_2; A_k.$$

3. (As we shall show below) $Q_0^p = P_0^p; P_0$, so with P_0^p equivalent to the computation preceding the inner call of P_0 with history σ, Q_0^p is equivalent to this computation but including the innercall of P_0.

Once we have shown $Q_0^p = P_0^p; P_0$, we will have obtained our goal, since, for the special case $\sigma = \varepsilon$, $Q_0^p = P_0^p; P_0$; hence, by the definition of P_0^p as E, we obtain

$$P_p = Q_0^p = P_{(p,\varepsilon,2)} = P_{\lambda(p)}.$$

Moreover, from (4.3) and (4.4) it is immediate that D_0 is regular.

The next step is the definition of another system of procedures over the same index set p: $\overline{p}_{\rho} = \{\overline{p}_r, \overline{\varepsilon} \}_{r \rho p}$, as follows:

For $r = (p, \sigma, 1)$, the \overline{s}_r are (apart from the procedure symbols) the same as S_r.
\[
\begin{align*}
\tilde{P}\rho & \equiv E \\
\tilde{h}(p,j,1) & \equiv \tilde{P}\rho R(p,j,0) \\
\tilde{h}(p,j,k+1) & \equiv \tilde{Q}(p,j,1) R(p,j,k), \quad 1 \leq k \leq K_{p,j}^{-1}
\end{align*}
\]

but for \(r = (p,\sigma,2) \) we have different definitions:

\[
\tilde{Q}_\sigma \equiv \tilde{P}_\rho P\rho.
\]

We shall show that, for each \(r \in \rho, \tilde{P}_\rho = P\rho \), i.e., for each \(p \in \pi, \sigma \in E \),

\[
\tilde{P}_\rho = \tilde{P}_\rho, \quad \tilde{Q}_\rho = \tilde{Q}_\rho.
\]

Combining this with (4.6) will yield \(\tilde{Q}_\rho = \tilde{P}_\rho P\rho \), as desired.

Part 1. \(\{ P_r \in \tilde{P}_r \}_{r \in \rho} \).

By the corollary of theorem 3.1, it is sufficient to show that \(\{ P_r \}_{r \in \rho} \) satisfies

\[
\tilde{S}_r [\tilde{P}_r / X_r] \subseteq \tilde{P}_r \quad \text{for } r \in \rho.
\]

a. If \(r = (p,\sigma,1) \), this is immediate, since, by definitions (4.3) and (4.5),

\[
\tilde{S}_r = \tilde{S}_r; \quad \text{hence}
\]

\[
\{ \tilde{S}_r [\tilde{P}_r / X_r] \}_{r \in \rho} = \tilde{S}_r [\tilde{P}_r / X_r]_{r \in \rho} = \tilde{P}_r \quad \text{for } r \in \rho.
\]

where the last equivalence follows by the fixed point property (lemma 3.1c).

b. Let \(r = (p,\sigma,2) \). For each \(j, 1 \leq j \leq M_p \), we distinguish two cases:

b1. \(K_{p,j} = 0 \). Then, by (4.1), (4.2), \(R(p,j,0) = S(p,j) \subseteq S_p = P_p \). Hence,

\[
\tilde{P}_\rho R(p,j,0) \subseteq \tilde{P}_\rho P\rho = \tilde{P}_\rho, \quad \text{using (4.6).}
\]
b2. \(K_{p,j} > 0 \). Then,

\[
\begin{align*}
\mathcal{P}_0^P &= \mathcal{P}_\sigma^P \cdot \mathcal{P}_{\sigma; R(p,j,0)} \cdot \mathcal{P}(p,j,1) \cdots \mathcal{P}(p,j,K_{p,j}) \\
&\quad \cdots \\
&= \mathcal{P}_\sigma(h(p,j,K_{p,j})) \cdot \mathcal{P}(p,j,K_{p,j}) \cdot \mathcal{R}(p,j,K_{p,j}) \\
&\quad \cdots \\
&= \mathcal{P}_\sigma(h(p,j,K_{p,j})) \cdot \mathcal{R}(p,j,K_{p,j}) \\
&\quad \cdots \\
&= \mathcal{S}_\sigma(h(p,j,K_{p,j})) \cdot \mathcal{R}(p,j,K_{p,j})
\end{align*}
\]

From b1 and b2 we see that (4.7) is indeed satisfied.

Part 2. \(\{ \mathcal{P}_r \subseteq \mathcal{P}_r \}_{r \in \rho} \).

Again, by the corollary of theorem 3.1, it is sufficient to show that the \(\{ \mathcal{P}_r \}_{r \in \rho} \) satisfy

\[
(4.8) \quad \left\{ \mathcal{S}_r(\mathcal{P}_r / \mathcal{X}_r) \subseteq \mathcal{P}_r \right\}_{r \in \rho}.
\]

As in part 1, this is clear for the \(\mathcal{P}_r^P \). In order to show this for the \(\mathcal{Q}_r^P \), we apply the induction theorem 3.2 in the following form: Let \(\psi \) be empty, and let \(\psi \) be:

\[
\{ \mathcal{P}_r^P ; \mathcal{X}_r \subseteq \mathcal{Q}_r^P \}_{\sigma} \subseteq \{ \mathcal{P}_r^P ; \mathcal{X}_r \subseteq \mathcal{Q}_r^P \}_{\sigma \in \Sigma}.
\]

That \(\psi[\Omega/\mathcal{X}_r]_{\mathcal{P}_r \subseteq \mathcal{Q}_r} \), i.e., \(\{ \mathcal{P}_r^P ; \mathcal{Q}_r \subseteq \mathcal{Q}_r \}_{\mathcal{P}_r \subseteq \mathcal{Q}_r, \sigma \in \Sigma} \), is valid, is clear. Let us put \(X(p,j,k) = X_q \), i.e., \(h(p,j,k) = q \). In order to verify the second assumption of the induction theorem in this case, we have to show: If (\(\ast \))

\[
\{ \mathcal{P}_r^P ; \mathcal{X}_r \subseteq \mathcal{Q}_r^P \}_{\sigma} \subseteq \{ \mathcal{P}_r^P ; \mathcal{X}_r \subseteq \mathcal{Q}_r^P \}_{\sigma \in \Sigma},
\]

then, for each \(p \in \pi, \sigma \in \Sigma \),
\[p^D_{\sigma} \cup \left\{ R(p,j,0); X(p,j,1) \ldots ; X(p,j,K_{\text{p},j}); R(p,j,K_{\text{p},j}) \right\} \subseteq q^D_{\sigma}. \]

(a) If \(K_{\text{p},j} = 0 \), then \(p^D_{\sigma} \cap R(p,j,0) \subseteq q^D_{\sigma} \), by (4.4).

(b) Let \(K_{\text{p},j} > 0 \). Then

\[
p^D_{\sigma} \cap R(p,j,0); X(p,j,1) \ldots ; R(p,j,K_{\text{p},j}) = (4.3)
\]

\[
p^h(p,j,1); X(p,j,1) \ldots ; R(p,j,K_{\text{p},j}) \subseteq (*)
\]

\[
q^h(p,j,1); R(p,j,1) \ldots ; R(p,j,K_{\text{p},j}) \subseteq \ldots \subseteq
\]

\[
h(p,j,K_{\text{p},j}); q^h(p,j,K_{\text{p},j}) \cap R(p,j,K_{\text{p},j}) \subseteq q^D_{\sigma}
\]

(a) and (b) together imply that we have proved the second assumption of the induction theorem. Thus, we conclude that \(\psi[p/\mathcal{D}_\sigma] \) holds, i.e., that \(\{p^D_{\sigma}; p \subseteq q^D_{\sigma}\} \subseteq E \). From this, (4.8) follows and the proof of part 2, and, therefore, of the regularization theorem is completed.

4.3. The inductive assertion theorem

Let \(\rho \) be an index set, and let \(D = \{ p_r, S_r \}_{r \in \rho} \) be a closed declaration scheme over \(\{ p_r \}_{r \in \rho} \), \(\Lambda \), \(C \) (i.e., the \(S_r \) contain no occurrences of an \(X \in X \) or of a \(p_r \in A \)). As in subsection 4.2, we assume that each \(S_r \) is of the special form (4.1), (4.2). (We replace from now on on \(p(\pi) \) by \(r(\pi) \) in order to avoid conflicts of notation.)

Let \(K_r, M_{r,j}, \Lambda \) and \(\Sigma \) be as above, and let \(\Sigma_0^+ = \{ (r,j,k) | r \in \Lambda, 1 \leq j < K_r, 0 < k < M_r,j \} \).

Let \(E = \{ p^R_{\sigma}, q^R_{\sigma} \}_{r \in \rho, \sigma \in \Sigma} \) be a collection of predicate symbols, contained in \(A_r \).

We define the inductive assertion pattern \(A[D, E] \) with respect to the declaration scheme \(D \) and the collection of predicate symbols \(E \) as follows: First, for each \(\sigma \in \Sigma, (r,j,k) \in \Sigma_0^+ \) we define \(a_{\sigma}^r_{(r,j,k)}[D, E] \) by putting
1. If $K_{r,j} = 0$, then
\[a^\sigma_{(r,j,0)}[D,E] = p^r_{\sigma};R(r,j,0) \subseteq R(r,j,0); q^r_{\sigma}. \]

2. If $K_{r,j} > 0$, then
 a. $a^\sigma_{(r,j,0)}[D,E] = p^r_{\sigma};R(r,j,0) \subseteq R(r,j,0); p^h_{\sigma}(r,j,1).$
 b. For $1 \leq k \leq K_{r,j} - 1$
 \[a^\sigma_{(r,j,k)}[D,E] = q^h_{\sigma}(r,j,k); R(r,j,k) \subseteq R(r,j,k); p^h_{\sigma}(r,j,k+1). \]
 c. $a^\sigma_{(r,j,K(r,j))}[D,E] = q^h_{\sigma}(r,j,K(r,j)); R(r,j,K(r,j)) \subseteq R(r,j,K(r,j)); q^r_{\sigma}. $

Now let $A[D,E] = \{a^\sigma_{(r,j,k)} \}_{\sigma \in E, (r,j,k) \in E_0^+}$. Then, as we shall see, $A[D,E]$ provides the solution to our problem.

Example: Let D be the declaration scheme $\{P \leftarrow A_1; P; A_2; P; A_3 \cup A_4\}$. We have for $A[D,E]$:

\[
\begin{cases}
p_{\sigma}; A_1 \subseteq A_1; p_{\sigma 0} \\
r_{\sigma 0}; A_2 \subseteq A_2; p_{\sigma 1} \\
r_{\sigma 1}; A_3 \subseteq A_3; q_{\sigma} \\
p_{\sigma}; A_4 \subseteq A_4; q_{\sigma}
\end{cases}
\]

The following picture, referring to an inner call of P with history σ ($\sigma 0$ and $\sigma 1$) may illustrate the idea:
First we prove a lemma.

Lemma 4.1.

Let D,E be as above. Let $\{T_r\}_{r \in \rho}$ be arbitrary statement schemes over $P \cup A \cup C$. Then the following two assertions are equivalent:

1. $\{T_r \leq P_r\}_{r \in \rho}$
2. $A[D,E] \vdash \{p^r_\sigma; T_r \leq T_r; q^r_\sigma\}_{r \in \rho, \sigma \in \xi}$.

Proof

1. $1 \implies 2$. First we prove this for the special case that $\{T_r = P_r\}_{r \in \rho}$. By Scott's induction rule (Theorem 3.2) it is sufficient to prove that

$$(4.9) \quad A[D,E]\{p^r_\sigma; X_r \leq X_r; q^r_\sigma\}_{r \in \rho, \sigma \in \xi} \vdash \{p^r_\sigma; \tilde{S}_r \leq \tilde{S}_r; q^r_\sigma\}_{r \in \rho, \sigma \in \xi},$$

where, as usual, \tilde{S}_r results from S_r by substituting for each $r \in \rho, P_r$ for X_r. In order to prove (4.9) it is sufficient to show that, for each j, $1 \leq j \leq M_r$, we can infer from its assumptions that

$p^r_\sigma; R(r,j,0); X(r,j,1); \ldots; R(r,j,\text{K}(r,j)) \leq R(r,j,0); X(r,j,1); \ldots; R(r,j,\text{K}(r,j)); q^r_\sigma.$
By \(A[D,E], P_\sigma^r R(r,j,0) \subseteq R(r,j,0); P_\sigma^h(r,j,1) \). By the assumption in \((4.9)\) on the \(\sigma \), and the definition of the \(h \)-function, \(P_\sigma^h(r,j,1) \subseteq X(r,j,1); q_\sigma^h(r,j,1) \). Repeating this argument, which is straightforward from the definition of \(A[D,E] \), the desired result follows, i.e., the proof of \(1 \Rightarrow 2 \) for the case that \(\{ T_r = P_r \}_{r \in \rho} \) holds, is completed. Next assume that \(\{ T_r \leq P_r \}_{r \in \rho} \). Then, clearly,

\[
A[D,E] \models \{ P_\sigma^r ; T_r \leq P_\sigma^r ; P_r \leq P_r ; q_\sigma^r \}
\]

Also, \(\{ P_\sigma^r ; T_r \leq P_r \}_{r \in \rho}, \sigma \subseteq E \). Since \(\{ q_\sigma^r \}_{r \in \rho}, \sigma \subseteq E \), the desired conclusion \(A[D,E] \models \{ P_\sigma^r ; T_r \leq T_r ; Q_\sigma^r \}_{r \in \rho}, \sigma \subseteq E \) follows.

2. \(2 \Rightarrow 1 \). We have to show: For all interpretations \(\sigma \), \(\{ c(T_r) \leq c(P_r) \}_{r \in \rho} \).

Let \(c \) be an arbitrary interpretation, and let \(c_0 \) be its initial interpretation, i.e., \(c_0 = c \mid R \). Since none of the \(p_\sigma^r, q_\sigma^r \) occurs in \(T_r \) or \(S_r \), we can extend \(c_0 \) to \(c' \) without causing any change in \(c \), as follows: Let \(V \) be the domain of \(c_0 \), and let, for each \(r \in \rho \), \(x_r \) be an arbitrary element of \(V \). We put \((x,y) \in c_0'(p_\sigma^r) \) iff \(x = y \), and, moreover, \((x_r,x) \in c_0'(p_\sigma^r) \) where \(P_\sigma^r \) is the procedure defined in \((4.3)\). Similarly, \((x,y) \in c_0'(q_\sigma^r) \) iff \(x = y \), and, moreover, \((x_r,x) \in c(Q_\sigma^r) \), with \(Q_\sigma^r \) defined as in \((4.4)\). Let \(c' \) be the extension of \(c_0 \). About this \(c' \) we can now prove: Each element of \(\{ a_0(r,j,k) \}_{r \in \rho}, (r,j,k) \in E_\rho \) satisfies \(c' \). In fact, our extensive preparations are rewarded here, since the proof is direct from the definitions of \(A[D,E], P_\rho^r \), and \(Q_\rho^r \). By the assumption of the lemma we have, since \(A[D,E] \) satisfies \(c' \), that \(\{ P_\sigma^r ; T_r \leq T_r ; Q_\sigma^r \}_{r \in \rho}, \sigma \subseteq E \), also satisfies \(c' \). In particular, for \(\sigma = \Sigma \), we have that \(\{ P_\sigma^r ; T_r \leq T_r ; Q_\sigma^r \}_{r \in \rho} \) satisfies \(c' \). Next, we use that \((x,y) \in c_0'(p_\sigma^r) \) iff \(x = x_r \), which follows from \(P_\sigma^r = E \), and that \((x,y) \in c_0'(q_\sigma^r) \) iff \((x_r,x) \in c(Q_\sigma^r) = c(P_\sigma^r) \), which follows from \(P_\sigma^r = Q_\sigma^r \). Thus, we have shown that: if \(x = x_r \), and \(xc(T_r)y \), then \(xc(P_r)y \). Since \(x_r \) was an arbitrary element of \(V \), we conclude that \(\{ c(T_r) \leq c(P_r) \}_{r \in \rho} \).

This completes the proof of lemma \(4.1 \).

It is now easy to give the proof of the inductive assertion theorem:
THEOREM 4.2 (the inductive assertion theorem)

Let D, E be as above, and let \(\{T_r\}_{r \in \rho} \) be fixed points of the statement schemes \(\{S_r\}_{r \in \rho} \), i.e., let

\[
\{S_r[T_r/X_r]_{r \in \rho} = S\}_{r \in \rho}.
\]

Then the following two assertions are equivalent

1. \(\{S_r[T_r'/X_r']_{r \in \rho} \subseteq T_r'_{r \in \rho} \} \Rightarrow \{T_r \subseteq T_r'_{r \in \rho}\} \)
 i.e., the \(\{T_r\}_{r \in \rho} \) are minimal fixed points.

2. \(A[D,E] \models \{p_r^{r'; T_r \subseteq T_r'_{r \in \rho}, s \in \Sigma}\} \)

PROOF

1. \(1 \implies 2 \). If the \(\{T_r\}_{r \in \rho} \) are minimal fixed points, then, by Corollary 3.1, \(\{T_r = P_r\}_{r \in \rho} \), and the result follows by lemma 4.1.

2. \(2 \implies 1 \). By lemma 4.1, if 2 holds, then \(\{T_r \subseteq P_r\}_{r \in \rho} \) follows. Thus, the \(\{T_r\}_{r \in \rho} \) are fixed points which are included in, and thus equal to, the minimal fixed points \(\{P_r\}_{r \in \rho} \).
APPENDIX: DERIVATIVES AND TRACES

In [6], Hitchcock and Park introduce the notion of derivative of a program scheme, and use it in the development of a technique for giving proofs of termination of programs.

Roughly speaking, the derivative relates states at successive nested calls of a procedure to each other. Therefore, the question arose as to the clarification of the relationship between this notion and our "tracing" constructs P_0. In this appendix we state (without proof) a theorem settling this question.

First we repeat the definition of [6], somewhat reformulated for the present purpose:

Let T be a statement scheme over $\{P_r\}_{r \in \rho} \cup R$. Then $\frac{\partial T}{\partial P_r}$ is defined inductively as follows:

a. If $T \in R$, then $\frac{\partial T}{\partial P_r} = \Omega$.

b. If $T \in \{P_r\}_{r \in \rho}$, then $\frac{\partial P_r}{\partial P_r} = E$, $r_1 = r$

 $\quad = \Omega$, $r_1 \neq r$.

c. If $T = T_1; T_2$, then $\frac{\partial T}{\partial P_r} = \frac{\partial T_1}{\partial P_r} \cup T_1; \frac{\partial T_2}{\partial P_r}$.

d. If $T = T_1 \cup T_2$, then $\frac{\partial T}{\partial P_r} = \frac{\partial T_1}{\partial P_r} \cup \frac{\partial T_2}{\partial P_r}$.

Example: $\frac{\partial (A_1; P_2; P_3; A_3)}{\partial P} = A_1 \cup A_1; P; A_2$.

The theorem relating derivatives and traces now follows:

THEOREM A

Let $\{P_r, S_r\}_{r \in \rho}$ be a declaration scheme.

Let Δ_{r_1, r_2} be defined by: $\Delta_{r_1, r_2} = E$, $r_1 = r_2$

$\quad \quad \quad \quad \quad \quad \quad = \Omega$, $r_1 \neq r_2$.

Let, for $r_1, r_2 \in \rho$, P_{r_1, r_2} be a new procedure "symbol", with declaration:
\[\{ o_{r_1} \ P \ u \ \cup \ \bigcup_{r \in \mathcal{P}_r} \ \underline{a_{r_2}} \} \ \text{for finitely many } r, \ \underline{a_{r_2}} \neq \Omega. \]

Let \(\emptyset \) be the empty set.

Let \(\Sigma_{r_1, r_2} = \{ w \in \mathcal{L}_0^* \mid \sigma_{r_1} \xrightarrow{\sigma_{r_2}} w \} \cup (\text{if } r_1 = r_2 \text{ then } \{ \epsilon \} \text{ else } \emptyset) \) (cf. the definition of page 27).

Then

\[\{ o_{r_1} \ P \ u \ \cup \ \bigcup_{r \in \mathcal{P}_r} \ \underline{a_{r_2}} \} \ \text{for finitely many } r, \ \underline{a_{r_2}} \neq \Omega. \]
REFERENCES

