
Synthesis of Network Protocols 
 
 
Dr. Christoph Kreitz 
Dr. Douglas R. Smith 
with Cordell Green, Garrin Kimmell, Jim McDonald, Eric Smith, Edwin 
Westbrook, Stephen Westfold 

 
Kestrel Institute 

16 April 2016 

 

 
 

 

Contract Number:  FA8750-12-C-0257 
Effective Date:   31 Jul 2012 
Expiration Date:  30 Jan 2017 

Principal Investigators:  Christoph Kreitz, Douglas R. Smith 

 

Prepared for: 

Air Force Research Lab/RITA 
525 Brooks Road 
Rome, NY 13441-4505 
  



 iv 

 

 

Table of Contents 

1 SUMMARY ............................................................................................................................ 7 

2 INTRODUCTION .................................................................................................................. 10 
2.1 Motivation............................................................................................................................... 10 
2.2 Objective & Hypothesis ........................................................................................................... 10 
2.3 What is program synthesis and what is our approach? ........................................................... 10 
2.4 Network Protocols ................................................................................................................... 11 

3 METHODS, ASSUMPTIONS, PROCEDURES .......................................................................... 12 
3.1 General Approach.................................................................................................................... 12 
3.2 Specifications and Refinement ................................................................................................ 14 
3.3 Proof-Emitting Transformations .............................................................................................. 15 
3.4 Coalgebraic Specifications ....................................................................................................... 15 

3.4.1 Algebras and Coalgebras .................................................................................................... 16 
3.4.2 Specification ...................................................................................................................... 19 
3.4.3 Ghost Observers ................................................................................................................ 21 
3.4.4 Specification of Time.......................................................................................................... 23 

3.5 Specification of Protocols ........................................................................................................ 24 
3.5.1 Abstract Communication Requirements ............................................................................. 24 
3.5.2 Behavioral Specification by Cases ....................................................................................... 26 

3.6 Design Theories and Transformations ..................................................................................... 27 
3.6.1 Eager and Periodic Protocol Theories (Refinements) .......................................................... 28 
3.6.2 mergeRules Transformation ............................................................................................... 32 
3.6.3 Observer Maintenance Transformation ............................................................................. 39 
3.6.4 StructureEx Transformation ............................................................................................... 43 
3.6.5 FinalizeCotype Transformation:  Cotype Definition and Postcondition Synthesis ................ 43 
3.6.6 Globalize Transformation ................................................................................................... 47 

3.7 Proof Emitting Transformations .............................................................................................. 48 
3.7.1 Instrumenting transformations to record calculation chains............................................... 50 
3.7.2 Translator from Metaslang logic to Isabelle logic ................................................................ 53 

3.8 Specware Infrastructure .......................................................................................................... 55 
3.8.1 Higher-Order Matching Algorithm...................................................................................... 56 
3.8.2 Support for calculation ...................................................................................................... 56 
3.8.3 Tactic language .................................................................................................................. 56 
3.8.4 Transformation Support ..................................................................................................... 57 
3.8.5 Tracing support .................................................................................................................. 58 
3.8.6 Specware Library ............................................................................................................... 58 
3.8.7 Open-Sourcing Specware ................................................................................................... 59 

3.9 Generator of imperative code ................................................................................................. 59 

4 RESULTS AND DISCUSSION ................................................................................................. 63 
4.1 Generating UDP handling code for the Linux Kernel ................................................................ 63 



 v 

4.2 Composition of Protocols ........................................................................................................ 68 
4.3 Generating a family of PubSub Implementations .................................................................... 71 

4.3.1 Introducing a Communication Channel .............................................................................. 73 
4.3.2 Refining the Communication Channel to a Mailbox ............................................................ 75 
4.3.3 Refining the Mailbox to a Concurrent FlipFlop Buffer ......................................................... 77 
4.3.4 Refinement toward RADL code .......................................................................................... 79 
4.3.5 MergeRules, finalizeCotype, and other Optimizations ........................................................ 79 
4.3.6 Deriving IPC, IVC, raw CertiKOS, and IP_based variants ...................................................... 80 

4.4 Proof generation results .......................................................................................................... 84 
4.5 Rehosting Specware in Coq ..................................................................................................... 85 
4.6 Papers...................................................................................................................................... 85 

5 CONCLUSIONS .................................................................................................................... 86 

6 References ......................................................................................................................... 88 

7 Appendix 1:   C Generation for Specware ........................................................................... 90 

8 Appendix 2:  SpecwareCoq:  A Coq Plugin for Stepwise Deductive Program synthesis via 
Partial Proofs .......................................................................................................................... 108 

9 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .................................................... 121 
 

  



 vi 

Table of Figures 

FIGURE 1:  FORM OF A METAPROGRAM ..........................................................................................................................12 
FIGURE 2:  EXECUTING A METAPROGRAM TO GENERATE CODE AND PROOFS .............................................................................13 
FIGURE 3: EAGER PROTOCOL THEORY .............................................................................................................................31 
FIGURE 4: PERIODIC PROTOCOL ....................................................................................................................................32 
FIGURE 5: PROOF-EMITTING TRANSFORMATION................................................................................................................49 
FIGURE 6: METAPROGRAM FOR UDP RECEIVE ..................................................................................................................66 
FIGURE 7:  METAPROGRAM FOR UDP SEND .....................................................................................................................67 
FIGURE 8: STATISTICS ON THE DERIVATION OF UDP PROCESSING CODE ...................................................................................67 
FIGURE 9: THREATS AND DETECTION MECHANISMS .............................................................................................68 
FIGURE 10:  THREATS AND THEIR MITIGATION MECHANISMS ................................................................................69 
FIGURE 11:  ATTACK MODELS ..............................................................................................................................71 
FIGURE 12: DERIVATIONAL FAMILY TREE OF PUBSUB PROTOCOL CODES .................................................................................72 
FIGURE 13:  SPECIFICATION DIAGRAM OF COMMUNICATION REQUIREMENTS ...........................................................................72 
FIGURE 14:  A DIAGRAM REFINEMENT - ADDING COMMUNICATION .......................................................................73 
FIGURE 15:  DATATYPE REFINEMENT - COMMCHANNEL TO MAILBOX .....................................................................................76 
FIGURE 16: REFINEMENT OF MAILBOX TO FLIPFLOP .............................................................................................78 
FIGURE 17: REFINEMENT OF FLIPFLOP-BASED SYSTEM TO RADL .......................................................................79 
FIGURE 18:  PROOFS GENERATED AS A BY-PRODUCT OF REFINEMENT ......................................................................................84 
  



 7 

1 SUMMARY  
 
This final report summarizes work funded by the DARPA I2O HACMS program.  The 
project focused on the automated generation of secure and correct-by-construction 
network protocol codes. 
 
Code to support communication is critical to modern systems and can be a major 
source of security vulnerabilities.  The challenge of this project was to take a clean-slate 
design approach to explore ways to produce communication protocol codes together 
with proofs of their safety and security.  Our approach is based on formal specifications 
of safety and security properties, automated refinement to transform high-level 
specifications down to code, and the emission of proofs during the development 
process.  The technologies that we developed are applicable to a broad range of 
problems, and they are being applied and further developed in other programs. 
 
The highlights of the research and development performed under this contract are listed 
next: 
 
(1)  System Specification — To capture the abstract essence of communication 

requirements we extended previous specification techniques in several directions: 
• Global specification:  a global view of the system and its properties as a 

set of interacting processes, each with their own/local observables.  The 
global view allows capturing nonlocal properties across space, processes, 
and time.   Ghost observables, which are variables that are only used for 
specification purposes, support the expression of global structure and 
requirements that relate the states of different processes at different times. 

• Refinement to stateful and concurrent code:  Kestrel’s Specware system 
[Specware03] naturally supports the introduction of underspecified types 
and functions, which is necessary for an automated refinement approach.  
We found a natural way (i) to combine logical, algebraic, and coalgebraic 
types and operators and (ii) to refine them to imperative code.  Support for 
both inductive and coinductive types has enabled a far more flexible 
specification and refinement language, and has supported the generation 
of idiomatic system code. 

 
(2) New Transformations — We developed, implemented, and extensively used a suite 

of new transformations that generate correct-by-construction refinements. For 
example: 

 
• MergeRules – This transformation allows us to specify a state-transforming 

operation by a collection of cases expressed by trace predicates.  The 



 8 

transformation weaves the trace predicates together to obtain a single 
postcondition for the operation, which can then be synthesized into code. 

• C generation — We developed a code generator to allow the coalgebraic 
specifications to be translated into idiomatic state-changing code in C.   We 
made progress in producing a proof-emitting C generator. 

 
(3) Infrastructure Development – We further developed, and extensively applied a suite 

of transformations that generate correct-by-construction refinements for coalgebraic 
specifications. For example: 

 
• Observer Maintenance — This transformation takes a state observer and an 

invariant that characterizes its meaning. The transformation calculates 
updates codes for each program operation to enforce the invariant. 

 
• Observer Refinement — This transformation takes an observer whose 

observation type is abstract and provides a more concrete implementation of 
the type. 

 
• Finalize Coinductive Type — This transformation and its  dual (Finalize 

Inductive Type) allow us to incrementally add observers  (resp. constructors) 
to a type.  This supports a refinement process where we incrementally add 
constraints to types and their operators.  The transformation generates a 
definition for the type and gives definitions for functions that are constrained 
by coinductive (resp. inductive) axioms. 

 
• Globalize — The coalgebraic style of specification uses linear, or single-

threaded, functions to express the dynamics of a state-changing system 
(such as a concurrent GC).  The state of the computation is both an input 
parameter and a single output parameter.  The single-threadedness allows 
this transformation to suppress the state parameter and treat it instead as a 
global variable.  From purely functional specifications, we are then able to 
generate idiomatic imperative code. 

 
(4) Proof Emission from Transformations — We pioneered techniques for extending our 

transformations so that they not only generate more concrete specifications, but they 
simultaneously output a machine-checkable proof that the refinement is correct.  
Generating proof scripts as a by-product of each refinement step is only possible 
because our transformations operate by performing explicit calculations in the 
domain theory (i.e. using domain axioms and theorems).  We generate proof scripts 
expressed in the Isar sublanguage of Isabelle  



 9 

 
(5) Derivation of UDP Protocol Code for the Linux kernel —  In Phase 1, we specified 

the send and receive code for the UDP protocol via trace predicates, and applying 
the Merge Rules transformation to compose them into a synthesizable specification.  
The udp_send specification had some 37 rules partitioned into 11 modules, each 
representing a stage in the processing of a UDP datagram.    The metaprogram for 
deriving C code automatically generated over 30k lines of proof, checked by 
Isabelle.  We generated C code and successfully demonstrated it running in the 
Linux kernel. 

 
(6) Derivation of a Family of Transport-level Protocol codes – In Phase 2, we focused 

on the synthesis of a family of Publish-Subscribe (PubSub) protocols to run on the 
Landshark and American-Built Automobile (ABA). We developed a family tree of 
metaprograms that are rooted at an abstract specification of communication 
requirements, such that each branch derives a different family member, namely, 
PubSub code for communication (i) between VM/s, (ii) within a VM, (iii) to/from a 
CertiKOS process, and (iv) over an IP radio link to a control unit. 

 
(7) Datatype Refinements – We developed new datatype refinements that express the 

incremental implementation of abstract communication-related types.   Examples 
include Mailbox2RingBuffer and RingBuffer2FlipFlopBuffer.  

 
(8) Infrastructure Development – We made many improvements to Kestrel’s Specware 

system and made it open-source via github at    
https://github.com/KestrelInstitute/Specware 

 
(9) The overarch goal of this project was to express the design of communication code 

in terms of generally applicable design abstractions.   The abstractions are 
incrementally translated to executable C via formal refinement steps that emit 
checkable proofs.   The sequence of refinements and the design abstractions they 
embody constitute a (i) human-understandable explanation of the complex 
executable code, and (ii) and effective means for constructing complex code for a 
specific set of requirements out of reusable design abstractions.  

  



 10 

2 INTRODUCTION 
 

2.1 Motivation 
 
The objective of the DARPA HACMS program was to develop clean-slate technology 
aimed for the construction of verified and secure code for military vehicles.  Kestrel 
focused on the synthesis of correct-by-construction codes for transport-level 
communications. 

2.2 Objective & Hypothesis 

A long-term goal of Kestrel has been to demonstrate that the automated generation and 
evolution of software from requirements-level specifications provides a cost-effective 
alternative to current methodologies for software development.   Benefits of the 
approach include correctness-by-construction, generation of certification evidence in the 
form of proofs, good performance, and productivity gains through automation.   Our 
specific objective in this project has been to demonstrate the feasibility of automating 
the generation of correct-by-construction network protocol codes.  In Section 4 we 
discuss the extent to which our results advance our long-term goal and demonstrate the 
claimed benefits. 

2.3 What is program synthesis and what is our approach? 

Broadly, program synthesis is the automated construction of programs from 
specifications of their intended behavior.    Our specific approach is deductive and starts 
with the capture of program/system requirements in a formal specification.  Alternative 
approaches include compilation from a programming language or DSL, and inductive 
generation of programs from examples.   The full power of higher-order classical logic, 
as supported in Kestrel’s Specware system [Specware03], is used to express 
requirement-level specifications as first-class entities along with operations for 
structuring, composing and refining specifications.     

A major distinguishing feature of our refinement approach is the use of large-grain 
transformations that automatically calculate refinement steps.  Other approaches to 
refinement (e.g. VDM, B, Praxis) rely on the post-hoc verification of manually created 
refinement steps.  This is an expensive process, and it proves difficult to maintain the 
refinement chain under changes in requirements.  Our approach also allows us to 
generate larger, more complex codes than synthesis systems based on SMT and other 
prover-based approaches.   While there is a significant upfront investment in building up 
a domain-specific specification for network protocols (or other domains), the payoff 
comes downstream with the automated generation of families of codes together with 



 11 

their proofs.  The amortized cost over the product family and over its lifecycle should be 
dramatically lower than for other approaches to software production.  
 
The synthesis approach that we developed in this project requires user input in two 
parts: (1) formal requirements specification, and (2) a metaprogram that controls the 
application of transformations. 

The development of correct-by-construction code via a formal refinement process 
has the following form:  

Spec0  →  Spec1  →  …  Specn  →  Code. 
 
The refinement process starts with a specification Spec0 of the requirements on a 
desired software artifact.  Each Speci , for i=0,1,...,n represents a structured 
specification and the arrows → are refinements.  The refinement from Speci  to Speci+1 
embodies a design decision which narrows down the number of possible 
implementations.  The final step translates the lowest-level specification Specn to code 
in a suitable programming language.  Semantically the effect is to narrow down the set 
of possible implementations of Specn to just one, so specification refinement can be 
viewed as a constructive process for proving the existence of an implementation of 
specification Spec0;  i.e. its consistency. 
 

2.4 Network Protocols 

This project focuses on the synthesis of the codes to implement a given protocol.  We 
did not focus on the derivation of new protocols (e.g. [Datta05]), nor on the post-hoc 
verification of the security properties of protocols.   Why is this a problem?   Incorrect 
code for processing the sending or receiving of packets can be a source of 
vulnerabilities in systems.    Protocol-handling code is often in the kernel and therefore 
must be protected.  



3 METHODS, ASSUMPTIONS, PROCEDURES 
 

Our objective was to demonstrate the feasibility of automating the generation of a family 
of network protocols from requirement-level specifications, together with correctness 
proofs.   The overall approach is characterized by formal specifications, formal 
refinements, transformations to generate refinements, proof-emitting transformations, 
and metaprograms.   A key assumption is that it will ultimately become practical for 
system developers to capture their requirements as formal specifications, and that the 
process of transforming those specifications to proof-carrying code can be largely 
automated, with some guidance, by the application of highly reusable automatic 
transformations.  

3.1 General Approach 

The synthesis approach that we developed in this project requires two forms  
of user input: (1) formal requirements specification, and (2) a metaprogram. 
 

 

Figure 1:  Form of a Metaprogram 
Figure 1 shows a metaprogram as a sequence of transformations. The metaprogram is a 
sequence of transformations to be applied to the requirement specification.  The 
transformations are typically drawn from Specware's library.  In a later section, we 
present a collection of new transformations that were developed as part of this project.   
The actual syntax/representation includes parameters to the transformations as well any 
theorems that should be applied.   
 
Specware executes a metaprogram automatically. The effect, illustrated in Figure 2, is to 
sequentially transform the requirement specification into more refined specifications.  
Each transformation embodies some design knowledge, so the effect of applying a 
transformation is to generate (1) a refinement of the input specification into a refined 
specification that incorporates an instance of the transformation's design knowledge, 
and (2) a machine-checkable proof that the output specification is a refinement of the 

metaprogram = 
transformation1 ; 
transformation2 ; 
transformation3 ; 
… 
 



13  

input specification.  The metaprogram is then an explicit and formal statement of the 
design content of the generated code. 
 

 

Figure 2:  Executing a Metaprogram to generate code and proofs 
 
Formal Derivation and Software Evolution 
 
We would like to point out the consequences of this approach with respect to software 
evolution.  Studies of evolution suggest that most changes to systems fall into a small 
number of categories, mainly bug-fixes, additional requirements, performance tuning, 
and migration.  First, bug fixes are not relevant here since the code is generated with 
proofs of correctness (although bug fixes to the requirement specification will commonly 
arise).  Second, the addition of requirements is facilitated in our approach because we 
have a formal specification of requirements.  It is much easier to add requirements to a 
specification than to add them at the code level.  Third, performance tuning also has an 
explicit locus in our approach, since it is manifest by extending or modifying the 
metaprogram — either adding new transformations, or modifying how existing 
transformations are applied (e.g. by adding theorems that the transformation can use).  
Finally, migration is often a matter of adapting the metaprogram to suit a new target 

requirement 
specification0 

transformation1 

specification1 

proof of correct 
refinement   

spec0 � spec1 

transformation2 

proof of correct 
refinement 

 spec1 � spec2 

specification2 

transformation3 

proof of correct 
refinement 

 spec2 � spec3 

specification3 

… 
code 



14  

language or platform.  Typically most of the metaprogram is preserved under migration 
with just some of the backend transformations needing to be changed.  In summary, our 
approach, based on formal specification of requirements and the derivation structure via 
a metaprogram, provides good locality for the kinds of changes that arise in software 
evolution.  This fact underlies our claim that this approach is essential to the future of 
Software Engineering. 

3.2 Specifications and Refinement 
 
A specification defines a language and constrains its possible meanings via axioms.  A 
specification is given by a finite collection of type symbols (optionally including 
definitions), function symbols and their signatures (optionally including definitions), and 
axioms over the type and function symbols.  We treat predicates as Boolean-valued 
functions.  For purposes of this report, we focus on first-order specifications (i.e. 
functions do not take functions as arguments), although Specware allows higher-order 
specifications. The deductive closure of the axioms is a theory, so a specification is a 
finite presentation of a theory.   
 
A refinement can be expressed formally via a specification morphism, which translates 
the language of one specification into the language of another specification in a way 
that preserves theorems.  Formally, a signature morphism from specification S0 to 
specification S1 is a type-consistent map from the vocabulary of S0 (i.e. its type and 
function symbols) to the vocabulary of S1.  A specification morphism from S0 to S1 is a 
signature morphism that preserves theorems; i.e. that translates each theorem of S0 to 
a theorem of S1.  To establish a specification morphism, there is a proof obligation that 
each axiom of S0 translates to a theorem of S1. Let Morphism denote the type of 
specification morphisms (or simply morphisms). 
 
Specification S1 is an extension of specification S0 if there is a specification morphism 
S0 → S1 whose underlying signature morphism is injective (i.e., each symbol of S1 
comes from at most one symbol of S0).  We use importation to express extension, 
allowing the construction of complex specifications by the composition of simpler 
specifications (which are often library specifications).  More generally, specifications and 
their morphisms constitute a co-complete category, where the colimit operation provides 
a general means for constructing complex specifications.   Intuitively, the colimit is the 
simplest specification that combines given specifications C modulo their common 
structure (e.g., two members of C each separately import some library specification).   
 
As models of specification S, we admit any structure of sets and functions that interprets 
at least each type and function symbol in S and that satisfies the function signatures 
and the axioms.  This semantics allows structures for extensions of S to be models of S.  



15  

The denotation of a specification morphism m is a map from models of the codomain of 
m into models of the domain — every model of S1 is mapped to a model of S0.   
 

3.3 Proof-Emitting Transformations 
 
Specification S0 refines to S1 if there is a specification morphism m:S0 → S1.  We refer 
to m as a refinement and a morphism, and in context, S1 as the refinement of S0.  In 
this paper we are interested in rules and techniques for automatically generating 
refinements.  A specification transformation or a transformation, is a partial function on 
specifications that generates a refinement: t:Spec → Morphism.  That is, if t(S) = m, 
then m:S→ codomain(m) is a refinement of S. 
 
As discussed in the next section, we developed new transformations (and extended 
previously developed transformations) that support a coalgebraic style of specification, 
leading towards the generation of imperative code.   Most of our transformations work 
by applying a sequence of equations  (via rewrite rules) to parts of the given 
specification.   The chain of equations that are applied proves the correctness of the 
resulting refinement.   We developed techniques for saving the equation chain and 
emitting it as a proof structure that can be checked by an external proof checker.  In our 
case, the proofs are expressed in the Isar format of the Isabelle proof assistant 
[Isabelle].   Isabelle is used to automatically check that the emitted Isar proofs are in fact 
proofs of the refinement proof obligations generated by Specware. 
 
The upshot of using proof-emitting transformations is to co-generate both code and 
proof that the code satisfies its specification.   This is in contrast to post-hoc verification 
approaches that seek to prove a program correct after it has been written.   Generating 
proof-carrying code has the advantage that all design information is available to the 
proof generation process as the code is being constructed.  We believe that this is a 
more economical approach to producing certifiably correct software. 
 

3.4 Coalgebraic Specifications 
 
Coalgebra is a relatively recent area of mathematical study, which, in a sense, is dual to 
algebra.   It has provided a natural unifying foundation for exploring dynamical systems, 
including both discrete and hybrid automata.  In functional languages and programming 
theory, it has been attractive as a way to model and reason about infinite and non-well-
founded objects, such as streams and the behaviors of state machines [Rutten00, 
Jacobs97].  Coalgebra has also proved useful for giving a foundation to object-oriented 
languages and class hierarchies [Rothe01]. 



16  

 
Our approach in HACMS was to use a mixture of algebraic and coalgebraic types in our 
specifications, and to develop new transformations to handle the cotypes.   For our 
purposes, algebra, via inductive types, provides a foundation for specifying and refining 
finite data, such as Booleans, bounded Natural numbers, Lists, and finite Sets.    
Coalgebra, via coinductive types (aka cotypes), provides a natural foundation for 
specifying and refining stateful and concurrent computation. 
 
There is a descriptive vocabulary that goes with cotypes.   Algebraic types are 
characterized by their constructors, which are used inductively to build up terms for all 
values in the type.   The inductive construction allows inductive definitions of functions 
and proof by induction.  In contrast, cotypes are characterized by their destructors, 
which are operations on the cotype that decompose a cotype element into its parts.  
Typically destructors are categorized as observers (which observe an aspect of an 
element) or transformers (which transform an element into another element of the 
cotype).   The iterated destruction of objects of the type gives rise to coinductive 
definition of functions and proofs by coinduction. 
 

3.4.1 Algebras	and	Coalgebras	
 
This section provides some formal background on algebra and coalgebra.  It assumes 
knowledge of basic category theory and may be skipped.  
 
Types and their functions are conveniently treated in the category SET of small sets, 
where sets are the objects and functions are the morphisms or arrows between objects.   
Algebras and coalgebras are characterized in terms of a polynomial functor 
F:SET→SET, built out of the basic functors 

F: X ⟼ A         (constant, for fixed set A) 
F: X ⟼ Y+Z     (sum) 
F: X ⟼ Y×Z     (product) 
F: X ⟼ XA       (dependent, for fixed set A) 

in sum of product form; e.g. 
 
F(X) = 1 + A×X         (1) 

 
where 1 is a singleton set.   Given functor F, an algebra is a function a:F(X) → X, and a 
coalgebra is a function c:X→F(X).   For example, given the functor (1), an algebra has a 
carrier set X together with a function of type 

a: 1+A×X → X 
which can be expressed in terms of constructors 



17  

c0: 1 → X 
c1: A×X → X 

and packaged as a function cotuple 
a = [c0,c1] : 1+A×X → X 

The initial algebra for F is the least fixpoint of the equation (1), which is isomorphic to 
the set of all finite terms built up from the constructors.   The initial algebra for our 
example is (isomorphic to) the set of finite lists over the set A, where the 
function/constructor c0 generates the empty list (Nil), and c1 adds an element to a list 
(Cons). 
 
The construction of an initial algebra from constructor-based terms alone supports proof 
by induction over the constructors and definition of functions via inductive constraints.   
An inductive constraint characterizes the effect of a function on a constructor.  For 
example, a function from finite lists to their length is completely determined by the 
inductive constraints 

len(c0) = 0 
len(c1(a,l)) = 1 + len(l). 

 
We make use of this capability in defining a new refinement paradigm that incrementally 
accumulates constructors on a type and inductive constraints on functions, and finally 
declares that the constructor set is complete, determining a polynomial functor and 
corresponding initial algebra with function definitions that are complete and consistent 
by construction. 
 
Dually, given functor F, a coalgebra is a set X together with a function c:X→F(X).  The 
set X is called the carrier or cotype.   For example, given the functor 1+A×X, a 
coalgebra has a carrier set X together with a function of type 

c: X → 1+A×X  
which can be expressed in terms of component destructors 

d0: X → 1 
d1: X → A×X 

such that 
c = ⟨d0,d1⟩: X → 1+A×X 

using the notation for a function tuple.   
 
The final coalgebra for F is the greatest fixpoint of equation (1).   The final coalgebra for 
our example is (isomorphic to) the set of finite and infinite lists (i.e. streams) over the set 
A, together with destructor d0 that is defined on the empty list, and function d1 that 
decomposes a nonempty stream into its head and the rest of the stream. 
 
In this project, we are interested in reactive code for handling ongoing communications.  
We restrict attention to single-term monomial functors of the form 



18  

F: X ⟼ A1×A2× ⋯ Am × XB1 × XB2 ×⋯× XBn  
where 

oi: X →Ai    for i=1,..,m    (observers) 
tj: X → XBj    for j=1,..,n    (transformers that have an X and Bj as input) 

F can be treated as a function tuple 

F = ⟨o1, o2, ⋯, om, t1, t2, ⋯, tn⟩ 

where each oi is called an observer because it extracts some information about the 
unknown type X.   Each tj is called a transformer since it transforms an element of X 
(which can be thought of as a state) to another element (perhaps informed by an 
argument of type Bj).    
 
Treating X as state, together with the single-threadedness of the transformers, allows us 
to generate imperative code for the transformers. 
 
The definition of a final algebra from destructor-based terms alone supports proof by 
coinduction over the destructors and definition of functions via coinductive constraints.    
 
A coinductive constraint characterizes the effect of a transformer on observers.  A 
prototypical example is 

o1(t1(b,st)) = alpha(b, st, o1 st) 

where the transformer t1 is partly characterized by its effect on the o1 observer: the o1 
observation of the new state produced by t1 is some function (alpha) of the input state 
and the o1 observation on the previous state. 
 
Related Work 
 
We have presented coalgebra in terms of a functor, an approach sometimes called F-
(co)algebra.   The Coq prover uses a different but equivalent formulation that stresses 
the formation of the carrier of the coalgebra – a coinductive type.   Cotypes in Coq are 
specified in terms of constructors, just like inductive types (the carrier of an algebra), but 
elements of the cotype are identified with possibly infinite terms over the constructors.   
For example, it is natural to think of a stream as an infinite term with each subterm 
headed by a Cons constructor: 
 

CoInductive Stream (A: Set) : Set := 
| Cons : A →  Stream A →  Stream A. 

 
 A Coq specification for finite and infinite lists over a set A is given by adding a Nil 
constructor to terminate construction: 
 



19  

CoInductive LList (A: Set) : Set := 
| LNil : LList A 
| LCons : A → LList A → LList A. 

 
Destructors can then be defined by patterns matching on constructors, just as with 
inductive types.   To define a transformer on a cotype, we can use pattern matching to 
destruct the given cotype element and the output is a constructor-headed term that may 
involve a corecursive call.  For example, the image of a stream of A’s with respect to a 
given function f:A→B  can be defined in Coq by 
 

CoFixpoint image (f: A → B)(s:Stream A) : Stream B:= 
match s with Cons a tl ⇒  Cons (f a) (map f tl)  
end. 

 
This is formally equivalent to specifying image via coinductive constraints, as in 
 

op image(f: A → B)(as:Stream A) :  
     {bs:Stream B |   hd bs = f (hd as)  
                 && tl bs = image f (tl as)} 
 

In this simple example, the constructor-based formulation is simpler.   When we get to 
transformers over cotypes with more internal structure, then the destructor/accessor-
based coinductive constraints tend to be more concise. 
 
Another advantage of the F-coalgebra approach over the coinductive construction 
approach is in the area of specifying dynamical systems (as opposed to possibly infinite 
data).   A coalgebra embodies the state-changing dynamics of a system; e.g. for our 
purposes, protocol-handling processes.  The state of such a system is typically finite 
and evolves by application of transformers.   The unique homomorphism to the final 
coalgebra typically maps the current state to its possibly-infinite tree of behaviors (i.e. 
possible future successor states). 
 

3.4.2 Specification	
 
Here is a generic specification that illustrates the coalgebraic style that we developed in 
this project: 
 

S = spec 
  cotype State 
  op obsA:State-> A 
  op obsB:State-> B 
  op obsC(st:State):C = h(obsA st, obsB st) 



20  

  op f(st:State)(arg:Arg):  
        {st':State| obsA st' = alpha obsA st  
                     & obsB st' = beta  obsB st} 
  op g(st:State)(arg:Arg):  
         {st':State,d:D| obsA st' = gamma (obsA st) arg  
                            & obsB st' = delta (obsB st) arg 
                                &        d = eps (obsA st) (obsB st) arg} 
end spec 

 
Spec S has two basic (undefined) observers (obsA and obsB), a defined observer 
(obsC), and two transformers (f and g).   The latter are specified by giving coinductive 
constraints (postconditions) stated as the predicates of a dependent output type.  That 
is, the output type of f is the set of all States st’ such that the obsA observation is given 
by (alpha (obsA st)); i.e. by some function of the old obsA observation.   This is a 
dependent type because it depends on the value of st that is bound when the 
transformer is called.   The types A, B, and C may be algebraic (i.e. constructor-based).  
The Greek-letter functions (alpha, ...)  capture the effect of the transformer on their 
particular observer. 
 
Here is a simple specification of communication primitives using this style: 
 
Comm = spec 
  import Queue 
  type Msg 
  cotype State 
  op      inbox: State® Queue Msg 
  op    outbox: State® Queue Msg 
  op  send(st:State) (m:Msg) : {st’:State|     inbox st’ = inbox st 
                                                             & outbox st’  = (outbox st) ++ [msg] } 
  op  recv(st:State | inbox st ≠ empty_queue): 
             {(m,st’):Msg*State|               m = top (inbox st) 
                                         &    inbox st’ = rest (inbox st) 
                                         &  outbox st’ = outbox st } 
  end-spec 
 
Spec Comm imports a (polymorphic) specification of finite queues and introduces an 
undefined type of messages: Msg.   It then introduces an undefined cotype State that 
has two observers, inbox and outbox, and two transformers: send and recv.   All that we 
know about a State is what we can observe, which is its current input queue inbox and 
its output queue outbox.   The send transformer changes the State by adding a given 
message to the outbox, expressed via a coinductive constraint.  The send transformer is 
specified to have no effect on the inbox observation.   The result of send is completely 



21  

specified in terms of what observations we can make of the new State.   Similarly, the 
recv transformer is specified to operate in a state in which the input queue inbox is 
nonempty, and to output the front element m of inbox, while popping m from the queue 
in the resulting state st’ and leaving outbox unchanged.  The communication channel 
itself moves elements from the sender’s outbox to the receiver’s inbox. 
 
As a notational convention, we will often omit coinductive constraints that assert no-
change in an observer.    
 
In this style of specification, it is important to begin formalization with an understanding 
of what the observers are, and the distinction of identity versus value.  For a single 
changing value, a simple observer of state is sufficient.  For a structured collection of 
values, an observer that is parametric both on state and unique identifiers for the values 
is needed.  That is, the observer function itself is a unique identifier, but if there is a 
collection of changing values, then an identifier type Id must be introduced and an 
observer that is parametric on Id is introduced to observe individuals of the collection.  
 
Under refinement, it is permitted to add new types, functions, and axioms; also it is 
permitted to strengthen axioms and postconditions in dependent types.   We make use 
of this capability in defining a new refinement paradigm that incrementally accumulates 
destructors on a type and coinductive constraints on transformers, and finally declares 
that the destructor set is complete, determining a polynomial functor and corresponding 
final coalgebra with function definitions that are complete and consistent by 
construction. 
 
Section 3.5 provides two examples of this style of specification: (1) an abstract 
specification of communication requirements, and (2) a lower-level specification of 
required behavior. 
 

3.4.3 Ghost	Observers	
 
We distinguish a special class of observers that provide information about the program 
and its execution, but do not usually take part in the computation.   A typical example is 
a history observer that observes the trace of state-action pairs in the computation to the 
current state.    Such a history observer 

ghost op hist: State -> List (State * Action * State) 
helps to specify key properties of a program.   The intent of a ghost observer is to reify 
some extra-computational aspect of the (desired) computation into state for purposes of 
specifying requirements.   Typically, we do not want to implement a ghost observer such 
as hist, since that would tremendously expensive.  Sometimes however, some fragment 
of a ghost observer is needed to realize requirements.  This is one way that extra state 
variables accumulate during development – as a way to reify into the present, some part 



22  

of the past or some reflection of the computation or code that is useful for computation 
itself. 
Conceptually, each transformer of the target program maintains all ghost observers.  
For example, the send and recv transformers are refined with a coinductive constraint 
that records the send/recv action into hist: 
 
  op  send(st:State) (m:Msg) : {st’:State|     inbox st’ = inbox st 
                                                             & outbox st’  = (outbox st) ++ [msg]  
            & hist st’ = hist st ++ [<send, time st, msg>] } 
 
  op  recv(st:State | inbox st ≠ empty_queue): 
             {(m,st’):Msg*State|               m = top (inbox st) 
                                         &    inbox st’ = rest (inbox st) 
                                         &  outbox st’ = outbox st 
           & hist st’ = hist st ++ [<recv, time st, msg>]  } 
 
This maintenance of hist allows us to define new ghost observers that are useful in 
specifying key communication properties.   It is useful to define specializations of hist for 
particular operations/transformers     
 
  ghost op        sent: State → Channel → List Message 
  ghost op received: State → Channel → List Message 
 
which can be maintained in send & recv as follows: 
 
  op  send(st:State) (m:Topic) :  
               {st’:State | … & sent st’  = (sent st) :: m  } 
  op  recv(st:State)(m:Topic):  
              {st’:State) | … & received st’ = (received st) :: m } 
 
As an example of the usefulness of ghosts, a perfect communication channel from 
process P to process Q can be specified by 

∀st:State.  P.sent st = Q.received st  
or in temporal logic 

 ☐ sent = received. 
 
Another useful ghost observer records the changes over time of an observer: 
 

ghost op changes: (State → E) → State → List E 
 

which is maintained in each transformer that modifies the given observer 
 



23  

    op g (st:State): {st’:State | … e st’ = alpha st 
    & changes(e) st’ = (changes e st) :: <alpha st> } 
 
This is also a specialization of hist and could be defined in terms of hist. 
 
The ghost observers specified above are all that we need for synthesizing 
communication codes.   However, in other domains, it may be useful to use ghosts to 
reflect not just the past, but also aspects of the present that are extra-computational, 
such as resource utilization (bandwidth, memory, CPU) and physical characteristics of 
the underlying hardware (energy, temperature, operating environment). 
 

3.4.4 Specification	of	Time	
 
Latency is intrinsic to communication channels, so we might want to put latency bounds 
into our requirements.   The specification of a perfect communication channel that we 
presented above,  sent = received, assumes no latency.   We can define perfect 
communication modulo latency in terms of the following predicate (where a and b are 
observers of the same type and d is a duration):   
     a ⥱d b 
holds in the current state st1 if there exists a recent state st0 such that 

1. a st0 = b st1 
2. time st1 ≤ time st0 + d. 

Formally this is 
(a ⥱d b) st1   ≡   ∃ st0. st0∈hist st1  

               ⋀ (a st0 = b st1)  
     ⋀ time st1 ≤ time st0 + d. 

We can lift this relation between observers to lists (taking the image of the zip), allowing 
us to specify perfect communication modulo latency: 
 sent ⥱d received. 
That is, the messages received via a communication channel correspond one-to-one 
with messages sent and with no more than a delay of d seconds. 
 
Periodicity is another temporal relation that arises in communication.   We can specify a 
ghost observer period(p,a) which takes a period and an observer, and returns a history 
of a observations of period p up to now.  For example 
 period(p,clock) = [0,p,2p,3p,…, np]  
where np ≤ clock st < (n+1)p.  The periodic sampling of hist is 
 period(p,hist). 



24  

Corresponding to this specification-level ghost observer (or observer constructor), we 
have the computational control construct:  with_period(p){g} that executes transformer g 
with period p, such that if g  has specification 
 op g(st:State):{st’:State | c st’ = e st ⋀ …} 
and our program consists of 
 with_period(p){g} 
then 
 changes c st = period(p,c). 
 

3.5 Specification of Protocols 

The HACMS program aimed to develop formal methodology for developing safe and 
secure vehicles.   The communication needs of vehicles have some differences from 
the more familiar world of email and the web.   When we connect to a website or 
interact with a colleague via email, we require that all bits of the communication are 
delivered reliably.   In contrast, the controller of a vehicle periodically needs sufficiently 
fresh information about the status of the environment and the vehicle, not all status 
information – the recipient of status information does not require to receive all status 
updates.  It just requires that the recipient has access to sufficiently fresh status 
information when needed.  This entails that old information can overwrite fresher 
information, regardless of whether it has been accessed.   Out-of-order data is even 
possibly correct, as long as the received data is sufficiently fresh. 

In the following subsections, we discuss the specification of communication 
requirements, first at a global and abstract level, and then, in Section 3.5.2, a more 
local, behavioral level. 

3.5.1 Abstract	Communication	Requirements	

We specify abstract communication requirements, which can be implemented by any of 
several abstract protocol theories.   Each protocol theory is expressed in terms of a 
refinement from (1) a specification of abstract communication requirements (typically 
expressed in terms of several processes, each with their own local observers, and a 
global communication requirement, to (2) a communication solution that introduces 
communication channel and operations, and local requirements.   The codomain has 
enough structure that, if implemented, guarantees implementation of the domain 
communication requirements.   The codomain specification has operators that are 
typically expressed as a set of cases or rules, as discussed in a later subsection.    



25  

We specify here two protocol theories for Publish-Subscribe communication 
mechanisms (Eager and Periodic), one of which we used to generate code for the 
RADL architecture running on the Landshark and ABA [RADL 15]. 

In Phase 2, we sought to start our synthesis process at a much more abstract level than 
for the UDP derivation in Phase 1 (described in the next subsection).  The ROS and 
RADL architecture on the ground team vehicles assumes a Publish-Subscribe (PubSub) 
communication infrastructure. 

The essential communication requirement is this: 

• process A with observer pub: State→Topic 
• process B with observer sub: State→Topic 
• global requirement:   ☐ A.pub ⥱f B.sub 

That is, there are two components A and B, where component A can directly observe 
information of type Topic, and component B cannot directly observe Topic.   Moreover, 
B requires to observe Topic with some degree of freshness; more specifically, B 
requires that its observation of type Topic agrees with A’s observation of no more than f 
seconds in the past; i.e. with “freshness” f.   Inserting communication technology to 
connect the processor that supports A and B allows communication software to satisfy 
B’s requirement with some bounded latency. 

A simplified version of our abstract requirement specification for a PubSub situation is 
as follows.   The predicate ⥱f is expressed textually using the higher-order function 
fresh (polymorphic on types a, b, and c): 
 
  op [a,b,c] fresh(st:State, 
                           obs               :State -> c -> a,                % Publisher's offered data 
                           tracking_obs:State -> b -> a,                % Subscriber observer 
       latency:Duration):Bool =                       % max latency 
    ex(prev_st:State) obs prev_st = tracking_obs st  
                                && clock st <= clock prev_st + latency 
 
which is imported via the spec Common; so  

(A.pub ⥱f B.sub) st 
is expressed 

(fresh st A.pub B.sub f). 
 

 
BasicComm = spec  
  import Common#Tracking 
  type Topic 
  op initializeTopic:State->Topic 



26  

  op maxLatency: Duration 
end-spec 
 
PubRqt = spec  
  import BasicComm 
  type Publisher 
  op pub_topic: State -> Publisher -> Topic 
end-spec 
 
SubRqt = spec  
  import BasicComm 
  type Subscriber 
  op sub_topic: State -> Subscriber -> Topic 
  op set_subtopic(st:State)(sub:Subscriber)(d:Topic): 
                 {st':State | sub_topic st’ sub = d } 
  op defaultTopic:State->Topic 
 
end-spec 
 
SystemRqt = spec 
   import PubRqt, SubRqt 
   axiom Global_Requirement is      
       fa(st:State,pub:Publisher,sub:Subscriber)  fresh st pub sub maxLatency 
end-spec 
 
The key requirement here is the axiom Global_Requirement, which asserts that the 
Subscriber’s access to the topic, via sub, will always access a value that is no more 
than maxLatency seconds out of date. 
 
There are at least two ways to refine this structured specification.  The Eager solution 
adds a communication channel and an operation for eagerly publishing the current 
value of the pub_topic; i.e. whenever pub changes, its new value is sent.  The Periodic 
solution adds a communication channel and an operation for periodically publishing the 
current value of the pub_topic topic;  i.e. every p seconds, the current value of pub is 
sent to Sub.   In either case, the refined structure is strong enough to prove the 
Global_Requirement axiom.  At the same time, it introduces new local requirements, 
expressed as axioms, that will lead to further refinements.   These refinements are 
formalized in Section 3.6.1.   The derivation is elaborated in Section 4.3.  
 

3.5.2 Behavioral	Specification	by	Cases	

One of the first challenges we faced was how to specify the handling of a protocol, such 
as UDP in the Linux kernel, where there is no given formal specification.   Practically, 



27  

the handling of UDP packets is governed by RFC standards and by common practice in 
various operating systems.   In this situation it seemed that the best we could do is to 
model the required behavior as gleaned from standards documents and operating 
system codes. 
 
Our general hypothesis is that the required behavior of complex state transformers can 
be disentangled into cases, typically a normal case behavior and several (perhaps 
many) abnormal and error cases.    Our methodology for formally specifying complex 
behaviors is then to express the various cases via trace predicates.  The specification of 
the whole is then the disjunction of the cases.    The cases can overlap, which means 
that there can be some nondeterminism to the specification.  This is acceptable as long 
as the cases are accurately expressed.   Under refinement, we are free to choose any 
behavior that satisfies at least one of the cases. 
 
In specifying a state transformer, each case/rule serves to formalize the relation 
between the initial/input state, intermediate states, and the final/output state of the 
transformer.  As a simple introduction, consider the following simple cases: 
 
C1.    A  ⋀    B ⋀  α(st, st’)             -- when A and  B hold,  do α  
C2.    A  ⋀  ¬B ⋀  β(st, st’)             -- when A and ¬B hold, do β  
C3.  ¬A            ⋀  γ(st, st’)              -- when ¬A holds,         do γ 
 
The disjunction of these cases can be merged straightforwardly as follows 
 
C1 ∨ C2 ∨C3 =   if A 
                           then if B 
                                   then α(st, st’) 
                        else β(st, st’) 
                           else γ(st, st’) 
 
See Section 3.6.2 for details of the mergeRules transformation.   Details of the cases for 
UDP datagram transmission and reception are given later in Section 4.1. 
 

3.6 Design Theories and Transformations 
 
In this section, we present a series of novel transformations that generate refinements 
in our derivations.  There are three sources of techniques for generating refinements:   
 

(1) Manual Extensions — i.e. manually written extensions of a specification 
(2) Transformations — transformations that generate refinements. 



28  

(3) Library Refinements — Refinements that are reusable, and are developed 
and proved once, and stored in a library.   They are applied via a pushout 
operation.   

 
As described in Section 3.1, we manually write a metaprogram, also called a derivation 
script, which is an executable sequence of refinement steps applied to an initial 
specification. Each step prescribes how to generate a refinement of the previous 
specification. 
 
Each of the following subsections introduces a library refinement or a transformation for 
generating refinements, together with some examples.  We also discuss how each 
technique can automatically generate a formal checkable proof as a byproduct of its 
action. 
 
Coalgebraic refinements simply add further constraints to previously introduced 
transformers, rather than producing constructive definitions.  It is only at the end that 
constructions are given; i.e. that a particular model is chosen.  This contrasts with 
algebraic style refinement in which constructors are given for types and operators are 
inductively defined over the types.  All constructions are explicit and immediate.  

In the following subsections we describe transformations that are specific to coalgebraic 
specifications.   These are new transformations that we developed for our protocol 
derivations. 

3.6.1 Eager	and	Periodic	Protocol	Theories	(Refinements)	
 
The essential publish-subscribe communication requirement is this: 

• process A with observer pub: State→Topic 
• process B with observer sub: State→Topic 
• global requirement:   ☐ A.pub ⥱f B.sub 

That is, there are two components A and B, where component A can directly observe 
information of type Topic, and component B cannot directly observe Topic.   Moreover, 
B requires to observe Topic with some degree of freshness; more specifically, B 
requires that its observation of type Topic agrees with A’s observation of no more than f 
seconds in the past; i.e. with “freshness” f.   Inserting communication technology to 
connect the hardware that supports A and B allows communication software to satisfy 
B’s requirement with some bounded latency.   If B were to require the information 
infrequently, then an on-demand/pull approach would be sufficient, via a request-
response whose latency is less than the required freshness.   For real-time systems, 



29  

such as in vehicle control, the need for sensor-based information is frequent and a 
Publish-Subscribe/push mechanism is sufficient. 
 
For simplicity of notation, we sometimes omit the process qualifier when it is clear in 
context; e.g.  ☐ pub ⥱f sub. 

We developed two protocol theories for providing push solutions to a basic 
communication requirement.   They are both expressed as refinement morphisms, 
where the domain specification formalizes the communication requirements, and the 
codomain introduces the communication infrastructure and local requirements needed 
to prove that the communication requirements are satisfied. 
 
The Eager Protocol publishes a change to pub whenever it changes; i.e. eagerly.   
 
Eager Protocol Theory 
 
Domain of Protocol Refinement: 

• process A with observer pub: State→Topic 
• process B with observer sub: State→Topic 
• global requirement:   ☐ A.pub ⥱f B.sub 

 
Codomain of Protocol Refinement 

• Add a communication channel C from A to B 
• operators send: State→Topic→State, recv: State→Topic→State 
• local requirements 

1. ☐ sent = changespub 
2. ☐ sent = C.inbox ⥱d C.outbox = received 

3. ☐ received= changessub 
4. d ≤ f 

Theorem:  ☐ A.pub ⥱f B.sub 
 
The proof of the theorem in the codomain theory proceeds by induction on the steps of 
a computation.   Assume that the value of pub changes in the transition from st to st’, so  

changespub st’ = (changespub st)::newpub 
and assume inductively that   

(pub ⥱f sub) st’.  
Then,  

changespub st’ = sent st’     by local requirement 1 
   = C.inbox st’    by local requirement 2 



30  

   ⥱f C.outbox  st’’   for some st’’ such that  
           clock st’’ ≤ f+ clock st’,  
       by local requirement 2 
   = C.outbox st’’   by local requirement 2 
   = received st’’   by local requirement 2 
   = changessub st’’   by local requirement 3 

which implies 
changespub st’ = (changespub st)::newpub  
   ⥱f  (changessub st)::newpub using the induction hypothesis 
   = changessub st’’ 

which implies 
(pub ⥱f sub) st’’.                      
 

The eagerness of this protocol theory is expressed by the first local requirement:   
 ☐ sent = changespub . 

To enforce this requirement, the Observer Maintenance transformation is applied as 
follows. 
 
Assume: sent st = changepub st     inductive assumption 
       pub st’ = newTopic   assumed update to pub 
Simplify: sent st’ = changepub st’ 
 
Calculate: 

       sent st’ = changepub st’ 
≡     sent st’ = (changepub st :: newTopic) 
≡     sent st’ = (sent st :: newTopic). 

 
The last formula is a spec for the enforcement operation and is satisfied by:  

send newTopic. 
That is, simultaneously (and atomically) with the update to pub, we send the new value 
newTopic to the Subscriber. 
 
Analogously, Observer Maintenance of the third local requirement leads to updating the 
value of sub with the value in the Subscriber’s inbox: 
 
Assume: received st = changesub st 
         st’ = recv st msg 
      received st’ = received st :: msg 
          inbox st’ = msg 
Simplify: received st’ = changesub st’ 



31  

Calculate: 
 received st’            = changesub st’ 
≡     (received st :: msg)   = changesub st’ 
≡     (changesub st :: msg) = changesub st’ 
≡     (changesub st :: (inbox st’)) = changesub st’ 
≡     (changesub st :: (read st’)) = changesub st’. 
 
The last formula is a spec for the update operation and it is satisfied by:  

sub := read(). 
 
The resulting design is shown in Figure 3, where the red text indicates the injected code 
that enforces local requirements 1 and 3.   The remaining local local requirements must 
be satisfied by the implementation of the communication channel C. 
 

 
Figure 3: Eager Protocol Theory 

 

The second protocol theory is useful when the frequency with which pub changes is 
higher than the frequency with which sub needs fresh values (≥ 1/f). 

Periodic Protocol Theory  

Domain of Protocol Refinement: 
• process A with observer pub: State→Topic 
• process B with observer sub: State→Topic 
• global requirement:   ☐ pub ⥱f sub 

 
Codomain of Protocol Refinement 

☐ received= changesub 

Pub Sub 

Global Reqt:  ☐ pub ⥱f sub 

Channel C ⋅⋅⋅ ⋅⋅⋅ 
pub := newTopic 

☐ sent = changepub 

send newTopic ⋅⋅⋅ ⋅⋅⋅ 
sub := read() 

recv msg 

☐ Pub.sent = C.in 
☐ C.in ⥱d C.out 
☐ C.out = Sub.received 
d ≤ f 



32  

• Add a communication channel C from A to B 
• operators send: State→Topic→State, recv: State→Topic→State 
• local requirements: 

1. ☐ sent = periodic(p,pub) 
2. ☐ sent = C.in =d C.out = received 
3. ☐ received= periodic(p,sub) 
4. p+d+p ≤ f 

Theorem:  ☐ pub ⥱f sub 
 
We can perform similar transformations to the local requirements 1 and 3 as we 
performed above for the Eager Protocol.   The resulting design is shown in Figure 4, 
where the red text indicates the injected code that enforces local requirements 1 and 3.   
The injected code uses a new control construct, with-period(p,act), that sets up an 
independent thread that executes action act every p seconds.  The remaining local 
requirements must be satisfied by the implementation of the communication channel C. 
 

 
Figure 4: Periodic Protocol 

Both of the protocol theories are important, but we used the Periodic Protocol in our 
HACMS derivations presented in Section 4.3. 

 

3.6.2 mergeRules	Transformation	

Suppose we have the following simple cases: 
 
C1.    A  ⋀    B ⋀  α(st, st’)             -- when A and  B hold,  do α  

☐ received= periodic(p,sub) 

Pub Sub 

Global Reqt:  ☐ pub ⥱f sub 

Channel C with-period(p, send pub) 

☐ sent = periodic(p,pub) 

⋅⋅⋅ ⋅⋅⋅ 
with-period(p, sub := read()) 

recv msg 

☐ Pub.sent = C.in 
☐ C.in ⥱d C.out 
☐ C.out = Sub.received 
p + d + p ≤ f 



33  

C2.    A  ⋀  ¬B ⋀  β(st, st’)             -- when A and ¬B hold, do β  
C3.  ¬A            ⋀  γ(st, st’)              -- when ¬A holds,         do γ 
 
we can straightforwardly merge the disjunction of these cases: 
 
C1 ∨ C2 ∨C3 =   if A 
                           then if B 
                                   then α(st, st’) 
                        else β(st, st’) 
                           else γ(st, st’)   
 
The mergeRules transformation also handles other first-order features including  
constructors for inductive types; for example, given the definition 
 
   type Option t = | None  | Some t  
 
and cases 
 
C1.     x=None     ⋀  α(st, st’)                 -- when x is None,    do α  
C2.    x=Some y  ⋀  β(st, y, st’)             -- when x is Some y, do β  
 
then the mergeRules transformation generates 
 
C1 ∨ C2  =   case x of 
                      | None    -> α(st, st’) 
                      | Some y -> β(st, st’) 
                            
We extended mergeRules to address the following issues and features 
 

• handling data dependencies between conjuncts 
• heuristic choice of atom to branch on 
• control the explosion of cases by hiding/nesting some disjunctions 
• introduction of quantification 
• functions with multiple inputs and outputs 
• pattern matching to destructure values 
• deriving preconditions to preclude false postconditions 
• generating proofs as part of the construction. 

 
We now discuss the general approach to merging rules. 
 
Gathering rules, pre and post conditions 
 
Each rule must have the form: 
 



34  

    op r(s:st, i1:S1, ... ,ik:Sk | pre):  { (s',o1,....oj) : (st*T1*...*Tj) | post } 
 
From this signature, we extract a number of features: 
 
1. The parameter s is the name of the current state. It must be the first parameter, if 
there are any others. 
2. The type st is the state type. 
3. Parameters i1 to ik are the inputs. Their associated types are S1 to Sk. Inputs are 
optional. 
4. The predicate pre is a boolean expression that can mention s and i1 ... ik. 
5. The output name s' is the name of the next state. It must be the first element of the 
range tuple. If there are no outputs o1 ... oj, then it should be only output. 
6. The next state type st must be the same as the current state type. 
7. The names o1 to oj are the outputs, with types T1 to Tj, respectively.  Outputs are 
optional. 
8. The predicate post is a postcondition. It is a boolean expression, and can mention s, 
i1, ... ik, s', o1, ... , oj. 
 
All rules must have the same type, except the preconditions prei and postconditions 
posti can vary. 
 
Converting to DNF 
 
Given a rule pre- and post-condition, we then construct a boolean expression 
representing pre and post in DNF. Moreover, we track the existentially quantified 
variables mentioned by pre and post, as they will represent local definitions. Conversion 
to DNF proceeds by structural recursion on the expression pre && post according to the 
following rules: 
 
  1. If the top-level connective is a disjunction or conjunction, we convert the subterms to 
DNF and combine the results using DeMorgan to get an expression in DNF. 
 
  2. If the top-level connective is an existential quantifier, we convert the body to DNF, 
recording the quantified variables. 
 
  3. Otherwise, we have an atomic boolean expression and we do not process further.  
 
After processing each rule, we have a set of pairs, where each pair (vsi,fi) consists of 
the existentially quantified variables vsi for rule i and a boolean formula fi in DNF, 
equivalent to the non-normalized formula pre && post. We union the sets of variables to 



35  

get a complete set of variables vs and take the disjunction of the individual formulae fi to 
get an overall formula f, also in DNF. 
 
Finally we calculate the set of observers for the state type st by locating all of the ops of 
the form: 
 
    op obsi : st -> a 
 
where a is any type that is not st or a tuple type with st hereditarily an element. We 
denote the set of all obsi as obs.  
 
Classifying expressions 
 
Having calculated st, s, s', inputs, outputs, vs, obs, and f, we now classify each atomic 
boolean expression ei in f according to the following syntactic criteria:  
 
1. If ei has the form e' = v, where v is a variable that is either the same as the poststate 
st' or an element of obs, then we say that e is a constraint. We say e constrains v, and    
that v depends on the set of variables defined by fv(e') Ç vs. 
 
2. If ei has the form e' = (v1,...,vi), where vi are all variables that are elements of vs then 
we say that e is a definition. We say e defines vi , and that vi depends on the set of 
variables defined by fv(e') Ç vs.  
 
3. If ei has the form e' = C (v1,...,vi), where vi are all variables that are elements of vs (or 
a constant) and C is a data constructor, then we say that e discriminates e'. We say    e 
defines vi, and that vi depends on the set of variables defined by fv(e') Ç vs. 
 
4. Otherwise, we say e is a branch expression. We say that e depends on the set of 
variables defined by fv(e) Ç vs.  
 
Simplifying clauses 
 
A formula f in DNF will consist of the disjunction of a set of clauses c1 ... cn, each of 
which is the conjunction of a set of atomic boolean expressions. When generating a 
splitting tree for the merge of a collection of rules, we use a mechanism similar to 
resolution. Thus, we define two relations, conflict and subsumption between an atomic 
boolean expression and a clause. 
 
1. If ei is an atomic boolean expression, and c is a clause, 
 then ei conflicts with ei if c contains an atomic boolean expression ~e1 



36  

 (similarly, if ei has the form ~ei' and c contains ei'). 
 
2. If ei is an atomic boolean expression of the form Ci xs = es 
 and c is a clause containing a boolean expression of the form Ci ys = es, 
 where j ¹ i, 
 then e1 conflicts with c. 
 
3. If ei is an atomic boolean expression of the form ~ (Ci xs = es) 
 and c is a clause containing a boolean expression of the form Ci ys = e_s, 
 then e1 conflicts with c. 
 
4. If ei is an atomic boolean expression of the form Ci xs = es 
 and c is a clause containing a boolean expression of the form ~ (Ci ys = e_s) 
 and ei  does not conflict with c, 
 then c' defined by removing ~ (Ci ys = es) from c is the subsumption of c. 
 
5. If ei  is an atomic boolean expression of the form ~ (Ci xs = es) 
 and c is a clause containing a boolean expression of the form (Ci ys = es) 
 and ei  does not conflict with c, 
 then c' defined by removing (Ci ys  = es) from c is the subsumption of c. 
 
6. If ei is an atomic boolean expression that does not conflict with c, 
 and ei  does not occur in c, 
 then c is the trivial subsumption of ei and c. 
 
7. If ei is an atomic boolean expression that does not conflict with c, 
 and ei does occur in c, 
 then c' defined by removing ei from c is the subsumption of c. 
 
We define simplification (w.r.t an atomic boolean expression e) of a formula f by first 
removing all clauses c in f that conflict with e, then taking the subsumption of each 
resulting clause (w.r.t. e). 
 
Main Branching Tree Algorithm 
 
Given all of this machinery, we can finally implement the main bt (branching tree) 
algorithm. 
 
The algorithm takes as input: 
 



37  

1. A formula form in DNF (initially f) 
2. A set of undefined local variables vars (initially vs) 
3. A collection of assumptions (initially true), expressed as a formula assumptions in 
DNF. 
 
The algorithm produces as output. 
 
1. A boolean Metaslang term tm. 
2. A boolean term fail in DNF. 
 
The correctness condition for this specification is 
 
    ~ fail && assumptions => tm => form 
 
Ultimately, ~fail is the calculated precondition for the entire merged ruleset.  
 
The algorithm is defined recursively on the structure of form: 
 
1. If form is false, 
 then tm is false and fail is assumptions. 
 
2. If form contains a clause that is the singleton true, 
 then tm is true and fail is false.  
 
3. If each clause in form contains a constraint v = e, 
 and the intersection of vars  
 and the variables in e that the constraint depends on is empty, 
 then tm is v = e && t', 
 where t' is the result of a recursive call to bt 
 with form the formula resulting from removing v = e from each clause. 
 fail is the resulting fail value from the recursive call.  
 
4. If each clause in form contains a definition (v1 ... vn) = e, 
 and the intersection of vars 
 and the variables in e that the constraint depends on is empty,  
    then tm is ex (v1, ..., vn) (v1    .. vn) && t', 
 where t' is the result of a recursive call to bt 
 with form the formula resulting from removing (v1 ... vn) = e from each clause  
   and inputs the result of removing v1 ... vn  from inputs. 
 



38  

5. Case split... 
 
6. If there exists a branch expression e that occurs in the formula, 
 then tm is if e then u else v, and fail is ufail || vfail in DNF. 
 The term u is the result of a recursive call to bt, 
 extending the assumptions with e and simplifying the formula w.r.t e, 
 yielding ufail for failure conditions. 
 Similarly, the term v is the result of a recursive call to bt, 
 extending the assumptions with ~e 
 and simplifying the formula w.r.t ~e, yielding vfail for failure conditions. 
 
A simplified presentation of the mergeRules algorithm is as follows: 
 
op BT (rs: Set Rule | rules simplified wrt preconditions and context): AST = 
    if empty rs  then <generate precondition from path> 
  
    else if True in? rs then done 
  
    else if False in? rs  then BT(rs -- {False}) 
  
    else if there is a nondependent conjunct C in each rule in rs, 
            with no unbound vars, and no mention of post-state 
       then probable failure 
  
    else if there is a nondependent conjunct C in each rule in rs, 
            with no unbound vars, and mention of post-state 
       then output C && BT( simplify rs assuming C ))  
  
    else if there is a nondependent conjunct C in each rule in rs, 
            with bindable vars and no mention of post-state 
       then output ex(Vars(C))( C && BT( simplify rs assuming C ))  
  
    else if each rule in rs contains a nondependent conjunct  
            of the form c = e where c is a constructor from the sum-type  c1|...|cn 
       then output case e of 
                     | c1 → BT( simplify rs assuming c1=e)  
                     | ... 
                     | cn → BT( simplify rs assuming cn=e)  
  
    else if there are nondependent conjuncts C and ~C in rs 
            (ex(C) ex(r1,r2:Rule)(r1 in? rs && r2 in? rs => C in? r1 && ~C in? r2)) 
       then output if C then BT( simplify rs assuming C )  
                                  else BT( simplify rs assuming ~C ) 
  
    else if there is a nondependent conjunct C in the normal-case rule in rs 



39  

       then output if C then BT( simplify rs assuming C )  
                         else BT( simplify rs assuming ~C ) 
  
    else if there is a nondependent conjunct C that occurs multiple times in rs 
       then output if C then BT( simplify rs assuming C )  
                         else BT( simplify rs assuming ~C )  
 
 

3.6.3 Observer	Maintenance	Transformation	
 
The Observer Maintenance transformation is a mechanism for introducing observers.   
The arguments to the transformation include a new observer of state and an invariant 
that characterizes the observer in terms of the current value of other observers.   

The Observer Maintenance transformation is applied to an observer, say  
obsE: State → E,  

that we desire to maintain incrementally rather than compute on-demand.  The 
performance improvement comes from a space-time tradeoff: we store the 
incrementally computed value of the observer obsE so that, when needed, we can 
simply access its value (knowing that the stored value equals the defined value). 
 
In the context of a derivation, the idiom is that we introduce a fresh observer and its 
definition 

op obsE(st:State):E = (e st). 
Rather than manually enter the coinductive constraints that assert how each 
transformer affects this observer, we wish to use the definition to automatically calculate 
those constraints and add them.  In a Specware metaprogram/derivation-script, we write 
 

 transform S by {maintain(obsE), ... other transformation cmds} 
 
The Observer Maintenance transformation performs the following steps: 
 

1. for each undefined transformer  
            

op t(st:State | pre st)(args:Args):{st’:State | post st args st'} 
    
 augment its pre- and post-conditions with the obs invariant as follows: 
 

op t(st:State | pre st && obsE st = e st)(args:Args): 
      {st':State | post st args st' && obsE st' = e st'} 

 



40  

2.  apply simplification rules in context to normalize it to the coinductive form 
 
      obsE st' = delta st' (obsE st) ) 
 

     for some function delta:State->E->E}.   
 

3.  refine the specification of t to 
 

op t(st:State | pre st && obsE st = e st)(args:Args): 
      {st':State | post st args st' && obsE st' = delta st' (obsE st)} 

 
Note: Step 1 applies only to transformers that are specified but do not yet have a 
definition.  Once a transformer has a definition in terms of other transformers, then the 
definition body presumably maintains the observer invariant by construction. 
 
In network protocol derivations, the observer maintenance has a variety of uses.  One is 
to incrementally maintain the stale flag for a mailbox. 
 

3.6.3.1 Example:	Maintaining	a	stale	flag	
 
In implementing a communication channel, it is usually important to detect when a fault 
or attack has happened.    In the case of a mailbox, it is possible that the sender or the 
channel have failures that push their behavior outside their specified behavior.   One 
approach is to inject code to detect failures, so the system can notify a user, or take 
other mitigation steps to adapt to the failure. 
 
The freshness requirement on the mailbox communication allows us to derive its 
negation, which is a staleness condition.  When we localize the staleness condition to 
the Subscriber process, it expresses that the last event on the inbox was a read (i.e. not 
a write), hence the value in the mailbox is not fresh.   We show next how a formal 
characterization of staleness can be maintained using the Observer Maintenance 
transformation, leading to the injection of code to maintain a stale observer as a flag. 
 
From the freshness requirement, we can infer the definition 
 

op stale (st:State): Bool  = Read? (last (hist st)).action 
 
and add the transformation 
 

maintain(stale) 
 



41  

in the metaprogram/derivation.  The effect of the transformation is to assert the 
definition as an invariant of each transformer (by adding it to the precondition and 
postcondition), followed by simplifications to obtain fast enforcement code to maintain 
the value of stale.  For example, the read transformer is refined to  
 
   op read(st:State | stale st = Read? (last (hist st)).action): 
              {(st',pld):State*Payload 
              | hist st' = (hist st) <| {state=st, time=clock st, action = Read pld} 
             && pld = readMB st 
             && stale st' = Read? last (hist st').action} 
 
Note that the refined postcondition now enforces the invariant by ostensibly 
recomputing the definition of stale in the new state st'. 
 
We then simplify: 
 
Assume:  stale st = Read? last (hist st).action 
      (st’,pld) = read st 
      hist st' = (hist st) <| {state=st, time=clock st, action = Read pld} 
Simplify:  stale st' = Read? last (hist st').action 
 
Calculation: 

stale st' = Read? (last (hist st')).action 
 
 = { unfold (hist st') } 
 
Read? (last (hist st) <| {state=st, time=clock st, action = Read pld}).action 
 
 = { last lst <| a = a } 
 
Read?  {state=st, time=clock st, action = Read pld}.action 
 
 = { project } 
 
Read? (Read pld) 
 
 = { eval } 
 
true. 

 
That is, when we read from the mailbox, we concurrently set the stale flag to true. 
 
The refined op spec is 
 
   op read(st:State | stale st = Read? (last (hist st)).action ): 



42  

              {(st',pld):State*Payload 
              | hist st' = (hist st)  <| {state=st, time=clock st, action = Read pld} 
             && pld = readMB st 
             && stale st' = true } 
 
The transformation performs an analogous refinement of the Recv transformer: 
 
   op recv(st:State,:ChannelId | stale st = Read? (last (hist st)).action ): 
              {st':State 
              | hist st' = (hist st) <| {state=st, time=clock st, action = Recv pld} 
              && stale st' = Read? last (hist st').action} 
 
We then calculate more efficient code to enforce the invariant: 
 
Assume:  stale st = Read? last (hist st).action 
      (st’,pld) = read st 
      hist st' = (hist st) <| {state=st, time=clock st, action = Recv pld} 
Simplify:  stale st' = Read? last (hist st').action 
 
Calculation: 

stale st' = Read? (last (hist st')).action 
 
 = { unfold (hist st') } 
 
Read? (last (hist st) <| {state=st, time=clock st, action = Recv pld}).action 
 
 = { last lst <| a = a } 
 
Read?  {state=st, time=clock st, action = Recv pld}.action 
 
 = { project } 
 
Read? Recv pld} 
 
 = { eval } 
 
false. 

 
That is, when we recv from the mailbox, we concurrently set the stale flag to false.  
The refined op spec is 
 
   op recv(st:State | stale st = Read? (last (hist st)).action): 
              {(st',pld):State*Payload 
              | hist st' = (hist st) <| {state=st, time=clock st, action = Recv pld} 
              && pld = recvMB st 
              && stale st' = false } 



43  

 

3.6.3.2 Related	Work	
 
The observer maintenance transformation builds on earlier work on strength reduction 
in compilers, finite differencing [Paige82, SmithD9009], and incrementalization [Liu13].  
These previous transformations work by looking up the update code from pre-computed 
tables.  Consistent with our generalization of Paige's Finite Differencing transformation 
[SmithD9009], we allow the maintenance of invariants over user-defined vocabulary, 
since we calculate the update code in the context of the application domain theory; that 
is, we use the axioms and theorems of the domain as part of the calculation of update 
code.  Observer maintenance can be viewed as an adaptation of our generalization of 
finite differencing to coalgebraic specifications. 
 
One point is that there is no need for intricate problem-specific conceptualization and ad 
hoc reasoning during design – the design concepts and inferences are generic in their 
outline and are only problem-specific in that they rely on problem-specific 
requirements/goals and problem-specific axioms and theorems.  That is, the designs 
are generic but tailored by generic inference patterns to the specified problem. 
 

3.6.4 StructureEx	Transformation	

The application of the mergeRule transformation, presented in Section 3.6.2, results in 
existentially quantified expressions.   The structureEx transformation eliminates 
existential quantifiers in favor of let-bindings and substitutions.   It plays a crucial role in 
translating logical postconditions into a more functional form.   We developed this 
transformation and made many extensions to handle new cases that arose in our 
derivation.   
 

3.6.5 FinalizeCotype	Transformation:		Cotype	Definition	and	Postcondition	
Synthesis	

During a derivation, we typically introduce a cotype without a definition, but add 
observers to it in subsequent refinement steps.    

Observers at any stage in the refinement process come in several flavors.  Some 
observers have a definition (and so they are eagerly computed when needed).   Some 
are undefined but are specified by their effect on various transformers.   Some 
observers have an invariant characterization and are incrementally computed via the 
Observer Maintenance transformation.   Some are ghost observers and therefore have 



44  

no effect on computation, since they exist solely to increase the precision of system 
properties. 

The finalizeCotype transformation is a packaging of two related transformations: cotype 
definition and postconditions synthesis. 

3.6.5.1 Transformation:	Cotype	Definition	

The cotype definition transformation introduces a definition for the cotype as a tuple, or 
record named fields.   It works by collecting the undefined observers that are not ghosts 
and making them the fields of the tuple.   It then gives a definition to each observer as a 
field access to the local cotype element (commonly the state). 

Refinements of a coalgebraic specification correspond to subclassing in an object-
oriented setting. If we refine a spec Sspec introducing cotype S to a spec TSspec that 
introduces additional observers and transformers on S, then any S operator can be 
applied to any T object.  
 
As an example, consider a cotype Packet for which we want to generate formats for a 
family tree of Packet types/classes.   We do so by introducing alternative sets of 
observers of packets and their parts. 
 
BasicPacket = spec 
   cotype Packet 
 
   cotype Metadata 
   op metadata : Packet → Metadata 
  
  type Payload 
  op payload : Packet → Payload 
end-spec 
 
The idea in BasicPacket is to introduce the data content of a packet as an unspecified 
Payload observation, and to introduce information about the payload (such as length, 
source, destination, format information, etc.) as a Metadata observation.   Alternative 
refinements of BasicPacket can equip the cotype with different sets of observers.   Later 
in the derivation the metaprogram can apply finalizeCotype to create record structures 
that define the various members of the Packet family. 
 
We present two alternative refinements of BasicPacket that are simplified versions of 
the Packet family generated for the RADL instance running on the Landshark and ABA.   



45  

The spec IPPacket extends BasicPacket with observers that will become the fields of an 
IP packet: 
 
IPPacket = spec                   abridged set of observers of an IP packet 
    import BasicPacket 
    type IPAddr = Nat32  
 
   op pktLen             : Packet → Nat16 
   op pktID               : Packet → Nat16 
   op pktFlags          : Packet → Nat3 
   op pktTTL            : Packet → Nat8 
   op pktProtocol     : Packet → Nat8 
   op pktChecksum : Packet → Nat16  
   op pktSrcIP    : Packet → IPAddr 
   op pktDstIP    : Packet → IPAddr 
end-spec 
 
The following specification is a simplified specification for the message information that 
flows in a RADL system. 
 
RADLPacket = spec 
   import BasicPacket 
   op channel_id: Packet → Nat4                   4 bits 
   op data_size  : Packet → Nat16               16 bits 
   op buffer_size: Packet → Nat16 
end-spec 
 
We implemented the following syntax for defining a cotype in a Specware 
tactic/metaprogram: 
 
      transform S by { finalizeCoType(cotype, list of observers)} 
 
The transform analyzes the spec S and produces a refined specification that gives a 
record definition to the argument cotype with the specified list of observers in the given 
order.   We found the need to add the second argument (list of observers) since as we 
found more kinds of observers (ghost observers, defined observers, maintained 
observers), it became more complex to define a rule that pulled out exactly the 
observers that we wanted to package up.   Another issue is the order of fields in the 
defined record and whether padding is needed for address alignment. 

For example, 



46  

 
      transform S by { finalizeCoType(RADLPacket,      
                                                         [channel_id, buffer_size, data_size, payload])} 
 
introduces the following type definition in S 
 

type RADLPacket =  
{ channel_id : Nat4, 
  buffer_size : Nat16, 
  data_size   : Nat16, 
  payload      : Payload 
} 

 
The cotype definition transformation also gives definitions to the observers that are 
packaged up in the record:  
 

op channel_id(pkt: Packet): Nat4   = pkt.channel_id    
op buffer_size(pkt: Packet): Nat16 = pkt.buffer_size  

 
and so on.  The transformation also unfolds calls to them everywhere, eliminating them 
as functions.  For example 
 
op send (st:State) (chId:Nat4)  (pyld:Payload) 

  {st':State |  hist st' = hist st <| {state=st, time=clock st, action= Send(chId, pyld)} 
                            && outbox st’ = pyld} 
 

3.6.5.2 Synthesize	transformers	from	postconditions	
 
The second part of the finalizeCotype transformation synthesizes definitions for each 
transformer.   It does so by translating the coinductive constraints in the postconditions 
of transformers into updates of the newly-introduced cotype record.   For example, after 
a record definition has been given to State, then the recv transformer can be given a 
definition based on its postcondition: 
 
   op recv(st:State | stale st = Read? (last (hist st)).action): 
              {(st',pld):State*Payload 
              | hist st' = (hist st) <| {state=st, time=clock st, action = Recv pld} 
              && pld = recvMB st 
              && stale st' = false } 
    = st << {pld = recvMB, stale = false} 
 



47  

The right-hand sides of the equations are evaluated first, and then the changes are 
made.   Note that this transformation introduces a functional definition of the state 
change – it computes the new state as a function of the old/input state.   A later code 
generation transformation will translate the body into C assignment statements to the 
variables for pld and stale. 
 

3.6.6 Globalize	Transformation	

We extended a transformation that performs Globalization.  Its effect is to transform the 
implicit state in a coalgebraic specification to explicit global/shared state.   It allows us to 
generate truly imperative code.  
 
Globalization can be described via the following abstract example.  Here the cotype 
State has been defined as a pair and the observer c and transformers f and g are 
single-threaded on State; i.e. they take State as input and produce a State as output. 
 

S = spec 
 type State = {a:A, b:B} 
 op c(st:State):C = h(st.a, st.b) 
 op f(st:State)(arg:Arg): State = 
     st << {a = alpha st.a, b = beta st.b} 
 op g(st:State)(arg:Arg): State*D =  
     (st << {a = gamma st.a, b = delta st.b}, 
      eps (st.a) (st.b)) 
end-spec 

 
We implemented the following syntax for globalizing a cotype in a Specware 
tactic/metaprogram: 
 
      transform S by {globalize(State)} 
 
The Globalization transformation on a cotype State requires that the type be single-
threaded; i.e. such that there can be no two elements of the type simultaneously live 
during execution.   Single-threadedness can be detected statically, however, the 
finalizeCotype transformation produces single-threaded definitions, and so it provides 
suitable input to the Globalization transformation. 
 
Since Specware’s Metaslang language is functional, and has no notion of state, the 
Globalization transformation necessarily is a step from Metaslang toward an imperative 
language, CommonLisp and C in our case.   Its steps are to 



48  

 
1. Introduce a global variable of the cotype, say, var st:State. 
2. For each observer and transform, eliminate State as an explicit parameter and 

return value, and replace local references to state by global references. 
3. Replace record updates of the cotype by assignments  

 
Shown in a pseudo-imperative notation, the effect of Globalization on S is 
 

 type State = {a:A, b:B} 
 var st:State 
 
 op c():C = h(st.a, st.b) 
 op f(arg:Arg): Unit = 
     (  st.a := alpha st.a  
     || st.b := beta st.b ) 
 
 op g(arg:Arg): D =  
     (  st.a := gamma st.a  
     || st.b := delta st.b  
     || return (eps (st.a) (st.b)) 
     ) 

 
where we use the notation (P1 || P2 || … ||Pn) to denote an atomic region in which 
codes P1, P2, …, Pn execute in parallel.   The effect of Globalization is to introduce a 
global variable st of cotype State, and all accesses to st are now to the global (versus 
access to the parameter as before the transformation) and changes to fields of State 
are via destructive assignment rather than functional copy&modify.   Our ad-hoc 
notation here treats concurrent assignment statements in an atomic region, in order that 
invariants are not observed to be violated. 
 
The correctness of this transformation is straightforward in a sequential imperative 
language. The proof that this transformation works for distributed applications depends 
on assume-guarantee reasoning.  We did not work on extending Globalize to emit 
proofs since the proof-emitting C generator discussed later in Section 3.9 was intended 
to subsume this transformation. 
 

3.7 Proof Emitting Transformations 

Proof-emitting transformations was a key innovation that we developed in the HACMS 
project.  Figure 5 illustrates our approach to proof-emitting transformations and their role 



49  

in generating refinements and proofs. The figure depicts the action of applying 
transformation T to specification A.   The result is a generated refinement from A to B, 
represented by morphism σ.  Additionally, the transformation generates a proof term 
that can be used to discharge the proof obligation of the refinement. 

Conceptually, we treat a transformation as a mapping from a specification A to a triple 
that includes (1) a specification morphism σ, (2) the refined/target specification B, and 
(3) a proof term.   The proof term is a summary of the calculations performed in 
generating B from A.   Specware provides a general proof-obligation-generator utility 
that maps a specification morphism, such as σ, to a Metaslang formula that expresses 
its proof obligations (i.e. that the axioms of B imply the axioms of A modulo the 
translation induced by morphism σ).    The intent of the proof term generated by a 
transformation is that it can discharge the proof obligations of the generated morphism.    

 

Figure 5: Proof-emitting Transformation 
The goal here is to have an independent proof-checker verify that the proof term 
generated by the transformation does indeed prove the obligations generated by the 
proof-obligation-generator.    One feature of the structure of Figure 5 is that the left-hand 
side is independent of the proof-checker.   We wanted the freedom to build translators 
to any proof-checker that was rich enough to express the Metaslang logic. As an 
independent proof-checker we chose Isabelle since we already had a partial translator 
from the Metaslang logic of Specware to the Isabelle/HOL logic.   The following 

Generating Proofs of Refinements 

Spec A 

Spec B, 
proof term 

spec 
morphism σ 

 
 
Isabelle 
proof  
checker 
 
 
 

yes/no 

Metaslang 
formula 

translate 

generate 
proof 
obligations 
on σ conjecture 

translate spec and proof 
proof 

Transformation t:  Spec A �  <morphism σ, spec B, proof>  



50  

subsections describe several of the issues that arose in realizing this overall approach 
to generating proof-carrying code.  

To be clear, Specware’s transformations automatically carry out the calculation, 
producing a refined specification together with a checkable proof of the correctness of 
the refinement.   This means that each generated refinement also has a generated 
proof that discharges its obligations, without having to perform a post-hoc proof search.   
The Isar proof script is formulated to put Isabelle on a very tight leash – its proof steps 
are tightly controlled, so that it will not get in trouble by attempting to search.  After all, 
the transformation knows the structure of the calculation, so that is reflected in the proof 
script.  We believe that this approach to proof generation will be dramatically more 
economical than post-hoc verification. 
 

3.7.1 Instrumenting	transformations	to	record	calculation	chains	

We extended many of our library transformations to generate proof terms.  During the 
course of the project we tried a sequence of approaches to the structure of the proof 
terms.   Our first attempt was to record the sequence of equations used in a rewrite rule-
based simplification.   This was sufficient for several transformations, but could not 
handle proofs involving recursive transformation of terms.   Our second approach was 
to define transformation-specific datatypes to record transformation steps.   After 
instrumenting several transformations this way, it became clear that there were many 
commonalities and we felt the need (and possibility to define) a uniform representation 
of calculations performed by transformations.    Our third approach was to develop a 
uniform proof representation for all transformations.  A portion of the definition of our 
proof term specification is: 

type ProofInternal =  
    | Proof_UnfoldDef (MSType * QualifiedId * MSVars * MSTerm * MSTerm) 
    | Proof_EqSubterm (MSTerm * MSTerm * MSType * Path * ProofInternal) 
    | Proof_EqTrans (MSType * MSTerm * List (ProofInternal * MSTerm)) 
    | Proof_ImplTrans (MSTerm * ProofInternal * MSTerm * ProofInternal * MSTerm) 
    | Proof_ImplEq ProofInternal 
    | Proof_Cut (MSTerm * MSTerm * ProofInternal * ProofInternal) 
    | Proof_ImplIntro (MSTerm * MSTerm * String * ProofInternal) 
    | Proof_Assump (String * MSTerm) 
    | Proof_ForallE (Id * MSType * MSTerm * MSTerm* ProofInternal * ProofInternal) 
    | Proof_EqTrue (MSTerm * ProofInternal) 
    | Proof_Theorem (QualifiedId * MSTerm) 
    | Proof_Tactic (Tactic * MSTerm) 

 



51  

where, for example,  
• Proof_UnfoldDef (T, qid, vars, M, N) is a proof that  fa(vars) M=N at type T by 

unfolding the definition of qid, 
• Proof_EqSubterm(M,N,T,p,pf) is a proof that M = N : T from a proof pf : M.p = 

N.p, where M.p is the subterm of M at path p 
• Proof_EqSym(pf) is a proof that N=M from pf : M=N 

and so on. 
 
To give a sense of the details, consider the following rewrite steps performed in one of 
the HACMS derivations: 

{ 1: allOutNodes_of_addSupply } 
       allOutNodes (addSupply H nid) (Set.set_insert(nid, black H)) 
—-> allOutNodes H (Set.set_insert(nid, black H))   
{ 2: distribute_allOutNodes_over_set_insert } 
        allOutNodes H (Set.set_insert(nid, black H))   
—->  allOutNodes H (black H) \/ outNodes H nid 
{ 3: Set.associative_union } 
         roots H \/ (allOutNodes H (black H) \/ outNodes H nid) 
—->  (roots H \/ allOutNodes H (black H)) \/ outNodes H nid 

 
which is stored as the following proof term 
  

EqTrans(Bool,  
       roots H \/ allOutNodes H (black H) \/ outNodes H nid,  
           [Sym(Theorem(Set.associative_union,  
                    roots H \/ (allOutNodes H (black H) \/ outNodes H nid)  
                      = roots H \/ allOutNodes H (black H)  \/ outNodes H nid)),  
                 roots H \/ (allOutNodes H (black H) \/ outNodes H nid),  
        EqSubterm(roots H \/ (allOutNodes H (black H) \/ outNodes H nid),  
                  roots H \/ allOutNodes H  (Set.set_insert(nid, black H)), Bool, [1],  
                           Sym(Theorem(distribute_allOutNodes_over_set_insert,  
                                       allOutNodes H  (Set.set_insert(nid, black H))  
                                        = allOutNodes H (black H) \/ outNodes H nid))),  
                 roots H \/ allOutNodes H (Set.set_insert(nid, black H)),  
        EqSubterm(roots H  \/ allOutNodes H  
                        (Set.set_insert(nid, black H)),  
                  roots H   \/ allOutNodes(addSupply H nid)  
                        (Set.set_insert(nid, black H)), Bool, [1],  
                  Sym(Theorem(allOutNodes_of_addSupply,  
                              allOutNodes(addSupply H nid) (Set.set_insert(nid, black H))  
                               = allOutNodes H  (Set.set_insert(nid, black H))))),  
                  roots H \/ allOutNodes(addSupply H nid)  (Set.set_insert(nid, black H))]) 



52  

 
and is then rendered as a Isabelle/Isar proof script: 
 

have subeq100:  
     "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid  

        = roots H  \/ allOutNodes (addSupply H nid) (Set__set_insert(nid, black H))" 
 proof -  
   have "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid  
           = roots H  \/ (allOutNodes H (black H)  \/ outNodes H nid)"  
     proof -  
       have symeq95:  
             "roots H \/ (allOutNodes H (black H)   \/ outNodes H nid)  
          = (roots H \/ allOutNodes H (black H)) \/ outNodes H nid" 
         proof -  
           show "?thesis" by (auto simp only: Set__associative_union) 
         qed  
       show "?thesis" by (rule symeq95[symmetric])  
     qed  
   also 
   have "... =  roots H  \/ allOutNodes H (Set__set_insert(nid, black H))"  
     proof -  
       have subeq97:  
             "allOutNodes H (black H) \/ outNodes H nid  
                = allOutNodes H (Set__set_insert(nid, black H))" 
         proof -  
           have symeq96:  
                 "allOutNodes H (Set__set_insert(nid, black H))  
                    = allOutNodes H (black H)   \/ outNodes H nid” 
             proof -  
               show "?thesis"  
                 by (auto simp only: distribute_allOutNodes_over_set_insert) 
             qed  
           show "?thesis" by (rule symeq96[symmetric])  
         qed  
       show "?thesis" by (rule arg_cong[OF subeq97])  
     qed  
… 
   finally (HOL.trans) 
   show "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid  
           = roots H \/ allOutNodes (addSupply H nid) (Set__set_insert(nid, black H))" . 
 qed 
 



53  

3.7.2 Translator	from	Metaslang	logic	to	Isabelle	logic	
 
We extended an existing partial translator from Metaslang to Isabelle for two purposes.   
One was to translate refinement obligations and the other was to translate our proof 
terms into proof scripts that could be checked against the translated proof obligations. 

Many aspects of the translation between these two higher-order logics were 
straightforward.   However, completing this translator turned out to be trickier and take 
longer than expected.  One key issue was translating Metaslang specs into Isabelle 
specs, and a special case is the translation of Metaslang formulas to Isabelle formulas.    
This was a source of ongoing difficulties since the Metaslang and Isabelle logics are 
similar but have many detailed differences.    We worked on resolving two such 
differences:  since Isabelle does not support predicate subtypes (including dependent 
types), we need to include the predicates from such types into the translation of a 
Metaslang expression, typically as an antecedent.  We explored several variants of 
whether the antecedent should be normalized to the top level, or kept locally to preserve 
structure.     
 
Another difference is that Isabelle does not support a name translation operation, while 
it is a basic operation on Metaslang specifications.  This is a difficult feature to handle 
since the name translation must be applied recursively through the entire import 
structure of a specification. We completed work on handling the name translation 
operation on the Metaslang side.    Since Isabelle doesn’t have this feature, our 
translator from Metaslang to Isabelle had to perform a recursive copy-and-modify on the 
entire import structure of a specification and pass the whole structure to Isabelle, rather 
than appealing to Isabelle built-in specifications.   This work was a part of the larger goal 
of supporting the generation of proofs that discharge automatically generated proof 
obligations for refinement steps.   We continued to work on extending the Observer 
Maintenance and Observer Implementation transformations to emit proofs at application 
time. 
 
Another difference:  We worked on improving the generation of Isabelle proofs from 
transformation sequences. The proofs include references to particular subterms that are 
transformed.  These are indicated by their path from the root of the term.  However, 
translation to Isabelle does not always preserve the term structure. In particular, in 
quantified expressions subtype predicates are added which can complicate the 
subexpression paths. We made the translation more robust by exploiting the fact that 
these predicates are always conjoined at the beginning of a sub-formula.   We made 
changes to our translator from Specware logic to Isabelle logic to reflect the use of 
named predicate subtypes – previously the translation was losing the predicate subtype, 
thereby causing some proofs to fail.    



54  

 
Another difference/change:  We worked on supporting type refinement such as occurs 
during the finalizeCotype transformation where a previously abstract type is refined to 
be a record type. Isabelle requires that type symbols and their definitions be introduced 
at the same time, which a refinement system like Specware does not. To support this 
we introduced a transformation to explicate the previously implicit morphism that arises 
when a type symbol is defined later than its introduction in a Specware spec. The 
morphism is between the spec with the abstract type and the spec with the defined type. 
The obligations of the morphism are that the axioms on the abstract type are theorems 
on the defined type. In the case of finalizeCotype, the relevant axioms are that the 
postconditions of the state transformers are true given their preconditions. These pre- 
and postconditions are preserved in the final spec so the obligations are trivially true. 
The finalizeCotype transformation also provides bodies for the functions specified by 
pre- and post-conditions, so we also have the obligation that the bodies satisfy 
postconditions given the pre-conditions, which follows simply given that the bodies are 
mechanically derived from the postconditions. 
 
We also revised our approach to a key problem in generating Isabelle proof scripts.   
The problem has to do with the straightforward notion of substitutivity:   
 
     if x=y then f(x)=f(y) 
 
When we transform an expression f(x) by simplifying its subterm x to y, then we want a 
proof that f(x)=f(y).   The problem has been identifying to Isabelle which subterms x and 
y are equal, since the paths to the subterms are typically modified during our translation 
from Specware to Isabelle.   Previously we had been explicitly giving the context/path to 
x by means of a lambda 
    lambda(v)f[v] 
to indicate the hole where the subterm x occurs.   We found a simpler solution in using 
the argCong mechanism of Isabelle, which automatically searches for the subterms x 
and y and then infers the desired result f(x)=f(y).    This helps in pushing through the 
proofs emitted by our finalizeCotype transformation. 
 
Another problem has to do with the handling of conditional rewrites.   In addition to 
conveying the condition of the rewrite to Isabelle, sometimes the variables are 
quantified over a subtype, so the subtype effectively becomes an additional condition.  
We extended our translation mechanisms accordingly. 
 
Another problem arises due to the use of speculative rewriting in the rewrite engine.   
Some rewrites may not improve the code so they are applied speculatively, and if they 



55  

do not enable an improvement, then they are withdrawn and rewriting continues.    
Obviously we do not want that backtracking reflected in the generated proof structure, 
so we added a mechanism to detect backtracking and to produce a proof script 
reflecting the actual path to the transformed results. 
 
Several other improvements were needed to our translation from Specware/Metaslang 
to Isabelle.   First, the translate construct is used to rename symbols from an imported 
theory.   For example, the theory of linear orders might have its type renamed time’ in 
order to provide a simple appropriately named theory of time.   The translate construct 
though caused an exponential blowup of copying in our previous implementation, so we 
needed to cache translated imports to avoid duplication.   This problem only arose as 
we introduced a monad for formalizing the interleaving of threads that we need to 
specify and reason about the concurrent execution of mutator and collector.   We also 
fixed errors in our spec-substitution construct, which was causing problems in 
translating proof terms from Metaslang to Isabelle.   The solution was to apply 
substitutions to specs but not the spec-element terms, but instead to regenerate them, 
exploiting context. 
 
We continued to develop and store proofs with theorems for the specs in the Specware 
library.   The derivations invoke theorems from imported specs to perform rewrites and 
the generated Isabelle proof scripts depend on those library proofs. 
 

3.8 Specware Infrastructure 

We extended Specware’s infrastructure in a number of directions to support the 
coalgebraic specifications and their refinement. 

We improved Specware’s transformation for Isomorphic Type-refinement, so that it 
handles patterns.  We improved the rewriter's handling of curried functions.  We 
modified Specware's type-checker algorithm to generate type-coercions, which means 
fewer proof obligations are generated.  We improved printing of Specware specs and 
terms, and improved the efficiency of code generation for both in time and space usage.  
We extended the type-checker so it could infer tighter sub-types for the results of ops 
with specialized inputs. We added an indirection construct to the pragma language to 
allow proofs to be separated from specs, so the specs are more readable.  We 
improved the proof obligation generated for a refined op so that it is easier to prove – 
making the obligation extensional and including subtype conditions of argument 
variables. 
 



56  

We implemented a version of function unfolding that works with functions specified 
using pre and post-conditions, by combining the postconditions.  We also adapted the 
common expression abstraction tactic to work properly with assignment statements. 
 

3.8.1 Higher-Order	Matching	Algorithm	
 
We implemented a feature in the higher-order matcher where it avoids generating 
subgoals for a subtype mismatch that could be discharged by subtype obligations. 
Previously, if the term being matched had an associated subtype obligation, to show the 
rule matched, one would have to prove the obligation was true using the rewriter. This 
was at best inconvenient. Now we assume that obligations are proved in Isabelle. 
 
We fixed type matching in Specware’s higher-order matcher – a type variable is now 
bound to the least supertype of all the types it is matched against.   We also made 
changes to the Isabelle translator since, in some cases, it was not extracting composite 
subtype predicates correctly for nested subtypes.  We also needed to rationalize the 
ordering of the extracted predicates.   
 

3.8.2 Support	for	calculation	

Support for calculational inference was extended from equational to handle conditional 
equations and to handle strengthening of propositions (e.g. the Observer Refinement 
calculation above). 

3.8.3 Tactic	language	
 
We also modified the transformation script language to make it simpler to read, write, 
parse, and automatically generate scripts.  This has allowed us to reformulate several 
existing transformations into the following normal form:  generate a derivation script and 
then run it.  This normal form has several advantages:  

1. it replaces the writing of arbitrary metaprograms that manipulate abstract syntax, 
2. it extends the range of people who can write transformations 
3. it prepares the ground for emitting proofs as a by-product of transformation. 

 

We extended the scripting language to support verbatim text for generating into 
CommonLisp.  This allows us to add Lisp-specific instrumentation, monitoring, and other 
support code as an integral part of the derivation script.   We fixed the error handling for 
transformation moves that fail, so an error message is presented instead of going into 
the debugger. 



57  

3.8.4 Transformation	Support	
 
We improved Specware’s transformation language machinery so that it is easier to add 
new transformations both for spec-level transformations and term-level transformations. 
Now, it is only necessary to define the transformation as a function with a suitable type, 
without having to add special interface code to the transformation engine. 
 
We added support for user-defined transformations. Previously, adding a new spec 
transformation function would involve changes to the transformation language parser.  
We have now implemented a scheme whereby the signature of the transformation 
function determines the syntax in the transformation language. This makes it much 
easier for developers to incorporate new transformations into the transformation 
language, especially when the transformation has multiple options and lists of rewrite 
rules or functions as arguments. To implement this interpreter capability we had to 
augment the code generator to output type information for transformation functions so 
its arguments could be interpreted at run-time. As the interpreter has to work with 
objects of multiple types, we needed to tag values with their type and provide an 
interface to the transformation functions that accepts these tagged values. 
 
The basis of the transformation system extension is to have the signature of the 
Specware transformation function determine the syntax of its use in the transformation 
language. For example, 
 

 op MSTermTransform.rewrite: Spec -> PathTerm -> RuleSpecs      
                     -> RewriteOptions -> MSTerm 
 type RewriteOptions =  
    {trace     : Nat,         % Trace level 0, 1, 2, 3 
     debug? : Bool,        % Debug matching of rules 
     depth    : Nat}         % # of rewrites allowed 

 
is the (slightly simplified) signature of a rewrite transformation that transforms the 
current term using a list of transformation rules and with three options. The 
“MSTermTransform.” qualifier tells Specware that this is a term transformation. The 
spec and the term are implicit, i.e. given by the current transformation context. The 
syntax for using this in a transformation sequence is, for example:  
 
 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true]  
         {trace = 2, debug?= true, depth = 5} 
 



58  

where unfold open?  is the rule for unfolding the definition of open? and lr thm takes an 
equality theorem thm as a left-to-right transformation rule. The system allows for 
defaults everywhere so the options between braces can usually be completely omitted, 
or any subset can be specified. E.g. 
 
 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true]  
 
or 
 
 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true] {depth = 5} 
 
or just 
 
   rewrite 
 
which just uses the built-in simplification included in the rewriter without any rewrite 
rules. 
 
Previously, allowing all these syntactic options had to be specifically programmed, so 
changing an interface, in particular adding options, was a significant amount of work 
that required knowledge of the internals of the syntax system. Having the syntax 
automatically follow from the signature makes it easy for any Specware user to add new 
transformations or extend existing ones. 

3.8.5 Tracing	support	
 
We also made improvements to the transformation system so that it prints out a much 
better focused presentation of its (mostly) equational calculations. 

3.8.6 Specware	Library	
 
We coalesced several variants of specifications for finite sets, bags, lists, maps, stacks, 
as well as standard refinements of them.  We extended the Specware specification 
libraries with more proofs of theorems, which are used to support calculations at 
program-synthesis time.    
 
We improved the Specware DataStructures library, with an emphasis on pushing the 
proofs through Isabelle and fixing any issues revealed in the process. The 
DataStructures library defines and refines container data structures, including Sets, 
Bags, Maps, etc. We added many Isabelle proofs (including proving quite a few new, 
generally useful auxiliary properties).  Perhaps the most interesting proofs were those 
justifying the correctness of the refinements (expressed as morphisms) of various 



59  

structures in terms of the others, many of which make heavy use of 'fold' operations.  
The library work is still ongoing, but the Sets and Bags libraries are now completely 
proven. 
 
We also refurbished many of the specs in the HACMS repository, to make them 
compatible with the latest version of Specware and its libraries.  We also worked on 
Specware documentation, testing, and miscellaneous maintenance tasks and 
improvements (e.g., modernizing the syntax of important specs). 
 

3.8.7 Open-Sourcing	Specware	
 
We open-sourced Specware in 2015 using Github.  Users can download it from 
https://github.com/KestrelInstitute/Specware.     The README file guides users in the 
installation process.   The Specware.org website contains a tutorial and documentation 
on the use of Specware. 
 

3.9 Generator of imperative code 

This section describes our working C generator based on Specware transformations.   
We made some efforts to extend it to emit proofs, but decided to pursue a different, 
more structured, approach in parallel.  This new approach is described in Section 7.  
Unfortunately the new approach was not completed by the end of Phase 2, so we 
continued to use the older generator, which is described below. 

Our C generator is based on a sequence of specification transformations that 
correspond to compiler passes and that are intended to be simple enough that we can 
augment them to emit proofs at application time.   We completed transformations for 
linearizing nested terms in single-threaded state transformer definitions and related 
code needed to prepare for globalizing the single-threaded state in our coalgebraic 
operations.  We made numerous other internal improvements.    We worked on issues 
related to handling pattern-matching in the compiler – since C doesn’t support patterns 
for de/construction, there is no direct translation of this feature of MetaSlang, so special 
control mechanisms are needed to handle matches that partially succeed before failure.  

We extended earlier work to propagate type information through our abstract syntax 
trees so that ambiguous constants (e.g.  1 can be a signed or unsigned 16 or 32 bit 
integer) can be consistently typed when passed to C.   We made many internal 
improvements in support of C generation.     We worked to generalize and clean up the 
transformation sequence that generates C (about 23 transformations), and to develop a 
compilation specification that allows expressing some C-specific information:  import 



60  

files, native library types and functions that are used in the MetaSlang specification, 
translation of field names, and any special-case definitions. During this period we were 
able to generate, compile, and run idiomatic C code on some sample specifications 
written in our mixed algebraic/coalgebraic style.  

Language Morphisms 

Language morphisms are a generalization and formalization of what had been ad hoc 
features for translation to Isabelle and Haskell.  Special translate pragmas within a spec 
can now be used to define language-specific rules for translating Specware types and 
ops.  These pragmas now have an internal structure that is parsed in a very generic 
manner to obtain five kinds of information: 

Imports 

  This section simply lists a sequence of files to be imported into the generated target 
file.  For example, a translation to C might include: 

-import 
  stdlib.h   % boilerplate 
  linux/udp.h % structures specific to UDP protocol 
  mycode.h   % interfaces to ad-hoc application-specific code 
 
Verbatim 

This section is intended to be used sparingly, but provides an escape mechanism to 
insert arbitrary text verbatim into the target file.  It is intended to handle ad hoc problems 
that resist a generic solution. 

For example, the dereference operator * in C is a function and can be modeled 
relatively simply within Specware, but the address-of operator & is not a function since 
substitution of equals for equals fails.  There thus is no simple way to target C 
expressions headed by &, but some special cases can be handled on an ad hoc basis 
by allowing Specware operators to map to C macros that include &.  For example: 

-verbatim 
  #define atomic_read_at(x) (atomic_read(&x)) 
 
Verbatim text may create problems for verification, but it isolates such problems to a 
small set of clearly identified operators. 



61  

Also, because such verbatim text must appear declaratively within the specs being 
used, those that lack such tricks can be known to be free of such problems — there is 
no programmatic mechanism secretly including such tricks as part of the translation. 

Translate 

This is the main section, and provides for translation of Specware names (for types, 
ops, and field references) to target names or terms, along with an indication as to the 
location of the target (primitive/syntactic or file location).  Translations to complex terms 
are implemented as target macros. 

-translate 
  type Nat.Nat32    -> uint32_t      primitive 
  op Nat.BVAND32    -> & infix     primitive 
  type udp_table    -> struct udp_table  in net/udp.h    
  field udp_table.csum  -> udp_table.check   in net/udp.h 
  op Null_ID      -> ((Sock_ID) NULL)    macro 
  op sizeof_udp_hdr   -> sizeof (struct udphdr)  macro 
 
Native 

This section provides a simpler form of translation where the named type or op is 
assumed to translate directly to the same name in the target. 

-native 
 op ntohs in /drivers/staging/rtl8712/generic.h 
 op udp_hdr in linux/udp.h 
 

Language morphism pragmas for any given spec are collected recursively through all 
imported specs, making it possible to distribute the language-specific translation rules 
for types and ops into the local contexts where they are introduced or defined.  
Alternatively, the translations could be handled en masse by one pragma in the top-
level spec, for example if one wished to have alternative top-level specs with different 
rules targeting different compilers. 

Future work could easily validate that a type or op declared to be in a target file was at 
least nominally present there.  With language-specific parsing of the target files. it would 
be possible to verify appropriate typing, etc. 
 
Slices 



62  

A perennial problem with processing specs has been that each processing context may 
be concerned with just some aspects of a spec, requiring ad hoc code to determine 
which elements of the spec to process and which elements to ignore, making such 
processing fragile and hard to maintain as Specware evolves. 

One aspect of this problem is that alternative notions such as defined, executable, 
implemented, primitive, hand-coded, etc. have tended to be conflated within such 
processing code, sometimes confusingly (and even inappropriately) using the same 
tests in contexts where slightly differing ones were needed. 

There also were early attempts to create more manageable artifacts by simply 
subtracting out undesired portions of a spec, however this led to ill-formed specs that 
contained the information of interest but were missing semantically important theorems, 
subtype predicates, etc. 

Slices provide progress towards a generic solution to this problem by layering filters 
over specs to provide ad hoc tailored views.  They leave the spec itself unaltered but 
add tables describing which elements of the spec have various desired attributes.  Each 
particular processing context can then view the spec through such a filter, simplifying 
the processing context while avoiding logical problems associated with ill-formed specs.  

We continued to develop and store proofs with theorems for the specs in the Specware 
library.   The derivations invoke theorems from imported specs to perform rewrites and 
the generated Isabelle proof scripts depend on those library proofs.   In several 
instances we found the need to add conditions to theorems to enable proofs.   This then 
requires ensuring that the mutator and collector operations have pre/post-conditions 
strong enough to discharge those new conditions.  



63  

4 RESULTS AND DISCUSSION 
 
This section presents the results of our work in Phase 1 (synthesis of code for the UDP 
protocol) and in Phase 2 (synthesis of transport-level communication code for the RADL 
architecture). 

4.1 Generating UDP handling code for the Linux Kernel 
 
In Phase 1, we decided to focus our efforts on the UDP transport-layer protocol.  It is 
relatively simple, providing no guarantees of reliable delivery, but it is efficient and 
useful for applications such as video streaming.   The simplicity of the protocol allowed 
us to make a first pass at the whole synthesis process: formal specification, 
transformations to generate refinements, generation of efficient C code, and co-
generation of proofs.    
 
Current implementations of UDP continue to suffer from a variety of common 
vulnerabilities.   Here are just two recent Linux-related CVE entries out of hundreds: 

• CVE-2015-8605: UDP payload length not properly checked, allowing remote 
attackers to cause a denial of service (in Ubuntu before 4.3.3-P1) 

• CVE-2015-5366:  The (1) udp_recvmsg and (2) udpv6_recvmsg functions in the 
Linux kernel before 4.0.6 provide inappropriate -EAGAIN return values, which 
allows remote attackers to cause a denial of service. 

 
Our goal was to generate C implementations of UDP code that would plug into the Linux 
kernel running on the Landshark and ABA.  The second key decision was to base our 
formal specifications on the excellent work done at the University of Cambridge on a 
HOL specification of TCP/UDP/IP.  That work, which we refer to as the NetSem project 
(simply, NetSem), focused on a transition system model that conforms to relevant 
RFC’s as well as the de facto standards provided by the BSD, Linux, and Windows 
implementations of the TCP/UDP/IP protocol stack.   To our knowledge, the HOL 
specification provides the most comprehensive, precise, and validated model of the 
protocol stack, so we used it as a starting point and reference standard.   Our project 
has different goals than NetSem, since our goal was to develop a specification of 
protocol requirements and to refine those specifications to efficient, usable code via 
mechanized transformations.  Also, rather than performing post hoc proofs of 
properties, our goal was to demonstrate the co-generation of code and proofs. 
 
Specification 
 
We first focused on 3 NetSem rules (udp_deliver_1/2/3) that capture the essential 
semantics of receiving a UDP datagram in Linux, specifically the udp_rcv operation.   



64  

The normal effect is to copy the datagram received off the wire to the input queue of the 
appropriate socket.   The NetSem rules capture the normal case and four exceptional 
cases.  All of these were formalized as cases (trace predicates).    
 
The various cases of the Linux processing of UDP receive can be specified as follows 
 
1.  Normal case 
  dequeue_iq (iq h) = (iq h', Some (UDP dgram)) 
  && dgram.is1 = Some i3 
  && dgram.is2 = Some i4 
  && dgram.ps1 = ps3 
  && dgram.ps2 = ps4  
  && dgram.data = data     
  && i4 in? local_ips (ifds h)            
  && ~(is_broadormulticast (ifds h) i4)   
  && ~(is_broadormulticast (ifds h) i3)   
  && Some sid = lookup_udp (socks h) (i3,ps3,i4,ps4) (bound h) (arch h) 
  && sock    = TMApply (socks h, sid)               % bind sock  
  && sock.pr = UDP_PROTO (rcvq)                  % bind rcvq                                                  
  && rcvq' = rcvq <| Dgram_msg ( Some i3, ps3, data)  
  && sock' = sock << {pr=UDP_PROTO (rcvq')}  % update socket component  
  && socks h' = update (socks h) sid sock'           % update host components   
  && oq h' = oq h 
  && udp_host_frame_ax (h,h') 
 
2a. Exception case: no local/destination socket 
  vars:  dgram, i3,i4,ps3,ps4,data, icmp 
  dequeue_iq (iq h) = (iq h', Some (UDP dgram)) 
  && dgram.is1 = Some i3 
  && dgram.is2 = Some i4 
  && dgram.ps1 = ps3 
  && dgram.ps2 = ps4  
  && i4 in? local_ips (ifds h)            
  && ~(is_broadormulticast (ifds h) i4)   
  && ~(is_broadormulticast (ifds h) i3)   
  && None = lookup_udp (socks h) (i3,ps3,i4,ps4) (bound h) (arch h) 
  && icmp = ICMP {is1 = Some i4,         % Create ICMP message            
                               is2 = Some i3,    
                               … }                       
  && (if icmp_to_go                % update host components   
        then (oq h', true) = enqueue_oq(oq h, icmp)  
      else oq h' = oq h ) 
  && socks h' = socks h 
  && udp_host_frame_ax (h,h’) 
 
2b,c,d.  Exception cases: bad packets are dropped 



65  

  dequeue_iq (iq h) = (iq h', Some (UDP dgram)) 
  && dgram.is2 = Some i4 
  && dgram.ps2 = ps4  
  && i4 in? local_ips (ifds h)            
  && is_broadormulticast (ifds h) i4      % broadcast or multicast dest 
  && udp_host_frame_ax (h,h') 
  dequeue_iq (iq h) = (iq h', Some (UDP dgram)) 
  && dgram.is2 = Some i4 
  && dgram.ps2 = ps4  
  && i4 in? local_ips (ifds h)            
  && dgram.is1 = None                              % no Datagram        
  && udp_host_frame_ax (h,h') 
  dequeue_iq (iq h) = (iq h', Some (UDP dgram)) 
  && dgram.is2 = Some i4 
  && dgram.ps2 = ps4  
  && i4 in? local_ips (ifds h)            
  && dgram.is1 = Some i3 
  && is_broadormulticast (ifds h) i3   % broadcast or multicast source 
  && udp_host_frame_ax (h,h’) 
 
Applying the mergeRules transformation to these cases results in the following 
specification for the udp_rev transformer: 
 
op udp_rcv(h:host): 
   {h': host |  
     iq h' = iq_rest(iq h)  
     && (case iq_head(iq h) 
           of Some (UDP dgram) ->  
              case dgram.is1 of 
                | None -> (case dgram.is2 of Some i4 -> i4 in? local_ips(ifds h)) 
                | Some i3 ->  
                  (case dgram.is2 
                    of Some i4 ->  
                       let ps3 = dgram.ps1 in let ps4 = dgram.ps2 in  
                       let data = dgram.data in  
                       i4 in? local_ips(ifds h)  
                        && (if ~(is_broadormulticast(ifds h) i4) 
                             then  
                               if ~(is_broadormulticast(ifds h) i3) 
                                then  
                                  case lookup_udp(socks h) (i3, ps3, i4, ps4) (bound h) (arch h) 
                                   of Some sid ->  
                                      (oq h' = oq h  
                                       && (let sock = Map.TMApply(socks h, sid) in  
                                           (case sock.pr 
                                             of UDP_PROTO rcvq ->  



66  

                                                (socks h'  
                                                 = Map.update(socks h) sid  
                                                     (sock  
                                                       << {pr =  
                                                             UDP_PROTO 
                                                               (rcvq <| Dgram_msg(Some i3, ps3, data))})) 
                                              | _ -> false))) 
                                    | None ->  
                                      (socks h' = socks h  
                                       && (oq h', true) = enqueue_oq(oq h, ICMP {is1 = Some i4,… }))  
                               else true  
                            else true)))} 
 
 
The specification of UDP send code (udp_send) is much more complex.  Our 
specification has some 37 rules partitioned into 11 modules, each representing a stage 
in transmitting a UDP datagram.    Without partitioning into modules we would have had 
thousands of cases to handle.   
 
Summaries of the metaprograms that we wrote to generate C code for udp_rcv and 
udp_send are shown in Figure 6 and Figure 7. 
 
 

 
Figure 6: Metaprogram for UDP receive 

 
 

 
 

5O-U-BM� QFD-G-DBU-PO+���E-T.9ODU-WF�TFU�PG�DBTFT�
�
7; �����NFSHF�9MFT���;1�GPS�9EQAR9F9FASDWATLC�
7� �����NFSHF�9MFT���;1�GPS�9EQASDW�
�� ������-OUSPE9DF�E-T.9ODU-WF�EFG-O-U-POT�
9�� ���5OUSPE9DF�EFG-O-U-POT�GPS�PCTFSWFST�������
�PU� ���G-OBM-=F�PU<QF�4PTU�
0FGT� �5OUSPE9DF�EFG-O-U-POT�GPS�UFTU-OH�
:SFQ ���:SFQBSF�GPS���HFOFSBU-PO�
�HFO ��3FOFSBUF���DPEF��



67  

 
Figure 7:  Metaprogram for UDP send 

 
Specware executes the metaprograms automatically and generates C code that we 
inserted and tested in the Linux kernel.   Figure 8 shows some statistics about the 
derivation of UDP processing code.  
 

 
 

Figure 8: Statistics on the Derivation of UDP processing code 
 
 
 
 
 
 

5O-U-BM� QFD-G-DBU-PO+���E-T.9ODU-WF�TFU�PG�DBTFT�
�
7�� �����NFSHF�9MFT���;1�GPS�9EQATFOENTH�
>�
7��� ���NFSHF�9MFT���;1�GPS�9EQATFOENTHAP9U�
9�� ���5OUSPE9DF�EFG-O-U-POT�GPS�PCTFSWFST�������
 -NQ��� -NQM-G<�F;QSFTT-POT�
�PU� ���G-OBM-=F�PU<QF�4PTU�
0FGT� �5OUSPE9DF�EFG-O-U-POT�GPS�UFTU-OH�
:SFQ ���:SFQBSF�GPS���HFOFSBU-PO�
�HFO ��3FOFSBUF���DPEF��

udp_rcv 
lines of text 

udp_sendmsg 
lines of text 

domain specification 740 2200 

metaprogram 500 1067 

generated Metaslang 1025 2470 

generated CommonLisp 2300 3000 

generated C 220 955 

Isabelle proof scripts 9300 lines, 
350 proof steps 

>20450 lines, 
1500 proof steps 



68  

4.2 Composition of Protocols 

In Phase 1 we began investigating the possibility of composing protocols out of reusable 
parts.   As a simple first exercise, we specified a simplified version of the http protocol 
and an abstract scheme/template for command processing.   We instantiated the 
scheme with the details of the http specification (via a pushout) and then optimized the 
result.    This exercise showed that a simple scheme (with one normal case and one 
exception case) could instantiate to a system specification with two normal cases and 
five exception cases.   This gave us confidence that an abstract scheme could cover the 
processing of complex protocols.    We performed a case study on a simplified HTTP 
protocol, motivated by the fact that ROS uses xmlrpc and http on top of the TCP/IP 
stack.   

Our general approach stems from the observation that we can think of protocols as 
providing the means for detecting and/or mitigating the effect of specific classes of faults 
and attacks that can arise in a real-world communication channel.    See the figures 
below for tables of various faults/attacks and the means for detecting (Figure 9) and for 
mitigating (Figure 10) them. 

 

Figure 9: Threats and Detection Mechanisms 

 

Threat Model Detection Mechanism 

packet  
corruption 

nondeterministically 
bit flips 

parity bit, 
checksum 

dropped 
packets 

nondeterministically 
drop packets sequence numbers 

out of order 
packets 

nondeterministically 
reorder packets 

sequence 
numbers 

eavesdropping copy packets 
to external agent 

quantum-based 
methods? 

spoofing false sensor reads, 
faked sends 

cross-checking, 
authentication 



69  

 

Figure 10:  Threats and their Mitigation Mechanisms 

Our goal was to abstractly and formally specify the various means for detecting and 
mitigating such faults.  If a channel is expected to suffer several such classes of faults, 
then we wanted to be able to compose a fault model from the models of the individual 
faults.  Moreover, and most importantly, if we had abstract mitigation schemes for each 
fault class, then we wanted to develop a mechanism for composing a complex protocol 
from those mechanisms that provides mitigation for the complex fault that the channel 
suffers.   For example, if we are dealing with a channel that may corrupt individual bits, 
and may drop random packets, and we have mitigation means for addressing corruption 
and dropped packets, then we would like to compose those means into one protocol 
that approximates (or achieves) ideal communication over a channel that may corrupt 
bits and drop packets. 

We also explored various ways to express the threat/fault/attack models and the 
corresponding mitigation mechanisms.   Our first step was to formalize the fault/attack 
models.  Our approach is to specify the channel in terms of an input/output relation on 
message streams.   Here we abbreviate the ghost observer sent by s, and the ghost 
observer received by r: 

1. A medium that can drop messages can be specified by a substream relation; 

Mediumdrop s r =   (s⊒ r) 

where s⊒ r holds exactly when each message in r occurs once in s and the messages in 
r occur in the same order as in s. 

Threat Model Mitigation Mechanism 

packet  
corruption 

nondeterministically 
bit flips 

Error-Correcting 
Codes 

dropped 
packets 

nondeterministically 
drop packets 

ACK + timeout + 
retransmit 

out of order 
packets 

nondeterministically 
reorder packets 

sequence 
numbers 

eavesdropping copy packets 
to external agent encryption 

spoofing false sensor reads, 
faked sends 

authentication, 
detect-and-drop 



70  

2.  A medium that can reorder messages can be specified by a bijective relation; 

Mediumreorder s r =  (s ⟷ r) 

where s ⟷ r holds exactly when there is a bijection between the messages in s and 
the messages in r.  

If we want to have a medium that has several such properties it turns out we can 
compose its specification via relational composition (rather than some form of 
conjunction, our first thought).   So a medium that can both drop messages and reorder 
them can be specified either as 

Mediumreorder&drop s r =  (s (⟷ ; ⊒) r)               

i.e. first reorder, then drop messages or 

Mediumdrop&reorder s r =  (s (⊒;⟷) r)               

i.e. first drop messages, then reorder where (R;S) denotes the relational composition of 
relations R and S: 

x(R;S)y = ∃z(xRz ⋀ zSy). 

We could write these definitions more simply as 

Mediumreorder&drop =  (⟷ ; ⊒) 

and in this case we actually have the nice law that the composition is commutative: 

       (⊒;⟷)=  (⟷ ; ⊒) 

so 

Mediumreorder&drop = Mediumdrop&reorder 

Observation 1: we want to start with the assumption of a perfect medium (s=r) and then 
add progressively more realistic models of the medium.   The transition from (s=r) to, 
say, (s ⊒ r) is one of generalization, so our approach is to work with successively more 
general media, each requiring progressively more complex mitigation mechanisms.   
The fact of commutative composition of some threat models, as above, suggests that 
the corresponding mitigation mechanisms may (or should) also be commutative. 



71  

Observation 2:  It is straightforward to extend the composition mechanisms above to 
handle latency (cf. Section 3.4.4): the latency of the composition of two relations is the 
sum of the latency of individual relations. 

Observation 3: Specifications of systems in general, and communication systems and 
their protocols in particular, have at least two levels of specification.   One level is the 
Global Specification (aka god’s eye view) which allows us to assert properties about all 
system observables, even though no component of the system has access to all such 
observables (directly).   The other level is the Local or component view (aka worm’s eye 
view), which asserts constraints over the observables that are accessible to a particular 
component.   Actual component code must operate at the local level, but most safety 
and security properties are most naturally expressible at the Global level.   The 
input/output relation for the medium is expressed at the global level since no component 
can actually observe the relation directly. 

We analyzed threat/fault/attack models and specified media that can drop, reorder, 
duplicate, insert, and corrupt messages in terms of input/output relations on message 
streams. We proved the composition of these 5 atomic threat models to be 
commutative. As a result, media in which all or some of these threats occur 
simultaneously can be expressed by a simple composition of the atomic models. 

 

Figure 11:  Attack Models 

An unfinished goal of this project was to be able to prove that the corresponding generic 
mitigation protocols have the same property, which would mean that any network 
protocol could be specified as a simple composition (i.e. stack) of atomic micro-
protocols. 

 

4.3 Generating a family of PubSub Implementations 
 
During Phase 2, we derived a family of Publish-Subscribe transport layer codes 
targeted to the CertiKOS layer on the Landshark and ABA.  Figure 12 shows a roadmap 
of the derivations we performed.   Each derivation starts from a common specification of 



72  

a communication requirement.  We derived concrete C codes needed to support IPC, 
IVC, CertiKOS-process, and IP-based communications on the Landshark and ABA 
platforms.    In the following sections, we give more detail of each derivation. 
 

 
Figure 12: Derivational Family Tree of PubSub Protocol Codes 

 
 
Our starting point is the most abstract logical specification of a communication 
requirement, as discussed in Section 3.5.1.   In terms of a diagram, that specification 
has the structured form depicted in Figure 13: 
 

 
Figure 13:  Specification Diagram of Communication Requirements 

 

Pub-Sub Reqt 

concurrent 
FlipFlop Buffers 

C Code 

low-level RADL 
transport spec 

Inter-VM Comm 

C 
generator 

� proofs 

� proofs 

� proofs 

~63 xforms 

~14 xforms 

C Code 

� proofs 

Intra-VM Comm 

C 
generator 

C Code 

IP-based Comm 

C 
generator � proofs � proofs 

~10 xforms 

BasicComm 
SubRqt 

PubRqt 
SystemRqt 



73  

where the boxes denote specifications and the arrows denote morphisms (here the 
arrows are the special case of an import morphism).      
 

4.3.1 Introducing	a	Communication	Channel	

We begin to satisfy the requirements of this structured specification by applying the 
Periodic Protocol Theory that was discussed in Section 3.6.1, which added a 
communication channel and an operation for periodically publishing the current value of 
the pub_topic.  This refined structure is strong enough to prove the Global_Invariant 
axiom.  At the same time, it introduces new local requirements, expressed as axioms, 
which will lead to further refinements.   Diagrammatically, this is shown in Figure 14.  
Here, the downward arrows again denote morphisms, but in this case they are proper 
refinements, not just imports. 
 
 

 
Figure 14:  A Diagram Refinement - Adding Communication 

 
The specification CommChannel introduces an underspecified type Channel together 
with operators send, recv, and read.    To specify the semantics of a Channel, we make 
use of a ghost observer hist that records the sequence of events that occur on the 
Channel.   This allows us to define other ghost observers: sent (the timed sequence of 
message written/sent on the channel) and received (the timed sequence of message 
received on the channel).  These ghost observers allow us to formulate the main 
semantic constraint on a channel: the received messages are equal to the sent 
messages with a bounded latency.  The behavior of the Channel is underspecified to 
allow for alternative refinements, such as a bounded queue, bounded FIFO queue 
(order-preserving), or, as in our case, a mailbox, which has different properties than a 
queue.    
 
CommChannel = spec 
   import Common#Time, 
          Common#Tracking 

BasicComm 
SubRqt 

PubRqt 
SystemRqt 

CommChannel 
Periodic 

Subscriber 

Periodic 
Publisher 

System1 



74  

 
   op inbox : State -> Channel -> Payload 
   op outbox: State -> Channel -> Payload 
 
   op medLat: Duration      % max comm latency, interpreted in later refinements 
 
(*  We can specify the meaning of send as an update to  
      (1) the outbox of the channel (shared with the sender process), 
      (2) the sent ghost observer, which helps with design-time calculation, 
      (3) hist.                                                                 
*) 
 
   op send(st:State)   
          (ch:Channel) 
          (pld:Payload): 
          {st':State 
          |   outbox st' ch = pld 
          &&  inbox st' ch = inbox st ch 
          && hist st' = hist st <| {state=st, time=clock st, action = Send (ch, pld)} 
          && sent st' ch = (sent st ch)  
                                <| {state=st, time=clock st, action = Send (ch, pld)} 
          } 
 
   op sent: State -> Channel -> List Event 
   theorem M_sent_Invariant is         % list of sent topic msgs 
      fa(st:State,chid:Channel) 
        sent st chid = (filter (fn(ev:Event)-> ((embed? Send)ev.action)) 
                               (filterHist_byChannel st chid)) 
 
(* The recv operation, invoked by the channel (not the recipient) , places a msg 
 in the recipient’s inbox. *) 
 
   op  recv(st:State)(ch:Channel)(pld:Payload):  
            {st':State  
            | inbox st' ch = pld      % mailbox 
            && outbox st' ch = outbox st ch 
            && hist st' = hist st <| {state=st, time=clock st, action = Recv (ch, pld)} 
            && received st' ch = (received st ch)  
                                  <| {state=st, time=clock st, action = Recv (ch, pld)} 
            } 
 
   op received: State -> Channel -> List Event 
   axiom M_received_Invariant is     % list of received topic msgs 
      fa(st:State,chid:Channel)  
        received st chid  
        = (filter (fn(ev:Event)-> ((embed? Read)ev.action)) 



75  

                  (filterHist_byChannel st chid)) 
 
% The read operation, invoked by the recipient, returns the current msg in the inbox 
 
   op read(st:State) (ch:Channel): 
          {(st',pld):State*Payload 
          | pld = inbox st ch 
          && hist st' = hist st <| {state=st, time=clock st, action = Read (ch, pld)} 
          && received st' = received st 
          } 
 
   axiom Channel_Reliability is 
        fa(ch:Channel) fresh(received, ch, sent, ch, medLat) 
 
   axiom Send_precedes_Recv is 
    fa(st:State,chid:Channel,recv_ev:Event) 
      (recv_ev in? (received st chid) 
         => (ex(send_ev:Event)  
               (send_ev in? (sent st chid) 
                  && act2payload recv_ev.action = act2payload send_ev.action 
                  && recv_ev.time <= send_ev.time + medLat))) 
 
 end-spec 
 
The establishment of the Global_Invariant theorem reduces to the Channel_Reliability 
axiom here, and is witnessed by an Isabelle-checked proof in our formal specification. 
 

4.3.2 Refining	the	Communication	Channel	to	a	Mailbox	
 
The next step is to introduce the notion of a mailbox-style communication channel that 
is suitable to the periodic reads/writes of publish-subscribe protocols.   It provides 
atomic reads/writes to a shared mailbox.    A mailbox communication channel provides 
a single data value at any one time – to formalize this, the Mailbox specification 
renames the Channel type as MB, and introduces new observers 

op content: MB → Payload 
op MB_md: MB → MBMetadata 

as well as other observers.    
 
A write will overwrite whatever is in the mailbox regardless of whether it has been read 
or not.    Mailbox communication is suitable whenever it is required to have up-to-date 
information available (e.g. about sensed values) as opposed to guaranteed reception of 
all information.   This additional semantic constraint on a Mailbox is specified as an 
axiom, which asserts that the content/payload of any read event is the content of that 
last write to the mailbox. 
 

axiom MB_semantics is 



76  

      fa(st:State,chid:ChannelId, rd_ev:Event)  
        (rd_ev in? (received st chid)  
         => 
         act2payload(rd_ev.action)  
         = act2payload(last(filter_Events_by_time  
                                       st (sent st chid) (rd_ev.time)))) 
   
op filter_Events_by_time (st:State)(evs:List Event)(t:Time): List(Event) = 
     filter (fn(ev:Event)-> ev.time < t) evs 
 

This is a common pattern in real-time control systems where the controller needs to 
have fresh data about the state of the plant and the environment whenever it needs to 
make control decisions. 
 
To allow a control system to be aware of communication faults, flags are maintained 
that assert freshness-related properties.   In our setting, such flags are refinements of 
the MB_md metadata observer above, and are formally calculated using the Observer 
Maintenance transformation (see Section 3.6.3).     
 
Our approach was to formalize the concept of a mailbox and to perform a datatype 
refinement transformation to refine the underspecified type Channel in Specification 
CommChannel to a Mailbox with mailbox-specific operators, as diagrammed in Figure 
15.    
 

 
Figure 15:  Datatype Refinement - CommChannel to Mailbox 

This refinement is formalized as a morphism from CommChannel to Mailbox, and stored 
in the library.   The refinement of the structured specification for System1 is computed 
as the (diagram) pushout of System1 with Mailbox (via CommChannel).   The 
automatically generated (cocone) morphisms are depicted as dashed arrows.  Formally, 
the pushout is expressed in the metaprogram/derivation as 

CommChannel 
Periodic 

Subscriber 

Periodic 
Publisher 

System1 

Mailbox 
Periodic 

Subscriber’ 

Periodic 
Publisher’ 

System2 



77  

PubSub_via_Mailbox = System1[ CommMedium_to_MB ] 
where  

CommMedium_to_MB = morphism CommChannel → Mailbox 
               { Channel      ⟼ MB 
               , medLat        ⟼ MB_delay 
               , send            ⟼ send 
               , read             ⟼ read 
               , received      ⟼ received 
               , sent             ⟼ sent 
               } 

 

4.3.3 Refining	the	Mailbox	to	a	Concurrent	FlipFlop	Buffer	
 
Another library theory formalizes the notion of a flip-flop buffer as a refinement of a 
mailbox.   The flip-flop buffer has two parts, one for writing fresh topic data, and the 
other for concurrent reading of topic data.   The polarity of write-versus-read buffer flips 
with each write.   Ultimately, the flip-flop buffer is refined to kernel memory that is 
shared between processes, as managed by the hypervisor.   
 
The FlipFlop specification mimics the Mailbox type MB as the FlipFlop type FF, and the 
MBmetadata type as FFMetadata.   It adds new observers 
 

op ffdata_size  : FF → Nat16  % intended size in bytes of a Payload 
op ffbuf            : FF → Map(Nat1,Payload)  %  the flip-flop buffer 
op ffmetadata  : FF → FFMetadata 
 

and new observers of metadata 
op ffsize         : FFMetadata → Nat32      % total FF size 
op readIndex : FFMetadata → Nat1         % is buffer 0 or 1 the current read buf?       
op writeIndex (ffmd:FFMetadata):Nat1 = 1 - (readIndex ffmd)  
 

and others. 
 
Again, this refinement is formalized as a morphism, from Mailbox to FlipFlop, and stored 
in the library with its proof.   The refinement of the structured specification for System2 
is computed as the (diagram) pushout of System2 with FlipFlop (via Mailbox).   The 
automatically generated (cocone) morphisms are depicted as dashed arrows in Figure 
16. 
  



78  

 
 

Figure 16: Refinement of Mailbox to FlipFlop 

Formally, the refinement from System2 to System3 is computed by the 
metaprogram/derivation command  
 
PubSub_via_FlipFlopBuffer = PubSub_via_Mailbox[Mailbox_to_FlipFlop ] 
 
where 

Mailbox_to_FlipFlop = morphism MB_Channel → FlipFlop 
   { MB            ⟼ FF 
   , MBMetadata  ⟼ FFMetadata 
   , MBbuf        ⟼ FFBuf 
   , name         ⟼ name 
   , contents     ⟼ contents  
   , MB_md       ⟼ ffmetadata 
   , get_MBname   ⟼ get_FFname 
   , get_contents ⟼ read_Payload 
   , ReadResult ⟼ ReadResult 
   , MB_delay  ⟼ FF_delay 
   , send        ⟼ sendFF 
   , read         ⟼ readFF 
   , received    ⟼ received 
   , sent         ⟼ sent 
   } 

 

Mailbox 
Periodic 

Subscriber2 

Periodic 
Publisher2 

System2 

FlipFlop 
Periodic 

Subscriber3 

Periodic 
Publisher3 

System3 



79  

4.3.4 Refinement	toward	RADL	code	
 
So far the derivation has been generic, but now we begin to target the specific interface 
required by SRI’s RADL architecture model [RADL15].   In particular, we formalized the 
articulated steps of the RADL node process:  
 

 update  –  open mailbox to read, show if stale  
 stall       –  open mailbox to write                
 release  –  close and release mailbox after read           
 commit  –  commit and close mailbox after write  

    
Each is specified using cases, as with the UDP specification, and is later synthesized 
using the mergeRules transformation.    We specified the RADL model and developed a 
straightforward refinement of FlipFlop to the RADL specification.  Formally modeling 
RADL and precisely aligning our derivations with the RADL concepts took some effort. 
 
The diagram in Figure 17 shows the refinement,  
 

 
Figure 17: Refinement of FlipFlop-based System to RADL 

 
As in previous steps, the refinement is calculated using a pushout. 

 

4.3.5 MergeRules,	finalizeCotype,	and	other	Optimizations	

At this point some seven mergeRule transformations are applied along with further 
optimization rules to clean up and improve the code.   Then four applications of the 
finalizeCotype are applied, which generates record definitions for cotypes by converting 
observers into fields.  See Section 3.6.5. 
 

FlipFlop 
Periodic 

Subscriber3 

Periodic 
Publisher3 

System3 

RADL 
transport 

Periodic 
Subscriber4 

Periodic 
Publisher4 

System4 

RADL 



80  

4.3.6 Deriving	IPC,	IVC,	raw	CertiKOS,	and	IP_based	variants	
 
A goal of this project was to provide transport-level communication support based on 
IPC support provided by the underlying CertiKOS hypervisor [CertiKOS] or the 
commercial LynxSecure hypervisor.   The CertiKOS platform supported nodes running 
on several cores, each running multiple VMs.   Several versions of IPC were provided: 

1. InterProcess Communication (IPC) – to provide publish-subscribe service 
between nodes/processes running on the same Linux VM.   The mailbox 
mechanism was implemented by shared memory in the Linux kernel. 

2. InterVM Communication (IVC) – to provide publish-subscribe service between 
nodes/processes running on different VMs.  The mailbox mechanism was 
implemented by shared memory in the hypervisor. 

3. raw CertiKOS processes – to provide publish-subscribe service between 
nodes/processes where one node is running as a native CertiKOS process.  The 
mailbox mechanism was implemented by shared memory in the hypervisor. 

Lastly, we also generated support for mailbox communication over the radio link 
between an external controller and the vehicle (Landshark or ABA) using IP as the 
network layer. 
 
The RADL model of mailbox communication decomposed sending and receiving into 
several operations: 

• kestrel_*_update    - open mailbox to read, show if stale  
• kestrel_*_stall        - open mailbox to write                
• kestrel_*_release   - close and release mailbox after read           
• kestrel_*_commit   - commit and close mailbox after write where * can be 

linux_ip, linux_ipc, lynxsecureVM_ivc, or certikosVM_ivc 
 
Our approach was to specify 4 auxiliary ops 
 

op mbox_buffer_update : State * MBuf * StaleFlag * DataSize -> State * InBox 
op mbox_buffer_stall  : State * MBuf * DataSize -> State * OutBox   
op mbox_buffer_release: State * MBuf -> State  
op mbox_buffer_commit : State * MBuf -> State  

 
then to define ops for IPC based on these ops; for example, 
 

def kestrel_linux_ipc_update (st:State,ibox:Linux_IPC_MBoxInfo,stale:StaleFlag) 
                                              : State * InBox 
= let buf = linux_ipc_buffer (st,ibox) in 
   let size = data_size (linux_ipc_gen_chan (linux_ipc_chan (st,ibox))) in 
        mbox_buffer_update (st, buf, stale, size) 
 



81  

Similar specs were developed for for kestrel_certikosVM_ivc_update,  
kestrel_lynxsecureVM_ivc_update, and so on.   The spec for kestrel_linux_ip_update 
was slightly more complex since messages must be in their respective mailboxes before 
the step function can be active. Also, we needed to shift the address by the size of IP 
header, since the mailbox will contain the IP header as well at the beginning of the data, 
but the step function should not see it. 
 
To illustrate our approach in more detail, we focus on the specification of 
mbox_buffer_update, which has to (1) determine the location of the mailbox slot to read 
from, (2) check if the mailbox content had been marked read before, and (3) mark the 
current read slot as read: 
 
   op mbox_buffer_update  
                    (st:State, buf:MBuf, stale:StaleFlag, size:DataSize | true) 
                    : { (st', i_addr): State * InBox 
                      |  mbox_buffer_update_0 (st,buf,stale,size, st',i_addr) 
                      || mbox_buffer_update_1 (st,buf,stale,size, st',i_addr) 
  } 
 
There are two cases to consider, depending on which slot is currently the read slot 
 

op mbox_buffer_update_0 (………) 
 = ex (st0:State, stval: StaleVal)   
         mbuf_read_slot (st,buf) = slot0 
    && stval  = mbuf_slot0_staleval  (st,buf) 
    && st0    = set_stale (st,stale,stval) 
    && st'    = mbuf_set_slot0_staleval (st0,buf,is_stale)  
    && i_addr = toInBox (mbuf_slot0_addr (st0,buf)) 
 
op mbox_buffer_update_1 (………) 
 = ex (st0:State, stval: StaleVal)   
         ~(mbuf_read_slot (st,buf) = slot0) 
    && stval  = mbuf_slot1_staleval  (st,buf) 
    && st0    = set_stale (st,stale,stval) 
    && st'    = mbuf_set_slot1_staleval (st0,buf,is_stale)  
    && i_addr = toInBox (mbuf_slot1_addr (st0,buf,size)) 

 
We transform this specification towards code by applying the MergeRules and 
StructureEx transformations.  That is, applying the following metacode 
 

Transport_rw_mbox = Transport_prot 
       { at mbox_buffer_update   { unfold mbox_buffer_update_pred  } 
       ; mergeRules (mbox_buffer_update, mbox_buffer_update) () 
       ; at [mbox_buffer_update] { repeat {structureEx} ; SimpStandard   } 
       }  

results in the following refined spec  



82  

 
refine def mbox_buffer_update  
  (st: State, buf: MBuf, stale: StaleFlag, size: DataSize | ~ false) 
  : {(st', i_addr): (State * InBox) |  
       if mbuf_read_slot(st, buf) = slot0 
         then let st0 = set_stale(st, stale, mbuf_slot0_staleval(st, buf)) in  
                 st' = mbuf_set_slot0_staleval(st0, buf, is_stale)  
                 && i_addr = toInBox(mbuf_slot0_addr(st0, buf))  
        else  let st0 = set_stale(st, stale, mbuf_slot1_staleval(st, buf)) in  
                st' = mbuf_set_slot1_staleval(st0, buf, is_stale)  
                && i_addr = toInBox(mbuf_slot1_addr(st0, buf, size))} 

 
Then, we refine Channel, Data, Mbuf, StaleFlag, DataSize, InBox, and corresponding 
observers, followed by inlining the refined operations using unfold: 
 

refine def mbox_buffer_update  
    (st: State, buf: MBuf, stale: StaleFlag, size: DataSize | ~ false) 
    : {(st', i_addr): (State * InBox) |  
          if ((deref st buf).hdr).read_slot = slot0 
             then  let st0 = assign st stale (((deref st buf).hdr).stale0) in  
                      st' = set st0 (((deref st0 buf).hdr).stale0) is_stale  
                     && i_addr = toInBox((deref st0 buf).data)  
            else  let st0 = assign st stale (((deref st buf).hdr).stale1) in  
                    st' = set st0 (((deref st0 buf).hdr).stale1) is_stale  
                    && i_addr = toInBox(addAddr((deref st0 buf).data, size))} 

 
The next step is to create an imperative algorithm with stateful data structures.  We 
refine and inline primitive operations assign, is_stale, slot0, toInBox, then apply the 
metacode 

Cot = transform UnfoldPrimitives  by {finalizeCoType(State)} 
 
resulting in  
 

refine def mbox_buffer_update  
  (st: State, buf: MBuf, stale: StaleFlag, size: DataSize | ~ false)  
  : {(st', i_addr): (State * InBox) |  
     if ((deref st buf).hdr).read_slot = 0 
      then let st0 = set st (deref st stale) (((deref st buf).hdr).stale0) in  
               st' = set st0 (((deref st0 buf).hdr).stale0) 1 
              && i_addr = (deref st0 buf).data  
      else let st0 = set st (deref st stale) (((deref st buf).hdr).stale1) in  
               st' = set st0 (((deref st0 buf).hdr).stale1) 1 
              && i_addr = addAddr((deref st0 buf).data, size)} 
= if ((deref st buf).hdr).read_slot = 0 
   then let st0 = set st (deref st stale) (((deref st buf).hdr).stale0) in  



83  

           ( set st0 (((deref st0 buf).hdr).stale0) 1 
           , (deref st0 buf).data)  
   else let st0 = set st (deref st stale) (((deref st buf).hdr).stale1) in  
           ( set st0 (((deref st0 buf).hdr).stale1) 1 
           , addAddr((deref st0 buf).data, size)) 

 
Finally, we apply code generation phases, which, after preprocessing, links abstract 
operations to existing C primitives.  The metacode 
 

Derivation_transport_mbox = PrepForC_mbox  
{... ; genC (  ( mbox_buffer_update, .....), .... 
            ,  "../NP/Derivations/LT1/Synthesized/kestrel_mbox"  ) 
} 

 
creates the code and stores it in .c/.h files 
 

typedef const char *   constcharstar; 
typedef int *          intstar      ;  
struct mbox_buffer_hdr { unsigned int unused:13, stale0:1, stale1:1, read_slot:1; 
}; 
struct mbox_buffer     { struct mbox_buffer_hdr hdr; char data[]; }; 
constcharstar mbox_buffer_update(MBuf buf, intstar stale, Nat_Nat32 size)  
{ if (buf->hdr.read_slot == 0) { 
      *stale = buf->hdr.stale0; 
      buf->hdr.stale0 = 1; 
      return buf->data; 
     } 
  *stale = buf->hdr.stale1; 
  buf->hdr.stale1 = 1; 
  return buf->data + size; 
} 

 
 
Altogether, we specified the mailbox communication needed on the Landshark and ABA 
and developed derivations that generate C.   The generated C handles all send/receive 
of topics, but not the mailbox initialization (which has been written by hand).  Working 
closely with the SRI and Yale teams, we delivered transport code in C to support (1) 
intra-VM communication, (2) inter-VM communication, (3) communication with CertiKOS 
processes, and (4) IP-based communication.    The results were demonstrated at the 
end of Phase II.   The Red Team found no vulnerabilities in the cyber-physical systems 
that contained our delivered code. 



84  

4.4 Proof generation results 

A key focus of the project was generating proofs automatically from the various 
transformation steps in our PubSub derivation.   We extended the following 
transformations to emit proofs at application time:  Simplification, Observer 
Maintenance, Observer Implementation, StructureEx, finalizeCotype, and others.   
These constitute most of the transformations used in our derivation. 
 
In our Phase 1 derivations for UDP codes, we had the measures shown in Figure 18. 
 

Figure 18:  Proofs generated as a by-product of refinement 
 
In our Phase 2 work, our objective was to mechanize the generation of correct-by-
construction C code for the entire family tree of communications codes, together with 
automatically generated proofs of their correctness. For the Protocol Design Theories 
(described in Sections 3.5.1 and 3.6.1), we used Isabelle to verify by hand once and for 
all 
 

• Common Concepts (time, history, tracking,…)  7 proofs 
• SharedMemory (Channels, FlipFlop)                 9 proofs 
• PubSubProtocol (periodic update)                     1 major proof 

 
Then, for the Protocol Design phase, where we applied the protocol theories and refined 
the communication channel, the proofs were generated by transforming library proofs 

• PubSub_via_Mailbox                                       5 proofs  
• PubSub_via_FlipFlopBuffer                             4  proofs  
• PubSub_via_RADL_FlipFlop                           4  proofs 

 
Then, the transformation for deriving the RADL protocol implementation in Specware 
automatically emitted proofs 

• Merging cases + simplification                         23 proofs  
• Finalizing Types and Records                       112 proofs 

 

 
 

 
Transformations 

 
Theorems 

lines of ISAR/
Isabelle proof 

script 
UDP receive code 12 48 10,948 
UDP send code 12 512 109,676 



85  

Finally, at the end of Phase II we were working on a new C code generator that would 
emit proofs.   Details of this work are presented in Appendix 1. 
 
The automatic generation of checkable proofs as a by-product of transformations is a 
major result of the project.  We have demonstrated that a derivational approach to 
system code generation can produce proofs as a by-product and that the marginal cost 
of producing those proofs is effectively zero. 
 

4.5 Rehosting Specware in Coq 

We began working on rehosting the "Specware approach" to program synthesis in the 
Coq proof assistant. The goal was not only to ease interoperability with other teams who 
are performing verification using Coq, but also, as a broader impact, to help disseminate 
the ideas about program synthesis developed at Kestrel.   Technical details of this effort 
are presented in Appendix 2. 

 

4.6 Papers 
 

We finished two papers this period that are intended for publication: 

Title: Incremental Definition of Types 

Authors: Douglas R. Smith, Edwin Westbrook, and Stephen J. Westfold, 

Abstract:  There are many situations in which it would be useful to incrementally 
develop the definition of a type and its operators.  Examples include family trees of 
programs, software product lines, and object-oriented class hierarchies.  In a formal 
specification and refinement setting, we present a refinement idiom and supporting 
transformations for incrementally defining both inductive and coinductive types.  
Inductive types are built by incrementally accumulating constructors.  Coinductive types 
are built by incrementally accumulating observers.  In each case, when the refinement 
process is finished, we declare the constructor (resp. observer) set is complete by 
applying a transformation that gives a canonical definition to the type.  It also generates 
definitions for functions that have been characterized inductively(resp. coinductively) by 
their action on the constructors (resp. observers). 

 

Title: Consistency of Refinement 



86  

Author: Douglas R. Smith 

Abstract: One of the deepest issues with a specification-and-refinement approach is 
knowing whether the intermediate specifications are consistent.  Any specification can 
refine to an inconsistent specification, but there is no refinement from an inconsistent 
specification to a program in a programming language.  Once a refinement process has 
reached an inconsistent specification, the process is essentially stuck, and requires 
some form of backtracking. Hence, there is value in generating refinements that are 
consistent by construction.  This paper develops basic metatheory about consistent 
refinements and their construction, and proves the most general conditions known to us 
under which a pushout construction generates a consistent refinement. 

Several other papers are currently in progress: 

1. Kimmell, Kreitz, Smith, Westbrook, and Westfold,  Proof-Emitting 
Transformations. 

2. Kimmell, Kreitz, Smith, Westbrook, and Westfold, Synthesis by Cases. 

3. Pepper, Smith and Westfold, Coalgebraic Specification and Refinement 

 

 

5 CONCLUSIONS 
 
To conclude, we discuss the results of this project. 
 
Deliverables  
 
In Phase 1 we delivered working and verified C code for handling UDP traffic that was 
plug-compatible with the Linux kernel.  The code did not have several vulnerabilities that 
occurred in earlier versions of UDP.  The Red Team did not find flaws in the code. 
 
The problem arose of how to specify UDP.  The definition of UDP is partly by public 
RFC's and partly by established practice in the form of concrete implementations in 
operating systems (Unix, Linux, Windows).  To be plug-compatible with the Linux 
kernel, which was needed in the Landshark, required that we abstract out the 
specification of the context of the UDP code in the Linux kernel. This was a difficult 
exercise and resulted in a disappointingly low-level specification.  Nevertheless, we 
developed that low-level specification and developed the tools and formal derivation to 
generate C code that we could install as an alternate module to the existing UDP 



87  

processing code in the Linux Kernel.  Testing revealed no semantic differences.  In 
retrospect, picking a more clean-slate target for our synthesis technology might have 
resulted in a more useful product both technically and practically. 
 
In Phase 2, our strategy was to work closely with our partners (specifically SRI and 
Yale), continuously supplying them with working code, even if it had to be written 
manually, so we could work together toward the Phase 2 integrated demonstrations.  
Our effort was split between (1) understanding our partner's needs and supplying them 
with code, and (2) developing abstract requirement specifications and working toward 
generating the code and proofs needed for the Phase 2 demo.  By the end of phase we 
had generated a family of C codes for the publish-subscribe mailbox transport service. 
These codes were installed, tested, and demonstrated on the Landshark and ABA in 
August 2015.  The Red Team found no vulnerabilities in our code when they performed 
their system security tests on the vehicles. 
 
Security Goals 
 
Towards the goal of enhanced security of vehicles, our approach was to generate safe 
and secure codes that service the communication protocols on vehicles, as opposed to 
generating new protocols that are secure.  This approach was dictated by the need to 
use existing protocols.  Working with protocols established elsewhere did not allow us to 
pursue a fully clean-slate approach, and challenged us to generate code into existing 
code frameworks.  Absence of many of the vulnerabilities that are rife in conventionally 
produced protocol software, such as buffer overflows and null pointer dereferences, is 
an intrinsic and checkable feature of our approach. 
 
Formal Methods Goals 
 
Kestrel’s long-term goals are to develop automated systems for refining formal 
requirement-level specifications into correct-by-construction code, with certificates.  This 
project focused our efforts on co-generating code and proofs, and we successfully 
demonstrated how to extend our transformations to emit both refined specifications and 
machine-checkable proofs of the correctness each refinement step down to the code-
generation level.   By the end of Phase 2 we had designed and partially implemented a 
C generator that would emit proofs.    By automating the production of proofs, we 
lowered the cost of providing high levels of assurance as a normal part of software 
development.  We demonstrated that a derivational approach to algorithm generation 
can produce proofs as a by-product and that the marginal cost of producing those 
proofs is effectively zero. 
 



88  

We also developed a variety of new transformations and new protocol theories to 
mediate the transformation of requirements to abstract designs.  We expect that these 
transformations and library theories will be applicable in other domains.  The Specware 
system was further developed under this project and made open-source via Github. 
 
A crucial aspect of software engineering that is rarely addressed in formal approaches 
is the cost of code maintenance and evolution.  In our formal approach, there should be 
no maintenance in the sense of bug fixing, but there will always be a need to adapt to 
changing requirements and changing design decisions.  The family tree of codes that 
we generated in Phase 2 via a family tree of derivation metaprograms provides insight 
toward the goal of formal tools to support evolution via changing design decisions.  In 
this case, the family tree of derivations has (1) a common top: a common specification 
and initial design decisions, and (2) diverging design decisions at lower levels that 
target to different target platforms (e.g. intra-VM versus inter-VM).   Thus we 
demonstrated how to evolve an implementation to a new platform by branching in the 
middle of a derivation and applying a variant sequence of transformations. 
 
A larger lesson of this project was confirmation that we could express the design of 
communication code in terms of generally applicable design abstractions.   The 
abstractions are incrementally translated to executable C via formal refinement steps 
that emit checkable proofs.   The sequence of refinements and the design abstractions 
they embody constitute a (1) human-understandable explanation of the complex 
executable code, and (2) an effective means for constructing complex code for a 
specific set of requirements out of reusable design abstractions.  
 
 

6 References 

[CertiKOS]  Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David 
Costanzo,  CertiKOS: A Certified Kernel for Secure Cloud Computing,  In Proc. 2nd 
ACM SIGOPS Asia-Pacific Workshop on Systems (APSys'11), Shanghai, China, July 
2011. 
  
[Datta05]  Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic,  "A 
derivation system for security protocols and its logical formalization",  in Proceedings of 
CSFW 2003",  IEEE Press, 2003,  pp 109—125. 
 
[Isabelle]  Isabelle Interactive Theorem Prover, https://isabelle.in.tum.de  
 



89  

[Jacobs97] Jacobs, B., and Rutten, J.,  A tutorial on (co)algebras and (co)induction.  
Bulletin of the European Association for Theoretical Computer Science 62 (1997), 
222—259. 
 
[Liu13] From Clarity to Efficiency Systematic Program Design: Liu, Y., , Cambridge 
University Press, 2013. 
 
[Mossakowski06] Mossakowski, T., Reichel, H., Roggenbach, M., and Schroeder, L.  
Algebraic-coalgebraic specification in CoCasl,   J. Logic Algebraic Programming 67 
(2006). 
 
[Paige82]  Paige, R. and Koenig, S., Finite Differencing of Computable Expressions,  
TOPLAS 4(3), 1982, 402-454. 

[Rothe01] Rothe, J., Tews, H., and Jacobs, B.  The coalgebraic class specification 
language CCSL, Journal of Universal Computer Science 7, 2 (2001), 175—193. 
 
[Rutten00] Rutten, J.  Universal coalgebra: a theory of systems, Theoretical Computer 
Science 249, 1 (2000), 3 — 80. 
 
 [SmithD9009] Smith, D.R.  KIDS — a semi-automatic program development system, 
IEEE Transactions on Software Engineering Special Issue on Formal Methods in 
Software Engineering 16, 9 (1990), 1024—1043.  
 
[Specware03] Kestrel Institute,  Specware System and documentation, 2003.  
http://www.specware.org/.   Open source download from 
https://github.com/KestrelInstitute/Specware 
 
[RADL15]  Li, W., Gerard, L., and Shankar, N., Design and Verification of Multi-Rate 
Distributed Systems,  ACM/IEEE International Conference on Formal Methods and 
Models for Codesign (MEMOCODE), 2015, 20-29. 
 
[SmithD9302] Smith, D.R.  Pushouts preserve conservative extensions: Another proof 
of the modularization theorem, Tech. Rep. KES.U.93.1, Kestrel Institute, February 1993. 
 
[Spitters] Spitters, B. and van der Weegen, E., Type Classes for Mathematics in Type 
Theory,  Math. Structures in Computer Science, Vol 21, 2011, pp 795-825. 
 
[Whalen02]  Whalen, M., Schumann, J., and Fischer, B.  Synthesizing certified code, in 
Proc. Formal Methods Europe (FME 2002) (Copenhagen, Denmark, 2002), Springer 
LNCS 2391, pp.431—450. 



121  

9 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 

ABA   American Built Automobile 

DARPA  Defense Advanced Research Projects Agency 

HACMS  High-Assurance Military Systems 

RADL   Robot Architecture Definition Language 

RFC   Request For Comments 

ROS   Robot Operating System 

TCP   Transmission Control Protocol 

UDP   User Datagram Protocol 

 

 


