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Abstract. The structure common to a class of divide and conquer algorithms is represented by a 
program scheme. A theorem is presented which relates the functionality of a divide and conquer 
algorithm to its structure and the functionalities of its subalgorithms. Several strategies for designing 
divide and conquer algorithms arise from this theorem and they are used to formally derive 
algorithms for sorting a list of numbers, forming the cartesian product of two sets, and finding 
the convex hull of a set of planar points. 

1. Introduction 

The advance of scientific knowledge often involves the grouping together of 
similar objects followed by the abstraction and representation of their common 
structural and functional features. Generic properties of the objects in the class are 
then studied by reasoning about this abstract characterization. The resulting theory 
may suggest strategies fo]" designing objects in the class which have given characteris- 
tics. This paper reports on one such investigation into a class of related algorithms 
based on the principle of 'divide and conquer'. We seek not only to gain a deeper 
and clearer understanding of the algorithms in this class, but to formalize this 
understanding for the purposes of algorithm design. In [12] we present a class of 
program schemes which collectively provide a normal-form for expressing divide 
and conquer algorithms. This normal-form is based on a view of these algorithms 
as homomorphisms between algebras on their input and output domains. In the 
present paper we restrict our attention to an important subclass of all divide and 
conquer algorithms and present formal methods for designing algorithms in this class. 

The principle underlying divide and conquer algorithms can be simply stated: if 
the problem posed by a given input is sufficiently simple it is solved directly, 
otherwise it is decomposed into independent subproblems, the subproblems solved, 
then the results are composed. The process of decomposing the input problem and 

* The work reported herein was supported in part by the Foundation Research Program of the Naval 
Postgraduate School with funds provided by the Chief of Naval Research. 

** Current address: Kestrel Institute, 1801 Page Mill Road, Palo Alto, CA 94304, U.S.A. 

0167-6423/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 



38 D.R. Smith 

solving the subproblems gives rise to the term 'divide and conquer' although 
'decompose, solve, and compose' would be more accurate. 

We chose to explore the synthesis of divide and conquer algorithms for several 
reasons: 
- S t ruc tura l  s implici ty:  Divide and conquer is perhaps the simplest program structur- 
ing technique which does not appear as an explicit control structure in current 
programming languages. 
- C o m p u t a t i o n a l  efficiency: Often algorithms of asymptotically optimal complexity 
arise from the application of the divide and conquer principle to a problem. Also, 
fast approximate algorithms for NP-hard problems frequently are based on the 
divide and conquer principle. 
- Paral le l  imp lemen ta t i on :  T h e  independence of subproblems means that they can 
be solved in parallel. Consequently, divide and conquer solutions to problems will 
be increasingly attractive with the advent of parallel architectures. 
- D iver s i t y  o f  applicat ions:  Divide and conquer algorithms are common in program- 
ming, especially when processing structured data objects such as arrays, lists, and 
trees. Many examples of divide and conquer algorithms may be found in texts on 
algorithm design (e.g. [1]). Bentley [2] presents numerous applications of the divide 
and conquer principle to problems involving sets of objects in multidimensional 
space. 

One of our goals is to help formalize the process of designing algorithms from 
specifications. The approach of this paper is based on instantiating program schemes 
to obtain concrete programs satisfying a given specification. We present a program 
scheme representing the structure common to a class of divide and conquer 
algorithms and a theorem relating the correctness conditions of the scheme to the 
correctness conditions of its free operator symbols. Given a specification to be 
satisfied by an instance of the scheme this theorem is used to formally derive 
specifications for the free operator symbols. These derived specifications may then 
be satisfied either by a target language operator or by instantiating another program 
scheme. The result of this top-down design process is a correct hierarchically 
structured program. 

The notion that much of a programmer's knowledge can be represented by program 
schemes and theorems about their correctness is traceable to Dijkstra [6]. Later 
work on programming by instantiating program schemes [5, 7, 8, 15] focused on 
directly substituting code for the free operator symbols of a scheme. In contrast we 
are concerned with the more general problem of deriving specifications for these 
operator symbols. 

In Sections 2 and 3 the notions of functionality (represented by specifications) 
and the form of divide and conquer algorithms (represented by a program scheme) 
are presented. The key to being able to design a divide and conquer algorithm is 
knowing how its (intended) functionality is related to its structure and the function- 
alities of its parts. Knowledge of this kind is presented in Sections 4 and 5. Finally, 
detailed derivations of algorithms for sorting a list of numbers, forming the cartesian 
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product of  two sets, and finding the convex hull of a set of planar points are carded 
out in Section 6. 

2. Representation of functionality: Specifications 

Specifications are a precise notation for describing the problem we desire to solve 
without necessarily indicating how to solve it. For example, the problem of decom- 
posing a list of  natural numbers into a 2-tuple containing its smallest element and 
the remainder  of the list may be specified as  f o l l o w s :  1 

SELECT: X = (i, Z) such that x ~ nil ~ i <<- Bag : z ^ Bag  : x = A d d  : ( i, Bag : z) 

where SELECT: LIST(N)  --> N x LIST(N).  

The problem is named SELECT which is regarded as a mapping from lists of  natural 
numbers (denoted LIST(N)) to 2-tuples consisting of a natural number and a list. 2 
Naming the input x and the output (i, z) the formula "x  # nil",  called the input 
condition, expresses any restrictions on the inputs of the problem. The formula 
"i  <~ Bag"  z ^ Bag"  x = A d d "  ( i, Bag"  z)", called the output condition, expresses the 
conditions under  which (i, z) is an acceptable output with respect to input x. The 
function B a g  maps a list into the bag (multiset) of elements contained in it, e.g. 
Bag:  (1, 5, 2, 2) = {1, 5, 2, 2} = Bag : (1, 2, 5, 2). The formula "i<~ B a g : z "  asserts that 
each element in the list z is no less than i. The expression " A d d  : (i, b)" returns the 
bag containing i in addition to all elements of bag b. Thus " 'Bag:  x = A d d  : (i, Bag  : z)" 
asserts that the bag of elements in the input list x is the same as the bag of elements 
in z with i added. 

Generally,  a specification sn has the form 

H : x = z such that I : x ~  O: (x, z) 

where H : D --> R 

or more compactly sn -- (/9, R , / ,  O). Here the input and output domains are D and 
R respectively. The input condition I, a relation on /9 ,  expresses any properties of 
inputs to the desired program. Inputs satisfying the input condition will be called 
legal inputs. If  an input does not satisfy the input condition then any output behavior 

i In this paper the colon will be used to denote application in the programming language (e.g. F :  x), 
application in the specification language (e.g. SELECT: X, Bag:x), and, as usual, in the presentation of 
the domain and range of  a mapping (e.g./7 : D ~  R). In all cases the intended meaning should be clear 
from context. We also use the following notational conventions: specification names are fully capitalized 
and set in small cap Roman, operators are indicated by capitalizing their first letter, and scheme operators 
are further indicated by sans serif italics. 

2 Tuples will be enclosed in angle brackets, e.g. (2, 4), and lists will be enclosed in parentheses, e.g. 
(2, 4, 5). The abstract data type LIST(N) has operators ld, First, Rest, Cons, FirstRest, and equality where 
Id :(2, 5, 1 ,4)=(2,5 ,  1,4); First:(2,5, 1 ,4)=2;  Rest:(2,5, 1,4)=(5,  1,4); Cons:(2,(5, 1,4))= 
(2, 5, 1,4); FirstRest : (2, 5, 1, 4) = (2, (5, 1,4)). The empty list is denoted nil 



40 D.R. Smith 

is acceptable. The output condition O, a relation on D × R, expresses the properties 
than an output object should satisfy. Any output object z such that O:(x, z) holds 
will be called a feasible output with respect to input x. We say program F satisfies 
a given specification if on each legal input the program terminates and computes 
a feasible output (we are only interested here in total correctness). Formally, program 
F satisfies specification Sn = (D, R,/,  O) if 

Vx ~ D [I : x ~ O :  (x, F :x)] 

is valid in a suitable first-order theory, i.e., if on each legal input F computes a 
feasible output. 

3. Representation of abstract form: Program schemes 

In this paper we present the structure common to a class of algorithms by a 
scheme (or program scheme )--an abstract program containing free operator symbols 
(named slots). A particular algorithm in the class is created by instantiating the free 
operator symbols with code. An alternative approach to representing a class of 
algorithms is via a higher order procedurema procedure parameterized on some of 
its operators. A concrete program is obtained by applying the higher order procedure 
to actual operators. There do not appear to be crucial differences between these 
alternatives and it is easy to translate from one to the other. We adopt scheme 
notation because we believe that it allows a simpler syntax, is better understood by 
programmers, and has a simpler semantics. 

For simplicity of exposition we will restrict our attention to the class of divide 
and conquer algorithms whose structure can be expressed by the following functional 
program scheme: 

F : x --= i f  P r i m i t i v e  : x 

then D i r e c t l y _ S o l v e  : x 

else C o m p o s e  o ( G × F) o D e c o m p o s e  : x 

where G may be an arbitrary function but typically is either the identity function 
Id or F. fog, called the composition o f f  and g, denotes the function resulting from 
applying f to the result of applying g to its argument. ( f  x g), called the product 
o f f  and g, is defined by ( f  x g):(x, y )=  ( f :  x, g :y). Decompose is referred to as 
the decomposition operator, G is referred to as the auxiliary operator, Compose 
is referred to as the composition operator, and Directly_Solve is referred to as the 
primitive operator. 

In Fig. 1 we present a selection sort algorithm where Ssort and Select are both 
instances of the divide and conquer scheme. Ssort works as follows. If the input is 
nil then nil is a feasible output. If the input is non-nil then a smallest element is 
split off and then prepended onto the result of recursively sorting the remainder of 
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the input. The function Select satisfies the specification SELECT discussed in the 
previous section and evaluates as follows on the list (2, 5, l, 4): 

Select  : (2, 5, 1, 4) = Compose  o ( I d  x Select)  o Firs tRes t  : (2, 5, 1, 4) 

= C o m p o s e o ( I d  × Se lec t ) : (2 ,  (5, 1, 4)) 

= Compose  "(2, (1, (5, 4))) 

=(1, C o n s ' ( 2 , ( 5 , 4 ) ) ) = ( 1 , ( 2 , 5 , 4 ) )  

where Se lec t : (5 ,  1, 4) evaluates to (1, (5, 4)) in a similar manner. Ssort  when applied 
to (2, 5, 1,4) evaluates as follows: 

Ssor t  " (2, 5, 1,4) = Cons  o ( Id  x Ssort  ) o Select" (2, 5, 1, 4) 

= C o n s o ( I d  x Ssor t ) : (1 ,  (2, 5, 4)) 

= Cons:  (1, (2, 4, 5)) 

=(1 ,2 ,4 ,5)  

where Ssort"  (2, 5, 4) evaluates to (2, 4, 5) in a similar manner. 

Ssort  : Xo =- if Xo = nil 

then nil 

else Cons  o ( Id  x Ssort  ) o Select : xo 

Select  : x =- if Res t :  x = nil 

then Firs tRest  : x 

else Compose  o ( Id  x Select)o Firs tRes t  : x 

Compose :  (v l ,  (v2, z)) - if vl <~ v2 

then (v l ,  Cons:  (v2, z)) 

else ( v2, Cons:  ( vl, z)) 

Fig. I. A selection sort program. 

Ssort  and Select  exemplify the structure of divide and conquer algorithms. In 
Ssort  when the input is nil then the problem is solved directly, otherwise the input 
problem is decomposed via Select, the subproblems solved via the product ( I d  x 
Ssort) ,  and the results composed by Cons. In Select when the input has length one, 
then the problem is solved directly, otherwise the input is decomposed via Firs tRes t  
into a tuple of subinputs, the subinputs processed in parallel by ( I d  x Select) ,  and 
the results composed by Compose.  We call Select in Ssort  and Firs tRes t  in Select  
the decomposi t ion  operators. Cons  in Ssort  and Compose  in Select  are called 
composi t ion operators. The identity function, Id, in both Ssort  and Select is called 
the auxi l iary  operator. 
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4. Relation of form to function in divide and conquer algorithms 

The main theoretical result of our paper is the following theorem which shows 
how the functionality of the whole divide and conquer algorithm follows from its 
structure and from the functionalities of its parts. Conditions (1), (2), (3), and (4) 
of Theorem 1 simply provide generic specifications for the parts of  a divide and 
conquer algorithm. The most interesting condition is the Strong Problem Reduction 
Principle (SPRP) (5). In words it states that if  input Xo decomposes into subinputs 
x~ and x2, and Zl and z2 are feasible outputs with respect to these subinputs 
respectively, and Zl and z2 compose to  form z0 then Zo is a feasible output with 
respect to input Xo. Loosely put: feasible outputs compose to form feasible outputs. 

Theorem 1. Let S F = (DF, RE, IF, OF) and So = (DG, RG, IG, OG) denote specifications, 
let OCOMPOSE and OOECOMPOSE denote relations on RF X RG × RF and DF × Dc x DF 
respectively, and let <denote a well-founded ordering on DF. I f  

(1) Decompose satisfies the specification 

D E C O M P O S E  : X o = (Xl,  X2) such that I F : X 0 ^ ~ P r i m i t i v e  : Xo~ IG : XI ^ IF : X2 ^ X2 < XO A 

ODECOMPOSE : (Xo, Xl, X2) 
where D E C O M P O S E  : D F -> D G x D F ; 

(2) 
(3) 

G satisfies the specification s~ = (DG, RG, IG, OG~: 
Compose satisfies the specification 

COMPOSE: (Zl, Z2) = Zo such that OCOMPOSE: (Zo, Zl, Z2) 

where COMPOSE : RG X RF "-'> RF ; 

(4) Directly_Solve satisfies the specification 

(5) 

V(Xo, X1, X2) E DF X O a × DF V(Zo, Zl, Z2) E R F X RG × RF 

[ ODECOMPOSE: (Xo, Xl, X2) A 0 G : (Xl, Zi) ^ O F : (x2, z2) ^ OCOMPOSE : (Zo, Zl, Z2> 

DIRECTLY_SOLVE:  X 0 = 7. 0 such that Primitive : Xo ̂  IF : XO~ OF : (Xo, Zo) 

where DIRECTLY_SOLVE : D F "> R F ; 

The following Strong Problem Reduction Principle holds 

then the divide and conquer program 

F :  Xo - if Primitive : Xo 

then Directly_Solve : xo 

else Compose o ( G x F) o Decompose : Xo 

: ~  O F :(Xo, ZoO] 

satisfies specification SF = (DE, RF, IF, OF). 
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Proof. To show that F satisfies sF = (OF, RF, IF, OF) we will establish 

V X  0 E OF [ IF  " Xo::::~ O F : (Xo, F:  Xo)] 

by structural induction 3 on DF. 
Let Xo be an object in DF such that IF:Xo holds and assume (inductively) that 

I F : Y ~  OF:(y,  F : y )  holds for any y ~ DF such that y < Xo. There are two cases to 
consider: Primitive : Xo = true and 7Pr imi t ive  : Xo = true. 

If Primitive : Xo = true then F :  Xo = Directly_Solve : Xo by construction of F. Further- 
more according to condition (4) we have IF : Xo ^ Primitive : X o ~  OF : < Xo, 
Directly_Solve:xo) from which we easily infer OF:(X0, Directly_Solve:Xo) or 
equivalently OF : (Xo, F :  Xo). 

If -qPrimitive : Xo = true then F :  Xo = Compose o ( G x F)  o Decompose : Xo. We will 
show that OF : (Xo, F :  Xo) by using the inductive assumption and by applying modus 
ponens to the SPRP. Since/F : Xo holds and 7Primi t ive  : Xo holds then Decompose : Xo 
is defined so let Decompose : Xo = (x~, x2). Since Decompose satisfies its specification 
in condition (1), we have ODECOMPOS E : (X0, Xl, X2) and I G : X 1 and /F : x2. Consider 
x~--by condition (2) we have IG : Xt ~ OG : (Xl, G : xl) so we can infer Oa : (x~, G : x~) 
by modus ponens. Consider x2--by condition ( 1 ) we have x2 < Xo, thus the inductive 
assumption IF : x 2 ~  OF : (X2, F : x2) holds. From this we infer OF : (x2, F :  x2). Next, 
by condition (3) we have OCOMPOSE : (Compose  : (G:  Xl, F :  x2), G : Xl, F :  x2) or simply 
OCOMPOSE:iF:Xo, G : x t ,  F:x2).  We have now established the antecedent of 
condition (5) enabling us to infer OF:(X0, F:Xo). [] 

Notice that in Theorem 1 the form of the subalgorithms Decompose, G, Compose, 
and Directly_Solve is not relevant. All that matters is that they satisfy their respective 
specifications. In other words, their function and not their form matters with respect 
to the correctness of the whole divide and conquer algorithm. 

5. The design of divide and conquer algorithms 

In [13, 14] a form of  top-down design called problem reduction is presented. The 
idea is to take a complex problem described by a specification and decompose it 
into a hierarchy of subproblem specifications. Then a program is composed whose 
structure reflects the subproblem hierarchy. The specifications at the bottom of the 
hierarchy represent problems which can be satisfied by target language operators. 
Parent nodes in the hierarchy represent problems which can be satisfied by instantiat- 
ing a program scheme with the algorithms derived for their child subproblems. A 

Structural  induct ion  on  a we l l - founded  set ( W, < )  is a form o f  mathemat ica l  induct ion descr ibed by 

Vx~ W V y ~  W [ y < x ^  Q : y ~ Q : x ] ~ V x ~  WQ:x  

i.e., if  Q : x can  be shown to  fo l low f rom the a s sumpt ion  that  Q :  y holds  for  each y such that  y < x, then 
we can  conc lude  that  Q : x ho lds  for  all x. 
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method for decomposing a specification Sn into subproblem specifications whose 
solutions can be instantiated into a scheme solving Sn is called a design strategy. 
Any program scheme admits a number of design strategies. Dershowitz and Manna 
[4] have presented some strategies for designing program sequences, if-then-else 
statements, and loops. 

Three design stategies emerge naturally from the structure of divide and conquer 
algorithms. Although we describe them separately they are really just different 
aspects of a common approach---design a divide and conquer algorithm satisfying 
a given specification Sn by deriving specifications for subalgorithms satisfying the 
constraints of Theorem 1. If successful then any operators which satisfy these derived 
specifications can be assembled into a divide and conquer algorithm satisfying Sn. 
The design strategies differ in their approach to satisfying the Strong Problem 
Reduction Principle (SPRP). 

The first design stategy, called DS1, can be described as follows: 

(DSI) First choose a simple decomposition operator, and choose an auxiliary 
operator, then use the SPRP to derive input and output conditions for the 
composition operator. 

To see how we reason towards specifications for the composition operator, suppose 
that the given problem is Sn =(D, R,/ ,  O), we have selected a decomposition 
operator Decompose, and chosen an auxiliary operator G. To derive output 
conditions for COMPOSE, we create the following formula 

V(xo, xl, x2) E DF X DG X DF V(zo, z~, z2) E RF X RG X RF 

[OoEcoMpos~ :(Xo, Xl, X2) ^ OG :(X,, Z,) ^ OF :(x2, z2)~OF :(Xo, Zo)]. (5.1) 

(5.1) differs from the SPRP of Theorem 1 only in that the hypothesis 
OCOMPOSE:(Zo, Z~, Z2) is missing. We desire to establish the SPRP so that we can 
apply Theorem 1 to show that the algorithm we construct satisfies its specification. 
Consequently we try to derive a relation on the variables Zo, z], and z2 which, if 
taken as OCOMPOSE, would enable the SPRP to hold. Our technique is to reason 
backwards from the consequent of (5.1) always trying to reduce it to relations 
expressed in terms of the variables Zo, z~, z2. If the assumption of an additional 
hypothesis of the form Q: (Zo, Zl, z2) allows us to prove (5.1), i.e., if it can be shown 
that 

V(Xo, xl, x2) E DF X DG X DFV(Zo, zl, Z2) E RF x RG X RF 

[ODEcOMPOS E : (Xo, Xl, )(2) A 0 G :(XI, Zl) A O F :(x2, z2) A Q: (Zo, Zl, Z2):=::) O F : (Xo, Zo) ] 

then we take Q as the output condition OCOMPOSE since the SPRP is satisfied by 
this choice of OCOMPOSE. Formal systems for performing this kind of deduction are 
presented in [ 11, 14]. We shall proceed less formally here, making use of our intuition 
for guidance. 
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We can also use (5.1) to obtain input conditions for our composition operators. 
The input condit ion for Compose  is some relation on z~ and z2 which can be expected 
to hold when Compose  is invoked. Suppose that by reasoning forwards from the 
relations established by the decomposit ion operator and the component operators 
we infer a relation Q':(z~,  z2), i.e., that 

V(xo, x,, x2) e D~, x Do x DF V(zo, zl, Z2) E RF x Ro x RF 

[OoEcOMPOSE :(Xo, Xl, X=) ̂  OG : (Xl, Zl) ^ OF :(X=, Z2):=> Q':(z,, z2)]. 

Then we take Q' as an input condition to Compose.  
The other two design strategies are variations on DS1 and use the SPRP in an 

analogous manner. 

(DS2) First choose a simple composition operator, and choose a simple auxiliary 
operator, then use the SPRP to solve for output conditions of the decomposi- 
tion operator. An input condition for the decomposition operator is found 
by determining conditions under which a feasible output exists. 

(DS3) First choose a simple decomposit ion operator and choose a simple composi- 
tion operator, then use the SPRP to reason backwards towards output 
conditions and to reason forwards towards input conditions for the auxiliary 
operator. 

In each of these design strategies a suitable well-founded ordering on the input 
domain must be found in order to ensure program termination. Also, the control 
predicate is chosen to reflect the domain of applicability of the decomposition 
operator. In the succeeding sections these design strategies are applied to several 
problems. 

6. Example derivations 

6.1. Des ign  o f  a selection sort algori thm 

In this section and the next we design a selection sort algorithm. Related deriva- 
tions of insertion sort, mergesort, and quicksort algorithms appear in [14]. Alternate 
approaches to designing divide and conquer algorithms for the sorting problem are 
discussed in [3, 9]. 

The problem of sorting a list of natural numbers can be specified by 

SORT: x = z such that Bag  : x = Bag  : z A Ordered : z 

where SORT: LIST(N) -> LIsT(N). 

The expression "'Bag : x = Bag  : z" asserts that the bag (multiset) of elements in the 
list z is the same as the bag of elements in x. " O r d e r e d : z "  holds when z is a list 
whose elements are in nondecreasing order. 
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The selection sort algorithm presented in Fig. 1 can be derived using design 
strategy (DS2). If  we name our desired algorithm Ssort and choose Cons as 
composition operator, then we have the following partial interpretation of the terms 
in Theorem 1: 

F ¢:~ Ssort, 

DF ¢:) LIST(N), 

RF ~ LIST(N), 

I F : X 4:~ true, 

OF : (x,  z )  ~ B a g  : x = B a g :  z ^ O r d e r e d  : z, 

RG ¢~ N 

OcoMpose :(Zo, b, zl) ¢~ Cons : (b, zl) = Zo. 

With these choices it is clear that the auxiliary operator cannot be Ssort since their 
output types differ. In design strategies (DS1) and (DS2) it is satisfactory to use 
the identity function as the auxiliary operator in such a case. Letting G be Id  we 
have the following interpretations: 

DG¢:~ N, 

OG : (a, b) ¢~ Id : a = b or equivalently a = b, 

IG :(a, b) ¢:~ true. 

It remains to determine the input and output conditions for the decomposition 
operator. 

Our first step towards determining ODECOMPOSE is to instantiate the SPRP as far 
as possible thus obtaining 

V(Xo, a, xl) E LIST(N) X N x LIST(N) V(Zo, b, zi) E LIST(N) X N x LIST(N) 

[ ODEcOMPOSE : (X0, a, xl) ^ a = b a Bag : xl = Bag:  zl a Ordered : zl a Cons :(b, zl) = Zo 

:=~ Bag : Xo = Bag : Zo a Ordered : Zo] (6. l) 

Since we desire to have the SPRP hold in order to apply Theorem 1 we evidently 
must try to find an expression for OoECOMpOSE which allows (6.1) to hold. In order 
to determine ODeCOUPOSE we attempt to reduce (6.1) to a formula dependent  on 
the variables Xo, a, and x~ only. The consequent is the conjunction of two atomic 
formulas which can be considered separately. The goal 

Bag:  Xo = Bag: Zo (6.2) 

is equivalent to 

Bag : Xo = Bag : Cons : (b, zl) 
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since Cons  : (b, el) = eo is a hypothesis. The fact 

B a g °  Cons : (u, y)  = A d d  :(u, Bag  : y )  

allows us to further reduce the goal to 

Bag  : xo = A d d  : (b, Bag :  z~). 

Then since Bag  : ×1 = Bag:  z~ and a = b are hypotheses we finally reduce to 

B a g :  Xo = A d d  : (a, Bag :  xl).  (6.3) 

In other words, if  we had (6.3) as an additional hypothesis then we could establish 
our original goal (6.2). We will use (6.3) in the output condition ODECOMPOSE. 
Consider now the second goal 

Ordered : Zo (6.4) 

which reduces to 

Ordered o Cons  : ( a, z l)  

via the hypotheses Cons  :(b, z l)  = Zo and a = b. The fact 

u <~ Bag:  y ^ Ordered : y ¢:~ Ordered o Cons  : (u, y)  

can be used to produce the equivalent goal 

a <~ Bag  : zl ^ Ordered : z~. 

Now Ordered:z1  is a hypothesis and thus is assumed to hold. The other subgoal 
can be transformed via the hypothesis Bag  : xl  = B a g :  zl to 

a <~ Bag:  Xl. 

We have reduced (6.4) to a subgoal which is expressed in terms of the variables 
required by ODECOMPOSE. By reasoning backwards we have shown above that if  

a <~ Bag:  xl  ^ Bag:  Xo = A d d  : (a, Bag  : Xl) (6.5) 

is added as a hypothesis then (6.1) follows. We take (6.5) as Ot~ECOMPOSE. 
Before constructing the partial specification for the decomposition operator we 

construct a well-founded ordering on the input domain.  The obvious choice is x~ < Xo 
iff L e n g t h : x  o> Leng th :x1 .  Using (6.5) as ODECOMPOSE and this well-founded order- 
ing on LIST(N) we create the following specification for the decomposition operator 
in accord with condition (1) of  Theorem 1: 

DECOMPOSE : X 0 = (a~ Xl) such that a <<- Bag  : xl  A 

Bag  : Xo = A d d  : (a, Bag  : Xo) A Length  : Xo > Length  : x~ 

where DECOMPOSE " L I S T ( N )  ---> N x L I S T ( N )  
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By inspection we see that there is no feasible output when the input is ni l  so we 
add the input condition "x  # n i l "  obtaining 

DECOMPOSE : X 0 = (a, xl) such that Xo ~ n i l ~  B a g  : Xo = A d d  ; (a, B a g  : Xo) A 

a <~ B a g  : x~ A L e n g t h  : Xo > L e n g t h  : x l  

where DECOMPOSE : L I S T ( N )  --> N x L I S T ( N ) .  

In [14] we show how to derive the input condition for decomposition operators by 
formal means. In the next section we derive a divide and conquer algorithm, called 
Se l ec t ,  for this problem. 

Since S e l e c t  cannot be invoked with input ni l  the control predicate must be Xo = nil. 
S s o r t  at this point has the form: 

S s o r t  : x - i f x = n i l  

then Di rec t l y_So lve  : x 

else C o n s  o ( I d  x S s o r t  ) o S e l e c t :  x 

A specification for D i r e c t l y _ S o l v e : x  is formulated by instantiating the specifica- 
tion scheme in condition (4) of Theorem 1 yielding 

D I R E C T L Y _ S O L V E  " X = g such that x = n i l ~  B a g  : x = B a g  : z ^ O r d e r e d  : z 

where D I R E C T L Y _ S O L V E  : L I S T ( N )  "-> L I S T ( N ) .  

The constant ni l  is easily shown to satisfy this specification. 
Putting together all of the operators derived above, we obtain the following 

selection sort program: 

S s o r t  : x - if x = n i l  

then nil 

else C o n s  o ( I d  x S s o r t  ) o S e l e c t  : x. 

To recapitulate, this derivation of a selection sort algorithm resulted from the 
following high-level decisions: 

(1) to design a divide and conquer algorithm for the sorting problem, 
(2) to follow design strategy (DS1), and 
(3) to use C o n s  as a simple composition operator. 

If, instead of choosing C o n s ,  we had chosen the list operator A p p e n d  (which 
concatenates two lists) we would derive a quicksort algorithm. If instead we had 
decided to apply design strategy (DS2) we would end up deriving mergesorts and 
insertion sorts [14]. 
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6.2. Design o f  a selection algorithm 

In the previous section we derived the specification 

SELECT: X 0 = (a, x~) such that Xo ~ n i l ~  Bag  : Xo = A d d  :(a, Bag  : xl) A 

a <~ Bag  : x~ A Length : Xo > Length  : x~ 

where SELECT: LIST(N) -~ N x LIST(N). 

The synthesis of a divide and conquer algorithm satisfying the specification of 
SELECT proceeds according to the design strategy (DS2). First, we choose FirstRest 
as decomposition operator. Naming the algorithm Select we have the following 
interpretations of the terms in Theorem 1: 

F ¢~ Select 

Dr= ¢=~ LIST(N), 

RF ¢* N )< LIST( N),  

Ir : Xo ¢:> Xo ~ nil, 

OF : (Xo, a, xl) <:~ Bag : Xo = A d d  :(a, Bag  : xl)  ^ a <~ Bag  : xl A 

Length  :Xo > Length  xl ,  

Dr = LIST(N) is made a well-founded set exactly as in the previous example by 
defining x~ < Xo iff Length:  Xo > Length:  Xl. Firs tRest  clearly preserves this ordering. 
FirstRest  will decompose a non-nil list x into a number  and a non-nil list when 
Rest: x ~ nil, so the control predicate must be Rest:  Xo = nil. Select now has the form 

Select: Xo =- if  Rest:  Xo = nil 

then Direc t ly_Solve:  Xo 

else C o m p o s e  o ( G x Select) o Firs tRes t  : Xo 

It remains to determine the composition operator Compose.  
In pursuit of an output condition for the composition operator (a relation 

dependent on the variables ao, Zo, v, at, and zl), we first instantiate the SPRP 

DG CZ) N, 

Decompose  ¢:~ FirstRest,  

IDeCOMPOSE : X ¢* X ~ nil, 

O D E C O M P O S  E : (X0, U, Xl) ~ U = F i r s t  : x 0 A X l = Res t  : Xo. 



50 D.R. Smith 

obtaining 
V(Cao, Zo), v, (al ,  z l ) )e  ( N  ×LIST(N)) × N x ( N  X LIST(N)) 

V(Xo, U, Xl)C LIST(N) × N X LIST(N) 

[First : Xo = u A Res t  : Xo = x~ A Bag : Xl = A d d  : (a~, Bag  : z~) A al <~ Bag  : z~ A 

Leng th  : x~ > Length  : z I A u : D 

B a g  : Xo = A d d  : ( ao, Bag:  Zo) A ao <<- Bag  : Zo A Length  : Xo > Length  : Zo]. 

(6.6) 

Again we consider  the goals in (6.6) one at a time. The goal ao <~ Bag  : Zo is a l ready 
expressed in the form we desire, so we can use it in OcouposE. Consider  the goal 

We have 
Bag" Xo = A d d  : C ao, Bag" Zo). 

Bag:  Xo = Bag  o Cons : (u, xl} 

= A d d "  Cu, Bag" xl) 

= A d d  "Cu, A d d  "(a~, Bag" Zl)) 

= A d d "  Cv, A d d  : (al ,  Bag:  zl)) 

so this goal is equivalent  to 

(since Xo = Cons :(u, xl)) 

(since Bag  o Cons : Ca, y} = A d d  : Ca, Bag  : y))  

(using hypothesis  

Bag:  xl = A d d  : C al, B a g :  zl)  ) 

(using hypothesis  u = v) 

A d d  :Cv, A d d  : Cab Bag  : Zl)) = A d d  :Cao, Bag : Zo). 

This condi t ion  is expressed in the desired variables  so we use it in OcoMpose. Finally,  
consider  the goal 

Length  : Xo > Length  : Zo. (6.7) 

In the fo l lowing derivat ion we use Card : w to denote the cardinal i ty  of  the bag w. 
We have 

Length"  Xo = Length  ° Cons : ( u, xl)  

= 1 + L e n g t h  : x~ 

= 1 + Card  ° A d d "  Ca1, Bag  : zl)  

(since Xo = Cons :Cu, xl)) 

(using hypothesis 
Bag:  xl  = A d d  : Cab Bag  : zl))  

= 2 + C a r d  o B a g  : zl 

= 2 + Length  : zl.  

Thus we can reduce (6.7) to 

2 + Leng th  : zl > Leng th  : Zo. 
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Putting all these condit ions together we obtain  

A d d  : (v, A d d  : (al ,  B a g :  Zl)) = A d d  : CaD, B a g :  Zo) A 

ao <- B a g :  Zo A 2 + Length  : z~ > Length  : Zo 

and use it as OCOMPOSE. A n  input  condi t ion can be derived by reasoning forwards 
from 

V((ao, Zo), t~, (01, ZI))E (N)< LIST(N)) X N × ( N  X LIST(N)) 

V(X0, U, Xl)E LIST(N) × N × LIST(N) 

[FirstRest  : Xo = (u, xl) A Bag  : x~ = A d d  : (al ,  Bag  : Zl) ^ 

al <~ Bag:  z~ A Length  : x~ > Length  : zl  A U = V] 

towards a relation expressed in terms of  the variables v, al ,  and  Zl. The only useful  
inference seems to be al ~< Bag : Zl so we take this as the input  condi t ion and  form 
the specification 

COMPOSE" (1), ( a l ,  Z.l) ) = (a0,  Z0) such that  a~ <~Bag: zl  ~ ao <~ B a g :  Zo A 

A d d  : (v, A d d  : (a~, Bag:  zl)) = A d d  : (ao, Bag:  Zo) ^ 2 + Leng th  : Zl > Length  : Zo 

where COMPOSE: N x ( N  × LIST(N)) -~ N x LIST(N) 

Compose,  can be constructed satisfying this A condi t ional  program, called 
specification: 

Compos e : ( v ,  (al ,  zl)) = if  v ~< 81 

then (v, Cons ; (al, gl) ) 

else (al ,  Cons :(v, Zl)) 

A specification for Direc t l y_So lve  is formula ted  by ins tant ia t ing the specification 
scheme in condi t ion (4) of  Theorem 1 yie lding 

DIRECTLY_SOLVE: X 0 -~ (O, XI) such that  Res t  : Xo = nil ^ Xo # n i l ~  

B a g :  Xo = A d d  : (a, Bag  : xl)  ^ a ~ B a g :  xl A Leng th  : Xo > Length  : xl  

where DIRECTLY_SOLVE : LIST(N) --> N x LIST(N). 

The operator  Firs tRest  is easily shown to satisfy this specification. 
The operators derived above are assembled  into the fol lowing algori thm: 

Select : x - i f  Res t :  x = nil 

then F i r s t R e s t  : x 

else C o m p o s e °  ( Id  x Select)°  Firs tRes t  : x 
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holds. So if we take (6.10) as an additional hypothesis then (6.8) holds. We take 
(6.10) as our output condition for G and create the specification 

CP_AUX : (a, x) = z such that z = {(u, v)[ u = a and v ~ x} 

where CP_AUX : N x SET(N)  ~ SET(N)  X SET(N).  

A divide and conquer algorithm for this problem can easily be constructed using 
design strategy (DS2) (along the same lines as Ssort). The control predicate and 
primitive operator are determined in a similar manner to previous derivations. The 
complete algorithm for producing the cartesian product of two sets is listed in Fig. 
2. The reader can easily find several ways to simplify CP and CP_aux without 
affecting their correctness. 

CP:(x , x ' )  = i f x = {  } 

then { } 

else Uniono( CP_aux x CP)o Transo( Set_Split x Id2) : (x, x') 

CP_aux:(a,x)  = i f x = {  } 

then { } 

else Add o( Id x CP_aux)o Transo( Id2 x Set Split):(a, x) 

Fig. 2. Forming the cartesian product of two sets. 

6.4. Design of  a convex hull algorithm 

As a final example we design a divide and conquer algorithm, called CH, for the 
convex hull problem. The derivation is slightly more difficult than earlier examples 
in that we do not assume the existence of a simple decomposition or composition 
operator. Following design strategy (DS 1) we specify rather than choose a decompo- 
sition operator, then solve for the specification of the composition operator. CH 
differs from earlier examples also in that the auxiliary operator is CH. 

The convex hullproblem involves finding a polygon of minimal area which encloses 
a given bag of planar points. It can be shown that such a minimal polygon is convex 
and is comprised of a subset of the given bag. These properties are assumed in the 
following specification: 

C O N V E X  H U L L :  b = h such that Contains :(h, b) A Bag : h c_ b 

w h e r e  CO NVEX HULL" BAG(POINT) -> LIST(POINT). 

Here the convex hull problem is represented as a mapping from bags of points to 
lists of points (a polygon may be represented by a list of its points in, say, clockwise 
order). The abstract data type eOINT, representing planar points, has operator X 
which returns the x-coordinate of a point. For simplicity we allow X to be applied 
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to a bag of points as follows: 

X : b = { X : p l p ~ b } .  

The expression Contains : (h, b) holds when h represents a convex polygon containing 
each point in bag b. 

There are many algorithms for solving the convex hull problem (see [10, Ch. 25]) 
only some of which are based on the divide and conquer principle. We proceed 
here using design strategy (DS1) and thus seek a decomposition operator for bags 
of planar points. One approach is to (figuratively) draw a vertical l ine through the 
points thereby separating them into two smaller bags. It is likely that no such 
operator is immediately available. However, for the purposes of designing CH only 
a specification is needed so we formalize this approach as follows: 

DECOMPOSE "b 0 = (hi, b2) such that C a r d  : bo~, 1 ~ X : 191 ~ X : b 2 ^ b 0 --- b 1 U b 2 A 

Card : bo > Card : bl ^ Card : bo > Card : b2 

where DECOMPOSE: BAG(POINT) "-> BAG(POINT) X BAG(POINT). 

For notational simplicity the relation <~ is allowed between bags of numbers: 
bag~ <~ bag2 holds if each number in bag~ is less than or equal to each number in 
bag2. The input condition Card : bo > 1 has been added since bo cannot be decom- 
posed into strictly smaller subbags if it only has zero or one element. 

Since the input to the auxiliary operator is of the same type as C H  we let the 
auxiliary operator be CH. 

To obtain a specification for the composition operator the SPRP is instantiated 
yielding 

V(ho, h,, h2) e LIST(POINT) X LIST(POINT) X LIST(POINT) 

V(bo, bt, b2)E BAG(POINT) X BAG(POINT) X BAG(POINT) 

[ X : b  I ~<X:b2^ bo= bl~d b2^ Card:bo> Card:b1 A Card:bo> C a r d : b 2 ^  

Contains : (h~, b~) ^ Bag: hl c_ bl A Contains : (h2 ,  b2) ^ Bag : h 2 ~ b2 

Contains : (ho, bo) ^ Bag : ho c_ bo]. (6.11) 

Reasoning backwards from the goals to expressions in the variables ho, hi, and h2 
we have 

Contains :(ho, bo) if[ Contains : (ho, bl w b2) 

iff Contains :(ho, hi) ^ Contains : (ho, b2) 
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iff Contains : (h~, b~) ^ Contains : (ho, Bag : hl) ^ 

Contains : (h2 ,  b2) ^ Contains : (ho, Bag : h2) 

(using transitivity of Contains) 

iff Contains : (ho, Bag : hi) A Contains : (ho, Bag : hE) 

Bag : ho ~_ bo iff Bag: ho c_ b I k.) b 2 

iff Bag:  ho C _ Bag : h~ u Bag: h 2 ^ Bag: h~ c_ b~ A Bag : h 2 c b 2 

(using the transitivity of __q ) 

iff Bag : ho c_ Bag : h ~ u Bag : h2. 

To sum up, if 

Contains : (ho, Bag : h~) ^ Contains : (ho, Bag : hE) 

^ Bag : ho ~ Bag : h ~ u Bag : h 2 

were added as an additional premise then (6.11) would be valid. Again this derived 
expression is used as the output condition for the composition operator. An input 
condition for the composition operator is obtained by reasoning forwards from 

~¢(b0, hi ,  b2) E BAG(POINT) X BAG(POINT) X BAG(POINT) 

V(ho, hl,  h2) E LIST(POINT) X LIST(POINT) X LIST(POINT) 

I X :  b I ~ X ". b 2 A b 0 = b I L.) b 2 A C a r d  : bo> C a r d  : b I A C a r d  : bo> C a r d  : b 2 

^ Contains : (h~, hi) ^ Bag:  hi ~_ b~ ^ Contains : (hE, bE) ^ Bag : h E ~ bE] 

yielding X o Bag: h~ <~ X o Bag:  h 2. Putting input and output conditions together we 
obtain the specification 

COMPOSE" (hi ,  h2) = h 0 such that X o Bag : h~ <~ X o Bag : h 2 ~  

Bag : ho c_ Bag : hi u Bag : h 2 A Contains : (ho, Bag : hi) ^ Contains : (ho, Bag : h2)  

where COMPOSE:LIST(POINT) X LIST(POINT) "> LIST(POINT). 

The problems DECOMPOSE and COMPOSE have solutions which will be called 
Decompose and Compose respectively. 

Since the decomposition operator can only be invoked when the input is a bag 
of size two or more, the control predicate becomes Card:bo  <- 1. The primitive 
operator is derived as before here it is sufficient to convert the bag of (zero or 
one) points to a list using an operator we will call Listify. 
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Putting all the parts together, the convex hull algorithm has the following top-level 
form: 

C H :  b - i f C a r d : b < ~ l  

then Listify : b 

else Compose o ( C H  × C H )  o Decompose : b 

The correctness of C H  follows from Theorem 1. Again, the forms of Decompose 
and Compose are irrelevant to the correctness argument as long as they satisfy the 
specifications of DECOMPOSE and COMPOSE respectively. 

7. Conclusion 

We have presented a program scheme which provides a normal-form for expressing 
the structure of a subclass of divide and conquer algorithms. A theorem relating 
the functionality of an instance of this scheme to its structure and the functionalities 
of its parts has been given. The theorem gives rise to three design strategies which 
were used to derive several algorithms. 

The top-down style of programming suggested by our design strategies can be 
summarized as follows. First we require a clear understanding of the problem to 
be solved, expressed formally by a specification. If a divide and conquer solution 
seems both possible and desirable we begin to explore the input and/or  output 
domains looking for simple decomposition and composition operators respectively. 
Depending on our choice we follow one of the design strategies discussed above. 
Using our intuition and/or  proceeding formally using the Strong Problem Reduction 
Principle we derive specifications for the unknown operators in our program. These 
specifications are then satisfied either by target language operators or by (recursively) 
designing algorithms for them. Once a correct, high level, well-structured algorithm 
has been constructed we may subject it to transformations which refine its abstract 
data and control structures into a more concrete and efficient form. 
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