
Science of Computer Programming 5 (1985) 37-58
North-Holland

37

T H E D E S I G N OF DIVIDE AND C O N Q U E R A L G O R I T H M S *

Douglas R. SMITH**
Department of Computer Science, Naval Postgraduate School, Monterey, CA 93940, U.S.A.

Communicated by J. Darlington
Received May 1983
Revised May 1984

Abstract. The structure common to a class of divide and conquer algorithms is represented by a
program scheme. A theorem is presented which relates the functionality of a divide and conquer
algorithm to its structure and the functionalities of its subalgorithms. Several strategies for designing
divide and conquer algorithms arise from this theorem and they are used to formally derive
algorithms for sorting a list of numbers, forming the cartesian product of two sets, and finding
the convex hull of a set of planar points.

1. Introduction

The advance of scientific knowledge often involves the grouping together of
similar objects followed by the abstraction and representation of their common
structural and functional features. Generic properties of the objects in the class are
then studied by reasoning about this abstract characterization. The resulting theory
may suggest strategies fo]" designing objects in the class which have given characteris-
tics. This paper reports on one such investigation into a class of related algorithms
based on the principle of 'divide and conquer'. We seek not only to gain a deeper
and clearer understanding of the algorithms in this class, but to formalize this
understanding for the purposes of algorithm design. In [12] we present a class of
program schemes which collectively provide a normal-form for expressing divide
and conquer algorithms. This normal-form is based on a view of these algorithms
as homomorphisms between algebras on their input and output domains. In the
present paper we restrict our attention to an important subclass of all divide and
conquer algorithms and present formal methods for designing algorithms in this class.

The principle underlying divide and conquer algorithms can be simply stated: if
the problem posed by a given input is sufficiently simple it is solved directly,
otherwise it is decomposed into independent subproblems, the subproblems solved,
then the results are composed. The process of decomposing the input problem and

* The work reported herein was supported in part by the Foundation Research Program of the Naval
Postgraduate School with funds provided by the Chief of Naval Research.

** Current address: Kestrel Institute, 1801 Page Mill Road, Palo Alto, CA 94304, U.S.A.

0167-6423/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

38 D.R. Smith

solving the subproblems gives rise to the term 'divide and conquer' although
'decompose, solve, and compose' would be more accurate.

We chose to explore the synthesis of divide and conquer algorithms for several
reasons:
- S t ruc tura l s implici ty: Divide and conquer is perhaps the simplest program structur-
ing technique which does not appear as an explicit control structure in current
programming languages.
- C o m p u t a t i o n a l efficiency: Often algorithms of asymptotically optimal complexity
arise from the application of the divide and conquer principle to a problem. Also,
fast approximate algorithms for NP-hard problems frequently are based on the
divide and conquer principle.
- Paral le l imp lemen ta t i on : T h e independence of subproblems means that they can
be solved in parallel. Consequently, divide and conquer solutions to problems will
be increasingly attractive with the advent of parallel architectures.
- D iver s i t y o f applicat ions: Divide and conquer algorithms are common in program-
ming, especially when processing structured data objects such as arrays, lists, and
trees. Many examples of divide and conquer algorithms may be found in texts on
algorithm design (e.g. [1]). Bentley [2] presents numerous applications of the divide
and conquer principle to problems involving sets of objects in multidimensional
space.

One of our goals is to help formalize the process of designing algorithms from
specifications. The approach of this paper is based on instantiating program schemes
to obtain concrete programs satisfying a given specification. We present a program
scheme representing the structure common to a class of divide and conquer
algorithms and a theorem relating the correctness conditions of the scheme to the
correctness conditions of its free operator symbols. Given a specification to be
satisfied by an instance of the scheme this theorem is used to formally derive
specifications for the free operator symbols. These derived specifications may then
be satisfied either by a target language operator or by instantiating another program
scheme. The result of this top-down design process is a correct hierarchically
structured program.

The notion that much of a programmer's knowledge can be represented by program
schemes and theorems about their correctness is traceable to Dijkstra [6]. Later
work on programming by instantiating program schemes [5, 7, 8, 15] focused on
directly substituting code for the free operator symbols of a scheme. In contrast we
are concerned with the more general problem of deriving specifications for these
operator symbols.

In Sections 2 and 3 the notions of functionality (represented by specifications)
and the form of divide and conquer algorithms (represented by a program scheme)
are presented. The key to being able to design a divide and conquer algorithm is
knowing how its (intended) functionality is related to its structure and the function-
alities of its parts. Knowledge of this kind is presented in Sections 4 and 5. Finally,
detailed derivations of algorithms for sorting a list of numbers, forming the cartesian

The design of divide and conquer algorithms 39

product of two sets, and finding the convex hull of a set of planar points are carded
out in Section 6.

2. Representation of functionality: Specifications

Specifications are a precise notation for describing the problem we desire to solve
without necessarily indicating how to solve it. For example, the problem of decom-
posing a list of natural numbers into a 2-tuple containing its smallest element and
the remainder of the list may be specified as f o l l o w s : 1

SELECT: X = (i, Z) such that x ~ nil ~ i <<- Bag : z ^ Bag : x = A d d : (i, Bag : z)

where SELECT: LIST(N) --> N x LIST(N).

The problem is named SELECT which is regarded as a mapping from lists of natural
numbers (denoted LIST(N)) to 2-tuples consisting of a natural number and a list. 2
Naming the input x and the output (i, z) the formula "x # nil", called the input
condition, expresses any restrictions on the inputs of the problem. The formula
"i <~ Bag" z ^ Bag" x = A d d " (i, Bag" z)", called the output condition, expresses the
conditions under which (i, z) is an acceptable output with respect to input x. The
function B a g maps a list into the bag (multiset) of elements contained in it, e.g.
Bag: (1, 5, 2, 2) = {1, 5, 2, 2} = Bag : (1, 2, 5, 2). The formula "i<~ B a g : z " asserts that
each element in the list z is no less than i. The expression " A d d : (i, b)" returns the
bag containing i in addition to all elements of bag b. Thus " 'Bag: x = A d d : (i, Bag : z)"
asserts that the bag of elements in the input list x is the same as the bag of elements
in z with i added.

Generally, a specification sn has the form

H : x = z such that I : x ~ O: (x, z)

where H : D --> R

or more compactly sn -- (/9, R , / , O). Here the input and output domains are D and
R respectively. The input condition I, a relation on /9 , expresses any properties of
inputs to the desired program. Inputs satisfying the input condition will be called
legal inputs. If an input does not satisfy the input condition then any output behavior

i In this paper the colon will be used to denote application in the programming language (e.g. F : x),
application in the specification language (e.g. SELECT: X, Bag:x), and, as usual, in the presentation of
the domain and range of a mapping (e.g./7 : D ~ R). In all cases the intended meaning should be clear
from context. We also use the following notational conventions: specification names are fully capitalized
and set in small cap Roman, operators are indicated by capitalizing their first letter, and scheme operators
are further indicated by sans serif italics.

2 Tuples will be enclosed in angle brackets, e.g. (2, 4), and lists will be enclosed in parentheses, e.g.
(2, 4, 5). The abstract data type LIST(N) has operators ld, First, Rest, Cons, FirstRest, and equality where
Id :(2, 5, 1 ,4)=(2,5 , 1,4); First:(2,5, 1 ,4)=2; Rest:(2,5, 1,4)=(5, 1,4); Cons:(2,(5, 1,4))=
(2, 5, 1,4); FirstRest : (2, 5, 1, 4) = (2, (5, 1,4)). The empty list is denoted nil

40 D.R. Smith

is acceptable. The output condition O, a relation on D × R, expresses the properties
than an output object should satisfy. Any output object z such that O:(x, z) holds
will be called a feasible output with respect to input x. We say program F satisfies
a given specification if on each legal input the program terminates and computes
a feasible output (we are only interested here in total correctness). Formally, program
F satisfies specification Sn = (D, R,/, O) if

Vx ~ D [I : x ~ O : (x, F :x)]

is valid in a suitable first-order theory, i.e., if on each legal input F computes a
feasible output.

3. Representation of abstract form: Program schemes

In this paper we present the structure common to a class of algorithms by a
scheme (or program scheme)--an abstract program containing free operator symbols
(named slots). A particular algorithm in the class is created by instantiating the free
operator symbols with code. An alternative approach to representing a class of
algorithms is via a higher order procedurema procedure parameterized on some of
its operators. A concrete program is obtained by applying the higher order procedure
to actual operators. There do not appear to be crucial differences between these
alternatives and it is easy to translate from one to the other. We adopt scheme
notation because we believe that it allows a simpler syntax, is better understood by
programmers, and has a simpler semantics.

For simplicity of exposition we will restrict our attention to the class of divide
and conquer algorithms whose structure can be expressed by the following functional
program scheme:

F : x --= i f P r i m i t i v e : x

then D i r e c t l y _ S o l v e : x

else C o m p o s e o (G × F) o D e c o m p o s e : x

where G may be an arbitrary function but typically is either the identity function
Id or F. fog, called the composition o f f and g, denotes the function resulting from
applying f to the result of applying g to its argument. (f x g), called the product
o f f and g, is defined by (f x g):(x, y)= (f : x, g :y). Decompose is referred to as
the decomposition operator, G is referred to as the auxiliary operator, Compose
is referred to as the composition operator, and Directly_Solve is referred to as the
primitive operator.

In Fig. 1 we present a selection sort algorithm where Ssort and Select are both
instances of the divide and conquer scheme. Ssort works as follows. If the input is
nil then nil is a feasible output. If the input is non-nil then a smallest element is
split off and then prepended onto the result of recursively sorting the remainder of

The design of divide and conquer algorithms 41

the input. The function Select satisfies the specification SELECT discussed in the
previous section and evaluates as follows on the list (2, 5, l, 4):

Select : (2, 5, 1, 4) = Compose o (I d x Select) o Firs tRes t : (2, 5, 1, 4)

= C o m p o s e o (I d × Se lec t) : (2 , (5, 1, 4))

= Compose "(2, (1, (5, 4)))

=(1, C o n s ' (2 , (5 , 4))) = (1 , (2 , 5 , 4))

where Se lec t : (5 , 1, 4) evaluates to (1, (5, 4)) in a similar manner. Ssort when applied
to (2, 5, 1,4) evaluates as follows:

Ssor t " (2, 5, 1,4) = Cons o (Id x Ssort) o Select" (2, 5, 1, 4)

= C o n s o (I d x Ssor t) : (1 , (2, 5, 4))

= Cons: (1, (2, 4, 5))

=(1 ,2 ,4 ,5)

where Ssort" (2, 5, 4) evaluates to (2, 4, 5) in a similar manner.

Ssort : Xo =- if Xo = nil

then nil

else Cons o (Id x Ssort) o Select : xo

Select : x =- if Res t : x = nil

then Firs tRest : x

else Compose o (Id x Select)o Firs tRes t : x

Compose : (v l , (v2, z)) - if vl <~ v2

then (v l , Cons: (v2, z))

else (v2, Cons: (vl, z))

Fig. I. A selection sort program.

Ssort and Select exemplify the structure of divide and conquer algorithms. In
Ssort when the input is nil then the problem is solved directly, otherwise the input
problem is decomposed via Select, the subproblems solved via the product (I d x
Ssort) , and the results composed by Cons. In Select when the input has length one,
then the problem is solved directly, otherwise the input is decomposed via Firs tRes t
into a tuple of subinputs, the subinputs processed in parallel by (I d x Select) , and
the results composed by Compose. We call Select in Ssort and Firs tRes t in Select
the decomposi t ion operators. Cons in Ssort and Compose in Select are called
composi t ion operators. The identity function, Id, in both Ssort and Select is called
the auxi l iary operator.

42 D.R. Smith

4. Relation of form to function in divide and conquer algorithms

The main theoretical result of our paper is the following theorem which shows
how the functionality of the whole divide and conquer algorithm follows from its
structure and from the functionalities of its parts. Conditions (1), (2), (3), and (4)
of Theorem 1 simply provide generic specifications for the parts of a divide and
conquer algorithm. The most interesting condition is the Strong Problem Reduction
Principle (SPRP) (5). In words it states that if input Xo decomposes into subinputs
x~ and x2, and Zl and z2 are feasible outputs with respect to these subinputs
respectively, and Zl and z2 compose to form z0 then Zo is a feasible output with
respect to input Xo. Loosely put: feasible outputs compose to form feasible outputs.

Theorem 1. Let S F = (DF, RE, IF, OF) and So = (DG, RG, IG, OG) denote specifications,
let OCOMPOSE and OOECOMPOSE denote relations on RF X RG × RF and DF × Dc x DF
respectively, and let <denote a well-founded ordering on DF. I f

(1) Decompose satisfies the specification

D E C O M P O S E : X o = (Xl, X2) such that I F : X 0 ^ ~ P r i m i t i v e : Xo~ IG : XI ^ IF : X2 ^ X2 < XO A

ODECOMPOSE : (Xo, Xl, X2)
where D E C O M P O S E : D F -> D G x D F ;

(2)
(3)

G satisfies the specification s~ = (DG, RG, IG, OG~:
Compose satisfies the specification

COMPOSE: (Zl, Z2) = Zo such that OCOMPOSE: (Zo, Zl, Z2)

where COMPOSE : RG X RF "-'> RF ;

(4) Directly_Solve satisfies the specification

(5)

V(Xo, X1, X2) E DF X O a × DF V(Zo, Zl, Z2) E R F X RG × RF

[ODECOMPOSE: (Xo, Xl, X2) A 0 G : (Xl, Zi) ^ O F : (x2, z2) ^ OCOMPOSE : (Zo, Zl, Z2>

DIRECTLY_SOLVE: X 0 = 7. 0 such that Primitive : Xo ̂ IF : XO~ OF : (Xo, Zo)

where DIRECTLY_SOLVE : D F "> R F ;

The following Strong Problem Reduction Principle holds

then the divide and conquer program

F : Xo - if Primitive : Xo

then Directly_Solve : xo

else Compose o (G x F) o Decompose : Xo

: ~ O F :(Xo, ZoO]

satisfies specification SF = (DE, RF, IF, OF).

The design of divide and conquer algorithms 43

Proof. To show that F satisfies sF = (OF, RF, IF, OF) we will establish

V X 0 E OF [IF " Xo::::~ O F : (Xo, F: Xo)]

by structural induction 3 on DF.
Let Xo be an object in DF such that IF:Xo holds and assume (inductively) that

I F : Y ~ OF:(y, F : y) holds for any y ~ DF such that y < Xo. There are two cases to
consider: Primitive : Xo = true and 7Pr imi t ive : Xo = true.

If Primitive : Xo = true then F : Xo = Directly_Solve : Xo by construction of F. Further-
more according to condition (4) we have IF : Xo ^ Primitive : X o ~ OF : < Xo,
Directly_Solve:xo) from which we easily infer OF:(X0, Directly_Solve:Xo) or
equivalently OF : (Xo, F : Xo).

If -qPrimitive : Xo = true then F : Xo = Compose o (G x F) o Decompose : Xo. We will
show that OF : (Xo, F : Xo) by using the inductive assumption and by applying modus
ponens to the SPRP. Since/F : Xo holds and 7Primi t ive : Xo holds then Decompose : Xo
is defined so let Decompose : Xo = (x~, x2). Since Decompose satisfies its specification
in condition (1), we have ODECOMPOS E : (X0, Xl, X2) and I G : X 1 and /F : x2. Consider
x~--by condition (2) we have IG : Xt ~ OG : (Xl, G : xl) so we can infer Oa : (x~, G : x~)
by modus ponens. Consider x2--by condition (1) we have x2 < Xo, thus the inductive
assumption IF : x 2 ~ OF : (X2, F : x2) holds. From this we infer OF : (x2, F : x2). Next,
by condition (3) we have OCOMPOSE : (Compose : (G: Xl, F : x2), G : Xl, F : x2) or simply
OCOMPOSE:iF:Xo, G : x t , F:x2). We have now established the antecedent of
condition (5) enabling us to infer OF:(X0, F:Xo). []

Notice that in Theorem 1 the form of the subalgorithms Decompose, G, Compose,
and Directly_Solve is not relevant. All that matters is that they satisfy their respective
specifications. In other words, their function and not their form matters with respect
to the correctness of the whole divide and conquer algorithm.

5. The design of divide and conquer algorithms

In [13, 14] a form of top-down design called problem reduction is presented. The
idea is to take a complex problem described by a specification and decompose it
into a hierarchy of subproblem specifications. Then a program is composed whose
structure reflects the subproblem hierarchy. The specifications at the bottom of the
hierarchy represent problems which can be satisfied by target language operators.
Parent nodes in the hierarchy represent problems which can be satisfied by instantiat-
ing a program scheme with the algorithms derived for their child subproblems. A

Structural induct ion on a we l l - founded set (W, <) is a form o f mathemat ica l induct ion descr ibed by

Vx~ W V y ~ W [y < x ^ Q : y ~ Q : x] ~ V x ~ WQ:x

i.e., if Q : x can be shown to fo l low f rom the a s sumpt ion that Q : y holds for each y such that y < x, then
we can conc lude that Q : x ho lds for all x.

44 D.R. Smith

method for decomposing a specification Sn into subproblem specifications whose
solutions can be instantiated into a scheme solving Sn is called a design strategy.
Any program scheme admits a number of design strategies. Dershowitz and Manna
[4] have presented some strategies for designing program sequences, if-then-else
statements, and loops.

Three design stategies emerge naturally from the structure of divide and conquer
algorithms. Although we describe them separately they are really just different
aspects of a common approach---design a divide and conquer algorithm satisfying
a given specification Sn by deriving specifications for subalgorithms satisfying the
constraints of Theorem 1. If successful then any operators which satisfy these derived
specifications can be assembled into a divide and conquer algorithm satisfying Sn.
The design strategies differ in their approach to satisfying the Strong Problem
Reduction Principle (SPRP).

The first design stategy, called DS1, can be described as follows:

(DSI) First choose a simple decomposition operator, and choose an auxiliary
operator, then use the SPRP to derive input and output conditions for the
composition operator.

To see how we reason towards specifications for the composition operator, suppose
that the given problem is Sn =(D, R,/ , O), we have selected a decomposition
operator Decompose, and chosen an auxiliary operator G. To derive output
conditions for COMPOSE, we create the following formula

V(xo, xl, x2) E DF X DG X DF V(zo, z~, z2) E RF X RG X RF

[OoEcoMpos~ :(Xo, Xl, X2) ^ OG :(X,, Z,) ^ OF :(x2, z2)~OF :(Xo, Zo)]. (5.1)

(5.1) differs from the SPRP of Theorem 1 only in that the hypothesis
OCOMPOSE:(Zo, Z~, Z2) is missing. We desire to establish the SPRP so that we can
apply Theorem 1 to show that the algorithm we construct satisfies its specification.
Consequently we try to derive a relation on the variables Zo, z], and z2 which, if
taken as OCOMPOSE, would enable the SPRP to hold. Our technique is to reason
backwards from the consequent of (5.1) always trying to reduce it to relations
expressed in terms of the variables Zo, z~, z2. If the assumption of an additional
hypothesis of the form Q: (Zo, Zl, z2) allows us to prove (5.1), i.e., if it can be shown
that

V(Xo, xl, x2) E DF X DG X DFV(Zo, zl, Z2) E RF x RG X RF

[ODEcOMPOS E : (Xo, Xl,)(2) A 0 G :(XI, Zl) A O F :(x2, z2) A Q: (Zo, Zl, Z2):=::) O F : (Xo, Zo)]

then we take Q as the output condition OCOMPOSE since the SPRP is satisfied by
this choice of OCOMPOSE. Formal systems for performing this kind of deduction are
presented in [11, 14]. We shall proceed less formally here, making use of our intuition
for guidance.

The design of divide and conquer algorithms 45

We can also use (5.1) to obtain input conditions for our composition operators.
The input condit ion for Compose is some relation on z~ and z2 which can be expected
to hold when Compose is invoked. Suppose that by reasoning forwards from the
relations established by the decomposit ion operator and the component operators
we infer a relation Q':(z~, z2), i.e., that

V(xo, x,, x2) e D~, x Do x DF V(zo, zl, Z2) E RF x Ro x RF

[OoEcOMPOSE :(Xo, Xl, X=) ̂ OG : (Xl, Zl) ^ OF :(X=, Z2):=> Q':(z,, z2)].

Then we take Q' as an input condition to Compose.
The other two design strategies are variations on DS1 and use the SPRP in an

analogous manner.

(DS2) First choose a simple composition operator, and choose a simple auxiliary
operator, then use the SPRP to solve for output conditions of the decomposi-
tion operator. An input condition for the decomposition operator is found
by determining conditions under which a feasible output exists.

(DS3) First choose a simple decomposit ion operator and choose a simple composi-
tion operator, then use the SPRP to reason backwards towards output
conditions and to reason forwards towards input conditions for the auxiliary
operator.

In each of these design strategies a suitable well-founded ordering on the input
domain must be found in order to ensure program termination. Also, the control
predicate is chosen to reflect the domain of applicability of the decomposition
operator. In the succeeding sections these design strategies are applied to several
problems.

6. Example derivations

6.1. Des ign o f a selection sort algori thm

In this section and the next we design a selection sort algorithm. Related deriva-
tions of insertion sort, mergesort, and quicksort algorithms appear in [14]. Alternate
approaches to designing divide and conquer algorithms for the sorting problem are
discussed in [3, 9].

The problem of sorting a list of natural numbers can be specified by

SORT: x = z such that Bag : x = Bag : z A Ordered : z

where SORT: LIST(N) -> LIsT(N).

The expression "'Bag : x = Bag : z" asserts that the bag (multiset) of elements in the
list z is the same as the bag of elements in x. " O r d e r e d : z " holds when z is a list
whose elements are in nondecreasing order.

46 D.R. Smith

The selection sort algorithm presented in Fig. 1 can be derived using design
strategy (DS2). If we name our desired algorithm Ssort and choose Cons as
composition operator, then we have the following partial interpretation of the terms
in Theorem 1:

F ¢:~ Ssort,

DF ¢:) LIST(N),

RF ~ LIST(N),

I F : X 4:~ true,

OF : (x, z) ~ B a g : x = B a g : z ^ O r d e r e d : z,

RG ¢~ N

OcoMpose :(Zo, b, zl) ¢~ Cons : (b, zl) = Zo.

With these choices it is clear that the auxiliary operator cannot be Ssort since their
output types differ. In design strategies (DS1) and (DS2) it is satisfactory to use
the identity function as the auxiliary operator in such a case. Letting G be Id we
have the following interpretations:

DG¢:~ N,

OG : (a, b) ¢~ Id : a = b or equivalently a = b,

IG :(a, b) ¢:~ true.

It remains to determine the input and output conditions for the decomposition
operator.

Our first step towards determining ODECOMPOSE is to instantiate the SPRP as far
as possible thus obtaining

V(Xo, a, xl) E LIST(N) X N x LIST(N) V(Zo, b, zi) E LIST(N) X N x LIST(N)

[ODEcOMPOSE : (X0, a, xl) ^ a = b a Bag : xl = Bag: zl a Ordered : zl a Cons :(b, zl) = Zo

:=~ Bag : Xo = Bag : Zo a Ordered : Zo] (6. l)

Since we desire to have the SPRP hold in order to apply Theorem 1 we evidently
must try to find an expression for OoECOMpOSE which allows (6.1) to hold. In order
to determine ODeCOUPOSE we attempt to reduce (6.1) to a formula dependent on
the variables Xo, a, and x~ only. The consequent is the conjunction of two atomic
formulas which can be considered separately. The goal

Bag: Xo = Bag: Zo (6.2)

is equivalent to

Bag : Xo = Bag : Cons : (b, zl)

The design of divide and conquer algorithms 47

since Cons : (b, el) = eo is a hypothesis. The fact

B a g ° Cons : (u, y) = A d d :(u, Bag : y)

allows us to further reduce the goal to

Bag : xo = A d d : (b, Bag : z~).

Then since Bag : ×1 = Bag: z~ and a = b are hypotheses we finally reduce to

B a g : Xo = A d d : (a, Bag : xl). (6.3)

In other words, if we had (6.3) as an additional hypothesis then we could establish
our original goal (6.2). We will use (6.3) in the output condition ODECOMPOSE.
Consider now the second goal

Ordered : Zo (6.4)

which reduces to

Ordered o Cons : (a, z l)

via the hypotheses Cons :(b, z l) = Zo and a = b. The fact

u <~ Bag: y ^ Ordered : y ¢:~ Ordered o Cons : (u, y)

can be used to produce the equivalent goal

a <~ Bag : zl ^ Ordered : z~.

Now Ordered:z1 is a hypothesis and thus is assumed to hold. The other subgoal
can be transformed via the hypothesis Bag : xl = B a g : zl to

a <~ Bag: Xl.

We have reduced (6.4) to a subgoal which is expressed in terms of the variables
required by ODECOMPOSE. By reasoning backwards we have shown above that if

a <~ Bag: xl ^ Bag: Xo = A d d : (a, Bag : Xl) (6.5)

is added as a hypothesis then (6.1) follows. We take (6.5) as Ot~ECOMPOSE.
Before constructing the partial specification for the decomposition operator we

construct a well-founded ordering on the input domain. The obvious choice is x~ < Xo
iff L e n g t h : x o> Leng th :x1 . Using (6.5) as ODECOMPOSE and this well-founded order-
ing on LIST(N) we create the following specification for the decomposition operator
in accord with condition (1) of Theorem 1:

DECOMPOSE : X 0 = (a~ Xl) such that a <<- Bag : xl A

Bag : Xo = A d d : (a, Bag : Xo) A Length : Xo > Length : x~

where DECOMPOSE " L I S T (N) ---> N x L I S T (N)

48 D.R. Smith

By inspection we see that there is no feasible output when the input is ni l so we
add the input condition "x # n i l " obtaining

DECOMPOSE : X 0 = (a, xl) such that Xo ~ n i l ~ B a g : Xo = A d d ; (a, B a g : Xo) A

a <~ B a g : x~ A L e n g t h : Xo > L e n g t h : x l

where DECOMPOSE : L I S T (N) --> N x L I S T (N) .

In [14] we show how to derive the input condition for decomposition operators by
formal means. In the next section we derive a divide and conquer algorithm, called
Se l ec t , for this problem.

Since S e l e c t cannot be invoked with input ni l the control predicate must be Xo = nil.
S s o r t at this point has the form:

S s o r t : x - i f x = n i l

then Di rec t l y_So lve : x

else C o n s o (I d x S s o r t) o S e l e c t : x

A specification for D i r e c t l y _ S o l v e : x is formulated by instantiating the specifica-
tion scheme in condition (4) of Theorem 1 yielding

D I R E C T L Y _ S O L V E " X = g such that x = n i l ~ B a g : x = B a g : z ^ O r d e r e d : z

where D I R E C T L Y _ S O L V E : L I S T (N) "-> L I S T (N) .

The constant ni l is easily shown to satisfy this specification.
Putting together all of the operators derived above, we obtain the following

selection sort program:

S s o r t : x - if x = n i l

then nil

else C o n s o (I d x S s o r t) o S e l e c t : x.

To recapitulate, this derivation of a selection sort algorithm resulted from the
following high-level decisions:

(1) to design a divide and conquer algorithm for the sorting problem,
(2) to follow design strategy (DS1), and
(3) to use C o n s as a simple composition operator.

If, instead of choosing C o n s , we had chosen the list operator A p p e n d (which
concatenates two lists) we would derive a quicksort algorithm. If instead we had
decided to apply design strategy (DS2) we would end up deriving mergesorts and
insertion sorts [14].

The design of divide and conquer algorithms 49

6.2. Design o f a selection algorithm

In the previous section we derived the specification

SELECT: X 0 = (a, x~) such that Xo ~ n i l ~ Bag : Xo = A d d :(a, Bag : xl) A

a <~ Bag : x~ A Length : Xo > Length : x~

where SELECT: LIST(N) -~ N x LIST(N).

The synthesis of a divide and conquer algorithm satisfying the specification of
SELECT proceeds according to the design strategy (DS2). First, we choose FirstRest
as decomposition operator. Naming the algorithm Select we have the following
interpretations of the terms in Theorem 1:

F ¢~ Select

Dr= ¢=~ LIST(N),

RF ¢* N)< LIST(N),

Ir : Xo ¢:> Xo ~ nil,

OF : (Xo, a, xl) <:~ Bag : Xo = A d d :(a, Bag : xl) ^ a <~ Bag : xl A

Length :Xo > Length xl ,

Dr = LIST(N) is made a well-founded set exactly as in the previous example by
defining x~ < Xo iff Length: Xo > Length: Xl. Firs tRest clearly preserves this ordering.
FirstRest will decompose a non-nil list x into a number and a non-nil list when
Rest: x ~ nil, so the control predicate must be Rest: Xo = nil. Select now has the form

Select: Xo =- if Rest: Xo = nil

then Direc t ly_Solve: Xo

else C o m p o s e o (G x Select) o Firs tRes t : Xo

It remains to determine the composition operator Compose.
In pursuit of an output condition for the composition operator (a relation

dependent on the variables ao, Zo, v, at, and zl), we first instantiate the SPRP

DG CZ) N,

Decompose ¢:~ FirstRest,

IDeCOMPOSE : X ¢* X ~ nil,

O D E C O M P O S E : (X0, U, Xl) ~ U = F i r s t : x 0 A X l = Res t : Xo.

50 D.R. Smith

obtaining
V(Cao, Zo), v, (al , z l))e (N ×LIST(N)) × N x (N X LIST(N))

V(Xo, U, Xl)C LIST(N) × N X LIST(N)

[First : Xo = u A Res t : Xo = x~ A Bag : Xl = A d d : (a~, Bag : z~) A al <~ Bag : z~ A

Leng th : x~ > Length : z I A u : D

B a g : Xo = A d d : (ao, Bag: Zo) A ao <<- Bag : Zo A Length : Xo > Length : Zo].

(6.6)

Again we consider the goals in (6.6) one at a time. The goal ao <~ Bag : Zo is a l ready
expressed in the form we desire, so we can use it in OcouposE. Consider the goal

We have
Bag" Xo = A d d : C ao, Bag" Zo).

Bag: Xo = Bag o Cons : (u, xl}

= A d d " Cu, Bag" xl)

= A d d "Cu, A d d "(a~, Bag" Zl))

= A d d " Cv, A d d : (al , Bag: zl))

so this goal is equivalent to

(since Xo = Cons :(u, xl))

(since Bag o Cons : Ca, y} = A d d : Ca, Bag : y))

(using hypothesis

Bag: xl = A d d : C al, B a g : zl))

(using hypothesis u = v)

A d d :Cv, A d d : Cab Bag : Zl)) = A d d :Cao, Bag : Zo).

This condi t ion is expressed in the desired variables so we use it in OcoMpose. Finally,
consider the goal

Length : Xo > Length : Zo. (6.7)

In the fo l lowing derivat ion we use Card : w to denote the cardinal i ty of the bag w.
We have

Length" Xo = Length ° Cons : (u, xl)

= 1 + L e n g t h : x~

= 1 + Card ° A d d " Ca1, Bag : zl)

(since Xo = Cons :Cu, xl))

(using hypothesis
Bag: xl = A d d : Cab Bag : zl))

= 2 + C a r d o B a g : zl

= 2 + Length : zl.

Thus we can reduce (6.7) to

2 + Leng th : zl > Leng th : Zo.

The design of divide and conquer algorithms 51

Putting all these condit ions together we obtain

A d d : (v, A d d : (al , B a g : Zl)) = A d d : CaD, B a g : Zo) A

ao <- B a g : Zo A 2 + Length : z~ > Length : Zo

and use it as OCOMPOSE. A n input condi t ion can be derived by reasoning forwards
from

V((ao, Zo), t~, (01, ZI))E (N)< LIST(N)) X N × (N X LIST(N))

V(X0, U, Xl)E LIST(N) × N × LIST(N)

[FirstRest : Xo = (u, xl) A Bag : x~ = A d d : (al , Bag : Zl) ^

al <~ Bag: z~ A Length : x~ > Length : zl A U = V]

towards a relation expressed in terms of the variables v, al , and Zl. The only useful
inference seems to be al ~< Bag : Zl so we take this as the input condi t ion and form
the specification

COMPOSE" (1), (a l , Z.l)) = (a0, Z0) such that a~ <~Bag: zl ~ ao <~ B a g : Zo A

A d d : (v, A d d : (a~, Bag: zl)) = A d d : (ao, Bag: Zo) ^ 2 + Leng th : Zl > Length : Zo

where COMPOSE: N x (N × LIST(N)) -~ N x LIST(N)

Compose, can be constructed satisfying this A condi t ional program, called
specification:

Compos e : (v , (al , zl)) = if v ~< 81

then (v, Cons ; (al, gl))

else (al , Cons :(v, Zl))

A specification for Direc t l y_So lve is formula ted by ins tant ia t ing the specification
scheme in condi t ion (4) of Theorem 1 yie lding

DIRECTLY_SOLVE: X 0 -~ (O, XI) such that Res t : Xo = nil ^ Xo # n i l ~

B a g : Xo = A d d : (a, Bag : xl) ^ a ~ B a g : xl A Leng th : Xo > Length : xl

where DIRECTLY_SOLVE : LIST(N) --> N x LIST(N).

The operator Firs tRest is easily shown to satisfy this specification.
The operators derived above are assembled into the fol lowing algori thm:

Select : x - i f Res t : x = nil

then F i r s t R e s t : x

else C o m p o s e ° (Id x Select)° Firs tRes t : x

54 D.R. Smith

holds. So if we take (6.10) as an additional hypothesis then (6.8) holds. We take
(6.10) as our output condition for G and create the specification

CP_AUX : (a, x) = z such that z = {(u, v)[u = a and v ~ x}

where CP_AUX : N x SET(N) ~ SET(N) X SET(N).

A divide and conquer algorithm for this problem can easily be constructed using
design strategy (DS2) (along the same lines as Ssort). The control predicate and
primitive operator are determined in a similar manner to previous derivations. The
complete algorithm for producing the cartesian product of two sets is listed in Fig.
2. The reader can easily find several ways to simplify CP and CP_aux without
affecting their correctness.

CP:(x , x ') = i f x = { }

then { }

else Uniono(CP_aux x CP)o Transo(Set_Split x Id2) : (x, x')

CP_aux:(a,x) = i f x = { }

then { }

else Add o(Id x CP_aux)o Transo(Id2 x Set Split):(a, x)

Fig. 2. Forming the cartesian product of two sets.

6.4. Design of a convex hull algorithm

As a final example we design a divide and conquer algorithm, called CH, for the
convex hull problem. The derivation is slightly more difficult than earlier examples
in that we do not assume the existence of a simple decomposition or composition
operator. Following design strategy (DS 1) we specify rather than choose a decompo-
sition operator, then solve for the specification of the composition operator. CH
differs from earlier examples also in that the auxiliary operator is CH.

The convex hullproblem involves finding a polygon of minimal area which encloses
a given bag of planar points. It can be shown that such a minimal polygon is convex
and is comprised of a subset of the given bag. These properties are assumed in the
following specification:

C O N V E X H U L L : b = h such that Contains :(h, b) A Bag : h c_ b

w h e r e CO NVEX HULL" BAG(POINT) -> LIST(POINT).

Here the convex hull problem is represented as a mapping from bags of points to
lists of points (a polygon may be represented by a list of its points in, say, clockwise
order). The abstract data type eOINT, representing planar points, has operator X
which returns the x-coordinate of a point. For simplicity we allow X to be applied

The design o f divide and conquer algorithms 55

to a bag of points as follows:

X : b = { X : p l p ~ b } .

The expression Contains : (h, b) holds when h represents a convex polygon containing
each point in bag b.

There are many algorithms for solving the convex hull problem (see [10, Ch. 25])
only some of which are based on the divide and conquer principle. We proceed
here using design strategy (DS1) and thus seek a decomposition operator for bags
of planar points. One approach is to (figuratively) draw a vertical l ine through the
points thereby separating them into two smaller bags. It is likely that no such
operator is immediately available. However, for the purposes of designing CH only
a specification is needed so we formalize this approach as follows:

DECOMPOSE "b 0 = (hi, b2) such that C a r d : bo~, 1 ~ X : 191 ~ X : b 2 ^ b 0 --- b 1 U b 2 A

Card : bo > Card : bl ^ Card : bo > Card : b2

where DECOMPOSE: BAG(POINT) "-> BAG(POINT) X BAG(POINT).

For notational simplicity the relation <~ is allowed between bags of numbers:
bag~ <~ bag2 holds if each number in bag~ is less than or equal to each number in
bag2. The input condition Card : bo > 1 has been added since bo cannot be decom-
posed into strictly smaller subbags if it only has zero or one element.

Since the input to the auxiliary operator is of the same type as C H we let the
auxiliary operator be CH.

To obtain a specification for the composition operator the SPRP is instantiated
yielding

V(ho, h,, h2) e LIST(POINT) X LIST(POINT) X LIST(POINT)

V(bo, bt, b2)E BAG(POINT) X BAG(POINT) X BAG(POINT)

[X : b I ~<X:b2^ bo= bl~d b2^ Card:bo> Card:b1 A Card:bo> C a r d : b 2 ^

Contains : (h~, b~) ^ Bag: hl c_ bl A Contains : (h2 , b2) ^ Bag : h 2 ~ b2

Contains : (ho, bo) ^ Bag : ho c_ bo]. (6.11)

Reasoning backwards from the goals to expressions in the variables ho, hi, and h2
we have

Contains :(ho, bo) if[Contains : (ho, bl w b2)

iff Contains :(ho, hi) ^ Contains : (ho, b2)

56 D.R. Smith

iff Contains : (h~, b~) ^ Contains : (ho, Bag : hl) ^

Contains : (h2 , b2) ^ Contains : (ho, Bag : h2)

(using transitivity of Contains)

iff Contains : (ho, Bag : hi) A Contains : (ho, Bag : hE)

Bag : ho ~_ bo iff Bag: ho c_ b I k.) b 2

iff Bag: ho C _ Bag : h~ u Bag: h 2 ^ Bag: h~ c_ b~ A Bag : h 2 c b 2

(using the transitivity of __q)

iff Bag : ho c_ Bag : h ~ u Bag : h2.

To sum up, if

Contains : (ho, Bag : h~) ^ Contains : (ho, Bag : hE)

^ Bag : ho ~ Bag : h ~ u Bag : h 2

were added as an additional premise then (6.11) would be valid. Again this derived
expression is used as the output condition for the composition operator. An input
condition for the composition operator is obtained by reasoning forwards from

~¢(b0, hi , b2) E BAG(POINT) X BAG(POINT) X BAG(POINT)

V(ho, hl, h2) E LIST(POINT) X LIST(POINT) X LIST(POINT)

I X : b I ~ X ". b 2 A b 0 = b I L.) b 2 A C a r d : bo> C a r d : b I A C a r d : bo> C a r d : b 2

^ Contains : (h~, hi) ^ Bag: hi ~_ b~ ^ Contains : (hE, bE) ^ Bag : h E ~ bE]

yielding X o Bag: h~ <~ X o Bag: h 2. Putting input and output conditions together we
obtain the specification

COMPOSE" (hi , h2) = h 0 such that X o Bag : h~ <~ X o Bag : h 2 ~

Bag : ho c_ Bag : hi u Bag : h 2 A Contains : (ho, Bag : hi) ^ Contains : (ho, Bag : h2)

where COMPOSE:LIST(POINT) X LIST(POINT) "> LIST(POINT).

The problems DECOMPOSE and COMPOSE have solutions which will be called
Decompose and Compose respectively.

Since the decomposition operator can only be invoked when the input is a bag
of size two or more, the control predicate becomes Card:bo <- 1. The primitive
operator is derived as before here it is sufficient to convert the bag of (zero or
one) points to a list using an operator we will call Listify.

The design of divide and conquer algorithms 57

Putting all the parts together, the convex hull algorithm has the following top-level
form:

C H : b - i f C a r d : b < ~ l

then Listify : b

else Compose o (C H × C H) o Decompose : b

The correctness of C H follows from Theorem 1. Again, the forms of Decompose
and Compose are irrelevant to the correctness argument as long as they satisfy the
specifications of DECOMPOSE and COMPOSE respectively.

7. Conclusion

We have presented a program scheme which provides a normal-form for expressing
the structure of a subclass of divide and conquer algorithms. A theorem relating
the functionality of an instance of this scheme to its structure and the functionalities
of its parts has been given. The theorem gives rise to three design strategies which
were used to derive several algorithms.

The top-down style of programming suggested by our design strategies can be
summarized as follows. First we require a clear understanding of the problem to
be solved, expressed formally by a specification. If a divide and conquer solution
seems both possible and desirable we begin to explore the input and/or output
domains looking for simple decomposition and composition operators respectively.
Depending on our choice we follow one of the design strategies discussed above.
Using our intuition and/or proceeding formally using the Strong Problem Reduction
Principle we derive specifications for the unknown operators in our program. These
specifications are then satisfied either by target language operators or by (recursively)
designing algorithms for them. Once a correct, high level, well-structured algorithm
has been constructed we may subject it to transformations which refine its abstract
data and control structures into a more concrete and efficient form.

References

[l] A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms (Addison-Wesley,
Reading, MA, 1983).

[2] J. Bentley, Multidimensional divide and conquer, Comnt ACM 23 (1980) 214-229.
[3] K.L. Clark and J. Darlington, Algorithm classification through synthesis, Comput. J. 23 (1980) 61-65.
[4] N. Dershowitz and Z. Manna, On automating structured programming, Proc. Colloques IRIA on

Proving and Improving Programs, Arc-et-Senans, France (1975).
[5] N. Dershowitz, The evolution of programs: program abstraction and instantiation, Report No.

UIUCDCS-R-81-1011, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL (1981).

58 D.R. Smith

[6] E.W. Dijkstra, Notes on structured programming, in: O. Dahl, E.W. Dijkstra and C.A.R. Hoare,
Eds., Structured Programming (Academic Press, New York, 1972).

[7] S. Gerhart, Knowledge about programs: a model and case study, Proc. International Conference on
Reliable Software, Los Angeles, CA (1975) 88-94.

[8] S. Gerhart and L. Yelowitz, Control structure abstractions of the backtrack programming technique,
IEEE Trans. Software Engrg. 2 (1976) 285-292.

[9] C.C. Green and D.R. Barstow, On program synthesis knowledge, Artificial Intelligence 10 (1978)
241-279.

[10] R. Sedgewick, Algorithms (Addison-Wesley, Reading, MA, 1983).
[11] D.R. Smith, Derived preconditions and their use in program synthesis, in: D.W. Loveland, Ed.,

Proc. 6th Conference on Automated Deduction, Lecture Notes in Computer Science 138 (Springer,
New York, 1982) 172-193.

[12] D.R. Smith, The structure of divide and conquer algorithms, Technical Report NPS 52-83-002,
Naval Postgraduate School, Monterey, CA (1983).

[13] D.R. Smith, A problem reduction approach to program synthesis, Proc. 8th International Joint
Conference on Artificial Intelligence (1983) 32-36.

El4] D.R. Smith, Top-down synthesis of simple divide and conquer algorithms, submitted for publication
(1983) (earlier extended version available as Technical Report NPS 52-82-011, Naval Postgraduate
School, Monterey, CA (1982)).

[15] L. Yelowitz and A.G. Duncan, Abstractions, instantiations and proofs of marking algorithms, Proc.
ACM Symposium on Artificial Intelligence and Programming Languages (1977) 13-21.

View publication statsView publication stats

https://www.researchgate.net/publication/222812966

