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Specification morphisms underlie the refinement of algebraic specifications and pro-

vide the logical foundations for algorithm and data structure design. We present four
techniques for formally, even mechanically, constructing specification morphisms. The

first two techniques, verifying a manually constructed signature morphism and compo-
sition of specification morphisms are well-known. The remaining two techniques exploit

the axioms of the source specification to help infer the translation of sort and function
symbols from the source specification. The third, unskolemization, finds the transla-

tion of a function symbol by replacing occurrences of it in an axiom by an existentially
quantified variable. A constructive proof of the translated axiom yields a witness to the

existential that serves as the desired translation of the function symbol. The fourth tech-
nique, connections between specifications, allows the transfer of structure from one spec-

ification morphism to another. The unskolemization and connection techniques arose as
abstractions from the algorithm design tactics implemented in the KIDS program trans-

formation system (Smith (1990)). They suggest a more general approach to providing
mechanized support for applying design knowledge expressed axiomatically.

1. Introduction

Mathematically-based techniques for software construction will play an increasing, if not
critical, role in the future of software engineering. This paper is part of a broader research
program to explore a mechanizable model of software development based on algebraic
specifications and specification morphisms.
An algebraic specification (or simply a specification) defines a language and constrains

its possible meanings via axioms and inference rules. Specifications can be used to express
many kinds of software-related artifacts, including domain models (Srinivas(1991)), for-
mal requirements (Astesiano and Wirsing (1987), Ehrig and Mahr (1990), Partsch (1990),
Sannella and Tarlecki (1985)), programming languages (Broy et al. (1987), Goguen and
Winkler (1988), Hoare (1989)), abstract data types (Goguen et al. (1978), Guttag and
Horning (1978)), and abstract algorithms (Smith and Lowry (1990)). There has been
much work on operations for constructing larger specifications from smaller specifica-
tions (Astesiano and Wirsing (1987), Burstall and Goguen (1977), Sannella and Tarlecki
(1988)).
A specification morphism translates the language of one specification into the lan-

guage of another specification in a way that preserves theorems. Specification mor-
phisms underlie several aspects of software development, including specification refine-
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ment/implementation (Blaine and Goldberg (1991), Partsch (1990), Sannella and Tar-
lecki (1988), Turski and Maibaum (1987)), algorithm design (Lowry (1987), Smith and
Lowry (1990), Veloso (1988)), data structure design (Smith (1992a)), and the binding
of parameters in parameterized specifications (Ehrig et al. (1981), Goguen and Winkler
(1988)). There has been work on techniques for composing implementations in a way that
reflects the structure of the source specification (Astesiano and Wirsing (1987), Sannella
and Tarlecki (1988), Turski and Maibaum (1987)); however these composition techniques
leave open the problem of constructing simple morphisms.
The problem addressed in this paper is the following. Given a source specification T

and a target specification B, construct a specification morphism from T to an extension
of B. Most previous work on constructing specification morphisms has adopted a largely
verification approach — a language translation is proposed and then the axioms of the
source specification are translated and proved in the target specification. In contrast,
we seek constructive methods that use the source axioms to help define a language
translation such that the source axioms translate to theorems in the target specification.
Four basic techniques for constructing specification morphisms are presented in Sec-

tions 3 and 4. The first technique is to compose preexisting (parameterized) specification
morphisms. The second technique separates the construction into ‘invention’ and ‘verifi-
cation’ stages. The third is called unskolemization and treats the construction of a spec-
ification morphism as a constraint satisfaction problem. In particular, the translation of
an operator symbol is deduced from an existentially quantified variant of an axiom from
the source theory. First-order theorem-proving techniques are used to produce a witness
to the existential which then becomes the desired translation. The fourth technique is
based on a new concept called connection between specifications. A connection between
specifications can be thought of as a general set of conditions under which a specification
morphism can be constructed in the following way. Suppose that we want to construct
a morphism from specification T to (an extension of) specification B. Assuming that we
have a morphism from T into some specification A and there exists (or we can construct)
a connection from A to B, then there exists a specification morphism from T to B.
The last two techniques, unskolemization and connection between specifications, arose

as abstractions from our experience with automated algorithm design in CYPRESS
(Smith (1985)) and KIDS (Smith (1990)). In these systems, and others at Kestrel In-
stitute, we have explored the representation of programming knowledge via algebraic
specifications. The possibility of machine support for the construction of specification
morphisms suggests a system in which users can supply specifications of programming
knowledge (algorithms, data structures, and system architectures) and have generic au-
tomated tools that support the correct application of this knowledge.

2. Basic Concepts and Notations

As much as possible we adhere to conventional concepts and notation for algebraic
specification (Enderton (1972), Goguen et al. (1977), Wirsing (1990)). A signature Σ =
〈S,Ω〉 consists of a set of sort symbols S and a family Ω = 〈Ωv,s〉 of finite disjoint sets
indexed by S∗ × S, where Ωv,s is the set of operation symbols of rank 〈v, s〉. We write
f : v → s to denote f ∈ Ωv,s for v ∈ S∗, s ∈ S when the signature is clear from context.
For each sort s ∈ S we assume that there is an unbounded supply of distinct variables.
We write x : s to indicate that variable x has sort s. More generally, if x = x1, . . . , xn is
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a sequence of variables of sorts v = v1, . . . , vn respectively, then we write x : v to indicate
the aggregate sort of variables x.
As far as possible in this paper we treat truth-values as any other sort. Letting boolean

be the sort symbol for truth values, then Ωv,boolean is a set of predicate symbols for each
v ∈ S∗. The usual logical connectives ∧ , ∨ , ¬, =⇒ , and ⇐⇒ are treated as boolean
operations.
For any signature Σ, the Σ-terms are defined inductively in the usual way as the well-

sorted composition of operator symbols and variables. A Σ-formula is a boolean-valued
term built from Σ-terms and the quantifiers ∀ and ∃. A Σ-sentence is a closed formula.
The generic term expression is used to refer to a term, formula, or sentence.
A signature morphism σ : 〈S,Ω〉 → 〈S′,Ω′〉 maps S to S′ and Ω to Ω′ such that

the rank of operations are preserved: if f : v → s in Ω and v = v1, . . . vn then σ(f) :
σ(v1) . . . σ(vn)→ σ(s) in Ω′. A signature morphism extends in a unique way to a trans-
lation of expressions (as a homomorphism between term algebras). For Σ-expression e,
let σ(e) denote its translation to a Σ′-expression or, when σ is understood, we write eΣ′ .
Let 〈As〉s∈S be an S-indexed family of sets. If v ∈ S∗ where v = v1 . . . vn then Av

denotes the product Av1 × . . . × Avn
. Letting ǫ denote the empty string, Aǫ denotes

the set consisting of the 0-tuple, {〈〉}. Let 〈hs〉s∈S be an S-indexed family of operator
symbols or functions, and v ∈ S∗, then hv denotes the product hv1× . . .×hvn

. hǫ denotes
the unique function on Aǫ. Let Σ = 〈S,Ω〉 be a signature. A Σ-structure A consists of
an S-indexed collection of sets 〈As〉s∈S and for each operator f : v → s a function

fA : Av → As.

A Σ-homomorphism from Σ-structure A to Σ-structure B is an S-indexed collection of
functions 〈hs : As → Bs〉s∈S such that for any a ∈ Av,

fA(a) = a′ =⇒ fB(h
v(a)) = hs(a

′).

A specification T = 〈S,Ω, Ax〉 comprises a signature Σ = 〈S,Ω〉 and a set of Σ-
sentences Ax called axioms. We assume that axioms are in prenex form (i.e. all quantifiers
to the left). Specification T ′ = 〈S′,Ω′, Ax′〉 extends specification T = 〈S,Ω, Ax〉 if S ⊆ S′,
Ωv,s ⊆ Ω′

v,s for each v ∈ S∗, s ∈ S, and Ax ⊆ Ax′. Alternatively, we say T is a
subspecification of T ′. A model for T is a structure for 〈S,Ω〉 that satisfies the axioms. We
shall use modus ponens, substitution of equals/equivalents and other natural deduction
rules of inference in T . A sentence e is a theorem of T , written ⊢T e, if e is in the closure
of the axioms under the rules of inference.
The notion of a signature morphism can be extended to a specification morphism by re-

quiring that the translation preserves theorems. Let T = 〈S,Ω, Ax〉 and T ′ = 〈S′,Ω′, Ax′〉
be specifications and let σ : 〈S,Ω〉 → 〈S′,Ω′〉 be a signature morphism between them.
σ properly translates axiom A ∈ Ax if σ(A) is a theorem of T ′ (i.e. ⊢T ′ σ(A)). σ is a
specification morphism if it properly translates each axiom of T . σ is a partial specifica-
tion morphism if it is a specification morphism from a subspecification of T to T ′. It is
straightforward to show that a specification morphism translates theorems of the source
specification to theorems of the target specification. The semantics of a specification
morphism is given by a model construction. If σ : T1→ T2 is a specification morphism,
then every modelM of T2 can be made into a model of T1 by simply “forgetting” some
structure ofM.
It will be convenient to generalize the definition of signature morphism slightly so that

the translations of operator symbols are allowed to be terms in the target specification
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and the translation of sort symbol are constructions on the target sorts (e.g. a prod-
uct of target sorts). A symbol-to-term morphism can be treated as a symbol-to-symbol
morphism into an extension by definitions of the target specification. Well-formedness
of translations under a symbol-to-term signature morphism follows from well-formedness
of translation under the usual symbol-to-symbol morphisms and well-formedness under
expanding operator definitions (Schoenfield (1967)) and sort definitions (e.g. (Mere and
Veloso (1992))). Composition of symbol-to-term signature morphisms is straightforward
(Turski and Maibaum (1987)).
Several examples that will be used throughout this paper illustrate the above concepts

and notation. A problem P consists of a set of possible inputs (also called problem in-
stances) x ∈ D such that input condition I(x) holds, and a set of outputs (also called
feasible solutions) z ∈ R such that some output condition O(x, z) holds. A problem spec-
ification can be presented in the following format

Spec ProblemSpec

Sorts D,R

Operations I : D → Boolean

O : D× R→ Boolean

endspec

A concrete problem can be presented via a signature morphism from ProblemSpec

into the domain specification of the problem. ProblemSpec can be extended to form a
simple program specification by adding a function symbol plus an axiom asserting that
the function solves the specified problem.

Spec ProgramSpec

Sorts D,R

Operations I : D → Boolean

O : D× R→ Boolean

f : D → R

Axioms ∀(x : D)(I(x) =⇒ O(x, f(x)))
endspec

A specification morphism from ProgramSpec translates the function symbol f into a
program in the target theory. The preservation of the axiom of ProgramSpec means that
the program is correct with respect to the translation of the input and output conditions.
As an example of a problem, consider the problem of sorting a bag of integers. A domain

specification for sorting defines the concepts and laws necessary to support the definition
of the sorting problem and a method for solving it. The following domain specification
is parameterized on a linear order — given any particular set S that is linearly ordered
by ≤ we obtain a concrete sorting specification.

Spec Sorting(〈S,≤〉 :: Linear−Order)
Imports seq(S), bag(S)
Operations ordered : seq(S) → boolean

bagify : seq(S) → bag(S)
Axioms ... axioms defining the operations ...

endspec
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We do not give formal definitions for ordered, and bagify since they will not be needed
later. We can present the sorting problem via a signature morphism of ProblemSpec into
expressions of the Sorting specification.

D 7→ bag(S)
I 7→ λ(x) true
R 7→ seq(S)
O 7→ λ(x, z) ordered(z) ∧ x = bagify(z)

3. Constructing Specification Morphisms: Three Techniques

Specification morphisms can express several aspects of software development, includ-
ing the refinement/implementation of specifications, algorithm and data structure de-
sign, and the binding of parameters in parameterized specifications. In this section we
introduce three techniques for formally constructing specification morphisms. The first
technique is composing specification morphisms in a library. The second is verifying a
manually produced signature morphism. The third, based on the inverse of skolemization,
allows us to use theorem-proving technology to construct morphisms in systematic way.
A fourth technique, called connection between specifications, is presented in Section 4.
The situation is this: we are given a source specification T and a target specification

B, and must construct a specification morphism from T to an extension of B.

3.1. Composition

A specification development environment can be expected to have a library of compo-
sition methods and simple specification morphisms. Typical composition methods would
include horizontal (parametric) and vertical (sequential) composition. A user would use
these to compose specification morphisms that reflect the structure of the source speci-
fication.
This approach has been successfully used for datatype refinement in the DTRE system

(Blaine and Goldberg (1991)). For each datatype and datatype constructor (i.e. param-
eterized specification), the DTRE system has one or more (parameterized) specification
morphisms that provide standard refinements. DTRE provides a simple language for
expressing the horizontal and vertical composition of refinements. Users can annotate
datatype declarations in programs with expressions in this language. The DTRE com-
piler handles the details of effectively composing the refinements and applying them.
The system can also automatically generate refinement expressions by exploiting heuris-
tics for selecting refinements based on heuristic measures of data structure size and the
execution frequency of operations.
In the sequel we will be concerned with the problem of constructing the specification

morphisms that might populate such a library.

3.2. Verification

One approach to constructing a specification morphism is manually to “invent” a sig-
nature morphism σ : T → B and then verify that each axiom of T translates to a theorem
ofB. Roughly speaking, this would correspond to a VDM-style approach to implementing
algebraic specifications. Generally useful support tools for this approach would include a
language for stating specifications and specification morphisms, a translator for applying
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a specification morphism to arbitrary expressions of the source language, and a theorem
prover.
Example: Given a problem specification (that is, a signature morphism from Problem-

Spec into a given domain specification), we can extend it to a program specification by
supplying a program and then translating the correctness condition and proving it, i.e.
program verification (Floyd (1967)).

3.3. Unskolemization

We turn now to a technique for developing specification morphisms that are correct by
construction. The key idea is to use the axioms of the source specification as constraints
on the translations of source symbols. Theorem-proving techniques are used to deduce
symbol translations such that the source axioms are properly translated.
Skolemization is the process of replacing an existentially quantified variable z with

a Skolem function over the universally quantified variables whose scope includes z. For
example, the formula

∃(w)∀(x, y)∃(z)∀(u)H(w, x, y, z, u) (3.1)

is skolemized to

∀(x, y)∀(u)H(a, x, y, f(x, y), u) (3.2)

where f is a Skolem function of x and y and a is a Skolem function of no arguments – a
Skolem constant. A simple occurrence of an operation symbol g : v → s in a sentence G is
a subexpression of G of the form g(x) where x : v is a sequence of distinct variables that
are universally quantified in G. Skolemization always replaces an existentially quantified
variable with simple occurrences of a fresh operation symbol.
We are interested in the inverse process, unskolemization : given a sentence (such as

(3.2)) containing identical simple occurrences of operation symbol g, say g(x), replace g

by a fresh existentially quantified variable in the scope of x (such as (3.1)).
Suppose that we have a partial specification morphism σ from specification T to spec-

ification B and we are trying to complete it. Let f : v → s be a function symbol of T
that has no translation yet under σ. Suppose that F is a prenex normal form axiom in
which all occurrences of f are identical and simple, and suppose that all other symbols
in F are translatable under σ (i.e. the domain of σ includes all of the sort and operator
symbols of F except for the function symbol f). To obtain a candidate translation for a
function symbol f , we proceed as follows.

(1) Unskolemize f in F yielding F’. Since this has the effect of replacing each occurrence
of f by a variable, each symbol in F ′ can be translated via σ.

(2) Translate F’. The translated sentence σ(F ′) need not be an axiom of B. In order for
σ to become a specification morphismwe need an expression defining the translation
of f in B. σ(F ′) can be viewed as a constraint on the possible translations of f .

(3) Attempt to prove σ(F ′) in B. A constructive proof will yield a (witness) expression
t(x) for f that depends only on the variables x. If the proof involves induction
(resulting in a recursively defined witness), then we extend the target specification
with a fresh operator symbol and an axiom stating its recursive definition.

(4) Extend the partial morphism σ by defining σ(f) to be t(x). By construction this
translation for f guarantees that σ properly translates the axiom F .
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Other axioms that involve f may now be translatable, and if so, then we can at-
tempt to prove that they translate to theorems. In this manner we can incrementally
construct a specification morphism. There are several choice points in this procedure. In
Step 1 there is the choice of which function symbol and axiom to unskolemize. In Step
3 there may be several alternative proofs, each providing a different translation. Alto-
gether, unskolemization can lead to a tree of specification morphisms from T to B. For
example, most sorting algorithms can be treated as alternative specification morphisms
from divide-and-conquer theory to a specification of the sorting problem. The variation
is due to alternative choices in Step 2 (see Section 3.3.2).
Unskolemization procedures have also been developed for a variety of other applica-

tions, including extraction of generalized answers from refutation proofs (Luckham and
Nilsson (1971)), finding quantified atomic formulas that are sufficient to prove a given goal
formula (Cox and Pietrzykowski (1984)), integrity maintenance in a relational database
and paramodulation strategies (McCune (1988)), and inductive inference for machine
learning (Chadha (1991)).
We illustrate the unskolemization technique via two examples. The first shows how

deductive approaches to program synthesis arise in this setting. The second example
shows how unskolemization is a key concept in the algorithm design tactics of KIDS.

3.3.1. Deductive Program Synthesis

As in the previous subsection, suppose that we are given a problem specification and
that we wish to construct a program that solves the problem. We have a partial mor-
phism from ProgramSpec:

D 7→ bag(S)
I 7→ λ(x) true
R 7→ seq(S)
O 7→ λ(x, z) ordered(z) ∧ x = bagify(z)
f 7→ ?

The difficulty is finding a translation for f such that the axiom

∀(x : D) (I(x) =⇒ O(x, f(x)))

translates to a theorem. The verification approach in Section 3.2 would have a pro-
grammer manually supply a sorting program as the image of f . We would then have
the obligation of proving that the axiom translates to a theorem (i.e. that the sorting
program is correct). Instead we unskolemize f so that it is replaced by an existentially
quantified variable z : R

∀(x : D) ∃(z : R) (I(x) =⇒ O(x, z)).

The resulting formula can be translated (since there are no occurrences of f in it) and
proved. From a constructive proof there are well-known methods for extracting a R-
valued term for z that depends on x; i.e., a function that solves the specified problem.
There is a long history in mathematical logic of using constructive proofs to ob-

tain functions (witnesses) from existentially quantified sentences, going back at least
to Brouwer’s program of Intuitionism. This approach to constructing programs was first
explored in computer science by Green (Green (1979)) and Waldinger (Waldinger (1969))
independently in the late 1960’s. They showed that a program could be extracted from the
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proof generated by a resolution theorem-prover. A few years later Constable (Constable
(1971)) emphasized the use of constructive logics. Much work continues on this approach
to program construction (see for example (Constable (1986), Manna and Waldinger
(1985), Manna and Waldinger (1990))).

3.3.2. Divide-and-Conquer Design Tactic

The algorithm design tactics in KIDS have many applications of unskolemization. For
example, the algorithm theories for divide-and-conquer and dynamic programming in-
volve a “soundness axiom” that relates decomposition and composition operators. Given
a simple decomposition operator, the soundness axiom is unskolemized and used to derive
a corresponding composition operator (Smith (1985), Smith (1991)). The pruning mech-
anisms of global search algorithms are also derived via unskolemization (Smith (1987)).
The principle of divide-and-conquer algorithms is to solve small problem instances di-

rectly, and to solve larger problem instances by decomposing them, solving the pieces, and
composing the resulting solutions. Part of a specification for a simple divide-and-conquer
theory is given next. It provides the structure for a binary decomposition operator and
corresponding composition operator. A general scheme for problem reduction theories
(including divide-and-conquer) is given in (Smith (1991)).

Spec Divide-and-Conquer Theory
Sorts

D input domain
R output domain

Operations
I : D → boolean input condition
O : D ×R → boolean output condition
Decompose : D×D ×D → boolean decomposition relation
Compose : R ×R× R→ boolean composition relation
primitive : D → boolean primitive predicate

Axioms
(Soundness) ∀(x0, x1, x2 : D) ∀(z0, z1, z2 : R)

(I(x0) ∧ Decompose(x0 , x1, x2)
∧ O(x1, z1) ∧ O(x2, z2)
∧ Compose(z0 , z1, z2)
=⇒ O(x0, z0))

. . .

endspec

Here subspecification 〈{D,R}, {I, O}, {}〉 is ProblemSpec. The Soundness axiom asserts
that if

(1) nonprimitive problem instance x0 can decompose into two subproblem instances x1

and x2,

(2) subproblem instances x1 and x2 have feasible solutions z1 and z2 respectively,

(3) z1 and z2 can compose to form z0
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then z0 is a feasible solution to input x0. The soundness axiom is the key condition
relating O, Decompose, and Compose. We omit the remaining axioms.
Using divide-and-conquer theory we can prove the consistency of a program theory con-

taining an abstract divide-and-conquer program parameterized on a divide-and-conquer
theory (see (Smith (1985))). For purposes of this paper, we do not need to give such
a program theory. However it is important to realize that the program theory is pa-
rameterized on a divide-and-conquer theory. This reduces the problem of obtaining a
correct, concrete divide-and-conquer program to the problem of constructing a specifica-
tion morphism from divide-and-conquer theory to a given problem domain theory. Such
a specification morphism provides the binding of argument to parameter theory and it
is a simple computation to obtain the concrete program.
The construction of a specification morphism from divide-and-conquer theory to Sort-

ing theory can proceed in several ways. One tactic in KIDS is based on the choice of a
standard decomposition operator from a library. The tactic then uses unskolemization
on the soundness axiom to derive a (specification for a) composition operator. This ap-
proach allows the derivations of insertion sort, mergesort, and various parallel sorting
algorithms (Smith (1985), Smith (1993)). We proceed in a dual way by choosing a sim-
ple composition relation and using unskolemization on the soundness axiom to derive a
decomposition operator. Suppose that we choose concatenation as a simple composition
relation on the output domain seq(integer). This gives us the partial signature morphism

D 7→ bag(S)
I 7→ λ(x) true
R 7→ seq(S)
O 7→ λ(x, z) ordered(z) ∧ x = bagify(z)

Compose 7→ λ(z0, z1, z2) z0 = concat(z1, z2)
Decompose 7→ ?

The soundness axiom

∀(x0, x1, x2 : D) ∀(z0, z1, z2 : R)
(I(x0) ∧ Decompose(x0 , x1, x2) ∧ O(x1, z1) ∧ O(x2, z2) ∧ Compose(z0 , z1, z2)
=⇒ O(x0, z0))

is unskolemized on operator symbol Decompose yielding

∀(x0, x1, x2 : D) ∃(y : boolean) ∀(z0, z1, z2 : R)
(I(x0) ∧ y ∧ O(x1, z1) ∧ O(x2, z2) ∧ Compose(z0 , z1, z2)
=⇒ O(x0, z0)).

This formula can be translated via the partial signature morphism yielding:

∀(x0, x1, x2 : bag(integer)) ∃(y : boolean) ∀(z0, z1, z2 : seq(integer))
(true ∧ y

∧ ordered(z1) ∧ x1 = bagify(z1)
∧ ordered(z2) ∧ x2 = bagify(z2)
∧ z0 = concat(z1, z2)

=⇒ ordered(z0) ∧ x0 = bagify(z0))
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A straightforward proof of this formula in Sorting theory, yields a constructive definition
of Decompose (see (Smith (1985))):

x0 = x1

⋃

x2 ∧ x1 ≤ x2

where
⋃

is bag-union and x1 ≤ x2 means that each element of bag x1 is less-than-
or-equal to each element of bag x2. This is, of course, a specification for the partition
operation of a quicksort. If we take this as the translation of Decompose, then by con-
struction we know that the soundness axiom translates to a theorem in Sorting theory.
The remaining steps in the KIDS divide-and-conquer tactic include unskolemizing

another axiom to obtain a translation for the primitive predicate, and translating and
proving other axioms. The resulting algorithm is a variant of Quicksort (for details see
(Smith (1985))). Various selection sort algorithms, such as heapsort, are also derivable
by starting with a choice of composition operator.

4. Connections Between Specifications

Unskolemization is particularly effective when there is not a strong coupling between
operators in the axioms of a specification. When a specification morphism must be con-
structed from a specification in which the axioms relate the specification’s operators in
intricate ways, then another concept, called connections between specifications or simply
connections, can often be applied.
By way of motivation, let us preview an application of connections. Suppose that we

need a scheduling algorithm and that we have a specification (called an algorithm theory
(Smith and Lowry (1989))) for the general concept of backtrack. A specification mor-
phism from this backtrack specification to a specification of the scheduling problem would
articulate the components necessary to construct a backtrack scheduler. The axioms of
backtrack are complex enough that it is difficult to construct this morphism via un-
skolemization, so instead we exploit a preexisting specification morphism from backtrack
to a specification of the problem of enumerating sequences. This morphism effectively
provides the components for a backtrack enumerator of all sequences over a given fi-
nite set. A connection between the images of the backtrack specification in the sequence
and scheduling specifications effectively transfers the backtrack structure for enumerat-
ing sequences to scheduling. The result is a specification morphism from backtrack to
scheduling that allows the enumeration of schedules.
A connection between specifications can be thought of as a general set of conditions

under which a specification morphism can be constructed in the following way. Suppose
that we want to construct a specification morphism from specification T = 〈S,Ω, Ax〉 to
(an extension of) specification B. Assuming that we have a specification morphism from
T into some specification A and there exists (or we can construct) a connection from A

to B, then there exists (or we can construct) a specification morphism from T to B.
Intuitively, the connection allows us to construct a proof of GA =⇒ GB for each

axiom G of T . Then, since GA is assumed to be a theorem, we have a proof of GB. To
prove GA =⇒ GB we systematically transform GA by replacing A-symbols in GA with
corresponding symbols in B, until GA has been transformed into GB itself. The key is to
guarantee that each such replacement weakens the sentence, so by chaining we ultimately
obtain GA =⇒ GB; i.e. we must ensure that each intermediate sentence is monotonic
in the symbol replacements.
Some introductory concepts and analytic tools must be presented before we can define



Constructing Specification Morphisms 11

a connection. The following sections present a generalized notion of an ordered-sorted
specification (cf. (Goguen and Meseguer (1988))) that we call po-specifications. Polarity
analysis of positive and negative occurrences of operator and sort symbols in axioms is
used to define connections.

4.1. Polarity Algebra

Most common types come equipped with a natural partial order and equality. For
example, the integers have ≤ and its converse ≥ as partial orders. Equality on integers is
also a partial order and it is the intersection of ≤ and ≥ (by antisymmetry). Sets come
with the subset ⊆ and superset ⊇ partial orders and the usual set equality that is the
intersection of these orders. Booleans come with implies =⇒ and implied-by ⇐= as
partial orders and equivalence ⇐⇒ as their intersection.
Furthermore there is a natural partial ordering between sorts themselves, often referred

to as the subsort hierarchy (Goguen and Meseguer (1988)). If we let ≤ denote the subsort
relation between sorts, then for example

Nat ≤ Integer ≤ Rational ≤ Real.

The only assumption that we are making about the operations on subsorts is that values
of the subsort may participate in any computation defined in the supersort (perhaps after
conversion).
Generally we will be interested in specifications in which sorts are interpreted as

partially-ordered sets — a set (called the carrier or domain) plus partial order and equal-
ity. Furthermore the set of sorts is itself partially-ordered under the subsort relation.
Such a specification will be called a po-specification.
To capture these observations and extend them we define a simple polarity algebra,

called POLARITY, and give constraints on its intended interpretations. The constants
of POLARITY are + (positive), − (negative), and ± (neutral). Our intent is that these
constants be interpreted as partial orders over some set. Furthermore + and − are to be
interpreted as partial orders that are converses to one another, and ± is interpreted as
the equality that is the intersection of these partial orders. There is an order ⊑ on the
constants defined by the Hasse diagram

❅
❅❅

�
��

− +

+
−

This order is intended to be interpreted as the subset relation between partial orders.

It is easy to check that POLARITY is itself a partial order †. Two other operations are
needed on polarities: the converse operation, written p̃, defined by

† In fact POLARITY under ⊑ is a meet-semilattice. If we add another constant, say 1, that is the
least upper bound of + and −, then POLARITY becomes a lattice. The natural interpretation of 1
would be the comparability relation.
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p p̃

+ −
± ±
− +

and a meet operation ⊓ defined as the greatest lower bound under the ⊑ order. Note that
meet is associative, commutative, and idempotent. Furthermore, since meet computes a
lower bound, we have for any polarities p and q

p ⊒ p ⊓ q ⊑ q. (4.1)

4.2. Sorts as Posets

In subsequent developments, each sort of a specification will be enriched with a col-
lection of partial orders that is an image of POLARITY: two conversely related partial
orders and equality. Some standard interpretations of POLARITY can be given;

for integers:
+ 7→ ≤
± 7→ =
− 7→ ≥

for sets:
+ 7→ ⊆
± 7→ =
− 7→ ⊇

for booleans:
+ 7→ =⇒
± 7→ ⇐⇒
− 7→ ⇐=

Let
p

s
> denote the partial order that is the interpretation of polarity p over sort s.

For example, with respect to the interpretations given above,

+

Integer

> denotes ≤

−

Set

> denotes ⊇

+

Boolean

> denotes =⇒

±

Boolean

> denotes ⇐⇒

There are several simple properties of polarity relations on sorts that will be useful
later.
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Proposition 4.1. Suppose that a, b, c are expressions of sort s ∈ S.

If a
p

s
> b and b

p

s
> c

then a
p

s
> c.

Proof. The proposition reflects the transitivity of the partial order that
p

s
> denotes.

✷

Proposition 4.2. Suppose that a and b are expressions of sort s ∈ S and p and q are
polarities.

If p ⊑ q and a
p

s
> b

then a
q

s
> b.

Proof. When p ⊑ q is interpreted with respect to partial orders Rp and Rq on a set

A, this means that Rp ⊆ Rq. Consequently, a
p

s
> b means 〈a, b〉 ∈ Rp which implies

〈a, b〉 ∈ Rq, which is a
q

s
> b. ✷

Corollary 4.1. Suppose that a and b are expressions of sort s ∈ S and p1, ..., pn are
polarities where 1 ≤ n:

If a
p1⊓...⊓pn

s
> b

then a
p1

s
> b.

Proof. Since p1 ⊑ p1 ⊓ ... ⊓ pn we can apply Proposition 4.2. ✷

4.2.1. Polarity Analysis for Operators

Now that sorts come equipped with partial orders, we can explore how operations
are affected by the orders. For each operation we give laws that specify monotonicity
properties with respect to the orders on its parameters. The laws provide the basis for
inference and analysis rules that show how a syntactic change to a subexpression that
preserves a local partial order affects the semantics of the whole expression.
Suppose that we have a function f : v → s in T that has the following monotonicity

law

If ai
pi(p)

vi

> bi for i = 1, ..., n

then f(a1 , ..., an)
p

s
> f(b1 , ..., bn)

where pi is a polarity-valued function for i = 1, ..., n. This law provides the basis for a
polarity analysis rule for operator f written (using the notation in (Manna and Waldinger
(1986)))

[f(a1, ..., an)]
p

⇛ f(a
p1(p)
1 , ..., apn(p)

n ).
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The analysis rule is used to infer derived polarities for arguments from the polarity
of the function application. In other words, if we desire to make a syntactic change to

f(a1, ..., an) that produces a
p

s
> result, then we can do so by bringing about a

pi(p)

vi

>

change to ai for i = 1, ..., n. Polarity analysis rules will be used top-down to infer derived
polarities on subexpressions given an assigned polarity (usually +) to the top expression.
For example, consider the monotonicity law for the operator size : set(α) → integer

(size of a finite set):

If S
p

set

> T

then size(S)
p

integer

> size(T ).

This law splits into three cases (p = +,±,−):

If S ⊆ T

then size(S) ≤ size(T ).

If S = T

then size(S) = size(T ).

If S ⊇ T

then size(S) ≥ size(T ).

The polarity analysis rule for Size is

[size(S)]
p

⇛ size(Sp ).

As another example, the monotonicity law for ⊆: set(α) × set(α)→ Boolean is

If R
p̃

set

> R′ ∧ S
p

set

> S′

then R ⊆ S
p

Boolean

> R′ ⊆ S′.

In the case that p = + this law is

If R ⊇ R′ ∧ S ⊆ S′

then R ⊆ S =⇒ R′ ⊆ S′.

The corresponding analysis rule is:

[R ⊆ S]
p

⇛ Rp̃ ⊆ Sp

A standard library of polarity rules can be listed. The following list is representative,
but not exhaustive.

For boolean operators:

[P ∧ Q]
p

⇛ P p ∧ Qp

[P ∨ Q]p ⇛ P p ∨ Qp

[¬P ]
p

⇛ ¬P p̃

[P =⇒ Q]
p

⇛ P p̃ =⇒ Qp
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[P ⇐⇒ Q]
p

⇛ P± ⇐⇒ Q±

[∀(x : D) P (x)]
p

⇛ ∀(x : D) P (x)p

[∃(x : D) P (x)]
p

⇛ ∃(x : D) P (x)p

For integer operators:

[a+ b]
p

⇛ ap + bp

[a− b]
p

⇛ ap − bp̃

[a ≤ b]
p

⇛ ap̃ ≤ bp

[a = b]
p

⇛ a± = b±

For set operators:

[R
⋃

S]
p

⇛ Rp
⋃

Sp

[R
⋂

S]
p

⇛ Rp
⋂

Sp

[R ⊆ S]
p

⇛ Rp̃ ⊆ Sp

[R = S]
p

⇛ R± = S±

In the absence of any other information about the monotonicity properties of an op-
erator, there is a default rule:

[f(a1, ..., an)]
p

⇛ f(a±1 , ..., a
±
n ).

This rule is always correct (since we can substitute equals for equals and partial orders
are reflexive), and it is consistent with all other possible rules.
The polarity rules can be applied to an expression E to determine the polarity of all

subexpressions as a function of the polarity of E. If t is a subexpression of E, let vpt
denote the derived value polarity for t (relative to the assignment of polarity + to E).
For example, if we assign a polarity of + to the expression

size({x | ¬P ∧ Q})

then recursive application of polarity rules yields the following derived polarities on each
subexpression:

size({x± | ((¬P−)+ ∧ Q+)+}+)+.

Here we have vp¬P ∧ Q = + and vpP = − and so on. As a result of this analysis there
are various derived polarity laws (see Proposition 4.1), such as:

If P ⇐= R

then size({x | ¬P ∧ Q}) ≤ size({x | ¬R ∧ Q}).

4.2.2. Polarity Assignment for Operators

The definition of a connection between specifications relies on the calculation of a po-
larity for each operator symbol in T . A slight difficulty is that if an operator symbol
occurs more than once in an expression then polarity analysis may assign different po-
larities to each occurrence. For example, the operator f has both positive and negative
occurrences in the (partially analyzed) expression

f−(0) ≤+ f+(1).
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Consider specification T = 〈S,Ω, Ax〉 and let Ax′ ⊆ Ax be a subset of the axioms.
Define the polarity map π : Ω→ POLARITY as follows. Let the polarity of each axiom
in Ax′ be +, then recursively apply polarity analysis. For operator symbol f , collect the
polarities of all subexpressions with a leading occurrence of f in Ax′, say vpf1 , ..., vpfk ,
then let

πf = vpf1 ⊓ vpf2 . . .⊓ vpfk .

By Corollary 4.1
πf

s
> is consistent with the polarity of each occurrence of f in E.

Example: Consider ProgramSpec from Section 2:

Spec ProgramSpec

Sorts D,R

Operations I : D → Boolean

O : D× R→ Boolean

f : D → R

Axiom ∀(x : D)(I(x) =⇒ O(x, f(x)))
endspec

Polarity analysis of the operators yields

πI = − (since I occurs in the antecedent of an implication which is a negative context)
πO = + (since O occurs in the consequent of an implication which is a positive context)
πf = ± (in the absence of special monotonicity laws about O the default polarity is ±)

As a convention, we assume that the polarity of boolean connectives is ±; this is
consistent with the fixed interpretation of truth values in mathematical logic.

4.3. The Set of Sorts as a Poset

In subsequent developments the set of sorts of a specification will be enriched with
a collection of partial orders that interprets POLARITY: two conversely related partial
orders (called subsort and supersort), and equality.

4.3.1. Polarity Analysis of Sorts

Previous sections dealt with how terms are monotonic in subterms. We now explore
how quantified expressions are monotonic with respect to the subtype ordering on sorts.
The sort polarity of an expression is indicated by a subscripted polarity (superscripted

polarities indicate value polarity). The following polarity analysis rules infer a sort po-
larity for each subexpression:

[∀(x : D) P (x)]
π

⇛ ∀(x : D) P (xπ̃)
[∃(x : D) P (x)]

π
⇛ ∃(x : D) P (xπ)

[f(a1, . . . an)]
π

⇛ f(a1 , . . . an)+

The sorts of universally quantified variables of a formula F have converse polarity to
the polarity of F and the sorts of existentially quantified variables have the same polarity.
All nonvariable terms have sort polarity +.
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Sort polarity rule 3 derives from rule 2. Let QG[f(a)] be an axiom with quantifiers Q
and matrixG containing an occurrence of a nonvariable term f(a). QG[f(a)] is equivalent
to Q ∃(z : s) (f(a) = z ∧ G[z]), thus the derived sort polarity on s is the same as the
polarity of the axiom (by rule 2) and since we will always assign axioms a polarity of +,
the derived sort polarity on the s-valued term f(a) is +.

We present the polarity laws for sorts in two stages. In the first stage, the subsort
relation is interpreted as the subset relation ⊆ between sorts as sets. In the second stage
we adopt the more general view that subsorts may require conversion, thus the subsort
relation must be interpreted by a conversion map from subsort to supersort.

Sort polarity rule 1 is based on the following law:

If D
p̃

S

> D′ ∧ domain(P ) = D
⋃

D′

then ∀(x : D) P (x)
p

boolean

> ∀(y : D′) P (y).

This law specializes to three cases (p = +,±,−):

If D ⊇ D′

then ∀(x : D) P (x) =⇒ ∀(y : D′) P (y).

If D = D′

then ∀(x : D) P (x) ⇐⇒ ∀(y : D′) P (y).

If D ⊆ D′

then ∀(x : D) P (x) ⇐= ∀(y : D′) P (y).

Sort polarity rule 2 corresponds to the law

If D
p

S

> D′ ∧ domain(P ) = D
⋃

D′

then ∃(x : D) P (x)
p

boolean

> ∃(y : D′) P (y).

This law specializes to three cases (p = +,±,−):

If D ⊆ D′

then ∃(x : D) P (x) =⇒ ∃(y : D′) P (y).

If D = D′

then ∃(x : D) P (x) ⇐⇒ ∃(y : D′) P (y).

If D ⊇ D′

then ∃(x : D) P (x) ⇐= ∃(y : D′) P (y).

In the second stage we adopt the more general view that subsorts may require con-
version, thus the subsort relation must be interpreted by a conversion map from subsort
to supersort. For example, we can treat integers as a subtype of the reals, but in con-
ventional programming languages these types have distinct representations. This fact
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requires the convertsion of integers to reals when an integer-valued subexpression is used
in a real-valued expression.

Given a pair of sorts s1 and s2, a polarity p will be interpreted as a conversion function,
written

h : s1
p

S

> s2.

If p = + then h : s1 → s2 (a map from s1 to s2).
If p = − then h : s1 ← s2 (a map from s2 to s1).
If p = ± then s1 = s2 and h : s1 ↔ s2 is the identity function.

The fact that the direction of the conversion function can vary causes some notational
problems that motivate the following definitions.

ℓp =

{

ids1 : s1 → s1 if p = +,±
h : s2 → s1 if p = −

rp =

{

h : s1 → s2 if p = +
ids2 : s2 → s2 if p = −,±

Rule 1 is based on the following law:

If h : D
p̃

S

> D′ ∧ domain(P ) = codomain(h)

then ∀(x : D) P (ℓp(x))
p

boolean

> ∀(y : D′) P (rp(y)).

This law specializes to three cases (p = +,±,−):

If h : D ← D′ ∧ domain(P ) = D

then ∀(x : D) P (x) =⇒ ∀(y : D′) P (h(y)).

If h : D ↔ D′ ∧ domain(P ) = D = D′

then ∀(x : D) P (x) ⇐⇒ ∀(y : D′) P (y).

If h : D → D′ ∧ domain(P ) = D′

then ∀(x : D) P (h(x)) ⇐= ∀(y : D′) P (y).

Rule 2 derives from the law

If h : D
p

S

> D′ ∧ domain(P ) = codomain(h)

then ∃(x : D) P (ℓp(x))
p

boolean

> ∃(y : D′) P (rp(y)).

This law specializes to three cases (p = +,±,−):

If h : D → D′ ∧ domain(P ) = D′

then ∃(x : D) P (h(x)) =⇒ ∃(y : D′) P (y).

If h : D ↔ D′ ∧ domain(P ) = D = D′
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then ∃(x : D) P (x) ⇐⇒ ∃(y : D′) P (y).

If h : D ← D′ ∧ domain(P ) = D

then ∃(x : D) P (x) ⇐= ∃(y : D′) P (h(y)).

4.3.2. Polarity Assignment on Sorts

The polarity function π (which was defined for operator symbols in Section 4.2.2) can
be extended to sort symbols. This assignment is consistent with the inferred polarities
of all occurrences of each sort symbol. Consider a specification T = 〈S,Ω, Ax〉 and let
Ax′ ⊆ Ax be a subset of the axioms. The sort polarity map π : S → POLARITY

is calculated as follows. Let the polarity of each axiom in Ax′ be +, then recursively
apply sort polarity analysis. For sort symbol s, collect the polarities of all occurrences of
s-valued terms in Ax′, say sp1, ..., spk, then let

πs = sp1 ⊓ . . . ⊓ spk.

Example: Consider the axiom from ProgramSpec

∀(x : D)(I(x) =⇒ O(x, f(x))).

Polarity analysis of the sorts yields

πD = − (the quantification of x gives D negative polarity)
πR = + (the occurrence of f(x) gives R positive polarity)

As a convention, we assume that πboolean is ±. Again, this is consistent with the fixed
interpretation of truth values.

4.4. Remarks about Polarity

A straightforward inductive argument shows that polarity rules compose in a natural
way.

Proposition 4.3. Suppose G[e] : r is an expression of sort r containing an occurrence
of expression e : t of sort t. If G[e] has polarity πG and the occurrence of e in G has

derived polarity p(πG) and e
p(πG)

t

> e′ then G[e]
πG

r
> G[e′].

Polarity analysis of the propositional structure of first-order sentences has a long his-
tory in mathematical logic. For example, Lyndon’s theorem (Lyndon (1959)) is a classical
result based on polarity analysis of axioms. Manna and Waldinger (Manna and Waldinger
(1986)) use polarity analysis to enrich the resolution format with special inference rules
for various relations. Our extension of polarity analysis to operators in arbitrary (partially
ordered) sorts and the (partially ordered) set of sorts seems to be new. The RAINBOW
inference system (Smith (1982), Smith (1985), Smith (1990)) in KIDS allows inference
within the (terms of the) partially ordered sorts of a po-specification. In particular, in
boolean it allows the derivation of sufficient conditions, necessary conditions, or equiva-
lent conditions; in integer it allows the derivation of lower bounds, upper bounds, and
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Figure 1. T-Connection from A to B

simplified expressions, and so on. Polarity analysis is used to determine applicability of
rules that preserve a specified ordering.

4.5. Connections

A connection between specifications can be thought of as a generalized homomor-
phism. In both cases, there is a function for each sort symbol of the common signature,
and a condition for each function/predicate symbol. One difference is that homomor-
phisms are defined in terms of structures for some give signature, whereas connections
are defined in terms of specifications and signature morphisms from a common specifica-
tion. Connections can be given a model-level definition, just as homomorphisms between
specifications can be formalized. Connections generalize the notion of a homomorphism
in two essential ways. First, in a homomorphism the functions between sorts all map
in one direction — from the source to the target, whereas in connections the functions
can map in either direction depending on polarity analysis of the sorts in the axioms.
Second, a homomorphism condition asserts the preservation of an equality relation under
the homomorphism. In contrast, the connection conditions assert the preservation of an
ordering relation under the conversion functions.
Let T = 〈S,Ω, Ax〉 be a po-specification. Let π be a polarity map on T obtained by

analysis of axioms Ax′ ⊆ Ax. Let A and B be specifications with signature morphisms
σA : T → A and σB : T → B. We will write As instead of σA(s) for sort symbol s ∈ S

and fA instead of σA(f) for function symbol f in T . A T -connection from A to B is a

collection of conversion functions H = {hs : As

πs

S

> Bs | s ∈ S} such that for each

operator symbol f : v → s in T the following connection condition holds (notation is
explained below)

∀(x : Dv, z : Ds) (ℓs(z)
πf

As

> fA(ℓ
v(x))) =⇒ (rs(z)

πf

Bs

> fB(r
v(x))).

(see Figure 1). The dependence of the direction of each conversion function on polarity
analysis of axioms motivates the following definitions. These are similar to the notations
defined in Section 4.3.1. The functions ℓ and r are indexed on sorts here versus polarities
earlier.

ℓs =

{

idAs
: As → As if πs = +,±

hs : Bs → As if πs = −
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rs =

{

hs : As → Bs if πs = +
idBs

: Bs → Bs if πs = −,±

Ds =

{

As if πs = +,±
Bs if πs = −

The specification C of a T-connection from A to B obtained via analysis of the axioms
Ax′ ⊆ Ax is an extension of both A and B that is defined as follows. The sorts of C are
the union of the sorts of A and B. The operations of C are the union of the operations
of A and B together with symbols for the conversion functions. The axioms of C are the
union of the axioms of A and B together with the connection conditions. When T , A, B,
σA, σB, and Ax′ are clear in context we will simply call C a (T -)connection specification.
Note that C is not necessarily a conservative extension of B. The connection conditions
place extra constraints on the symbols of B that need not be theorems of B.
The connection conditions clearly state a kind of order-preserving relationship between

A andB. The unusual aspect of a connection is that the conversion maps hs do not always
map from A to B, but may go in the reverse direction, depending on the polarity analysis.
The following result asserts that the connection conditions hold for arbitrary nonvari-

able subexpressions of the analyzed axioms.

Theorem 4.1. Let C be a specification of a T -connection from A to B obtained via
analysis of the axioms Ax′ ⊆ Ax. Let f(a)[X] be a subexpression of an axiom of Ax′

with free variables X : u where f : v → s and a : u→ v. If
(i) σA : T → A is a specification morphism;
(ii) σB : 〈S,Ω〉 → B is a signature morphism;

(iii) σB properly translates the preorder and monotonicity laws of T into B; †

then

⊢C ∀(X : Du, z : Ds) (ℓs(z)
vpf(a)

As

> fA(aA)[ℓ
u(X)]) =⇒ (rs(z)

vpf(a)

Bs

> fB(aB)[r
u(X)]).

Proof. The proof uses structural induction on f(a). To simplify the presentation assume
that f takes one argument. The generalization to zero or more arguments is straight-
forward. Let X and z be arbitrary constants in Du and Ds respectively. Because of the
sort polarity rule for nonvariable terms we have πs ∈ {±,+}; therefore ℓs is the identity
function, and rs is hs : As → Bs and we must establish

(z
vpf(a)

As

> fA(aA)[ℓ
u(X)]) =⇒ (hs(z)

vpf(a)

Bs

> fB(aB)[r
u(X)])

To proceed, we assume the antecedent z
vpf(a)

As

> fA(aA)[ℓ
u(X)] and apply a sequence

of
vpf(a)

Bs

> -preserving transformations to hs(z).

† I.e., the reflexivity and transitivity laws for
p

s
> where p ∈ {+,±,−} and s ∈ S, must properly

translate into B and similarly for the polarity laws for each operator in T .
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hs(z)

vpf(a)

Bs

> by the connection condition for
vpf(a)

s
> ; see Note 1 below

hs(fA(aA))[ℓ
u(X)]

±

Bs

> same expression, different notation; see Note 2

hs(fA(ℓv(a
′
A)))

πf

Bs

> by the connection condition for f ; see Note 3

fB(rv(a
′
A))

vpf(a)

Bs

> by induction and the polarity theorem for f ; see Note 4

fB(aB [r
u(X)])

±

Bs

> same expression, different notation

fB(aB)[r
u(X)].

According to Proposition 4.2 each arrow above can be relabeled
vpf(a)

Bs

> since

± ⊑ πf ⊑ vpf(a). By transitivity (Proposition 4.1) we obtain the result

hs(z)
vpf(a)

Bs

> fB(aB)[r
u(X)].

Notes:

1. Since πs ∈ {±,+}, the connection condition for
vpf(a)

s
> is

∀(y1 : As, y2 : As) ((y1
vpf(a)

As

> y2) =⇒ (hs(y1)
vpf(a)

Bs

> hs(y2))).

Unifying the antecedent with the assumption z
vpf(a)

As

> fA(aA)[ℓ
u(X)], we get the

substitution {y1 7→ z, y2 7→ fA(aA)[ℓ
u(X)]}, allowing us to infer

hs(z)
vpf(a)

Bs

> hs(fA(aA))[ℓ
u(X)].

2. With respect to fA(aA) let
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a′ denote

{

x if aA is a variable x
aA[ℓ

u(X)] otherwise

Note that aA[ℓ
u(X)] has the form ℓv(a

′) in fA(aA)[ℓ
u(X)]: if a is a variable x :

v, then aA[ℓ
u(X)] is ℓv(a

′); and otherwise aA is a nonvariable term and polarity
analysis on sorts will result in πv ∈ {±, +} and thus ℓv is the identity function, so
again aA[ℓ

u(X)] is ℓv(a
′). This step is a slight change in our meta-level description

of an expression, not a change in the expression itself.

3. The connection condition for f

∀(w : Dv, y : Ds) (y
πf

As

> fA(ℓv(w))) =⇒ (hs(y)
πf

Bs

> fB(rv(w)))

can be applied with instantiation {y 7→ fA(ℓv(a
′)), w 7→ a′}.

4. We wish to apply the polarity law for f in B

If c
r(p)

Bv

> d

then fB(c)
p

Bs

> fB(d)

using the substitutions {c 7→ rv(a
′
A), d 7→ aB [r

u(X)]} and letting p be vpf(a) and
r(p) be vpa. To establish the condition of the law, i.e.

rv(a
′
A)

vpa

Bv

> aB[r
u(X)],

we reason inductively as follows. Consider rv(a
′
A). If a is a variable x : v, then

a′A = x = a′B so

rv(a
′
A)

±

Bv

> rv(x)
±

Bv

> aB [r
u(X)].

But then, since ± ⊑ vpa we have

rv(a
′
A)

vpa

Bv

> aB[r
u(X)]

by Proposition 4.2. If, on the other hand, a is a nonvariable term, then by the
induction hypothesis we have

∀(X : Du, z : Dv) (ℓv(z)
vpa

Av

> aA[ℓ
u(X)]) =⇒ (rv(z)

vpa

Bv

> aB[r
u(X)])

or, since πv ∈ {±,+} by sort polarity analysis and thus ℓv is the identity function,

∀(X : Du, z : Dv) (z
vpa

Av

> aA[ℓ
u(X)]) =⇒ (rv(z)

vpa

Bv

> aB [r
u(X)]).

Using the instantiation {z 7→ a′A}, the antecedent follows by reflexivity of
vpa

Av

> ,

thus we again infer rv(a
′
A)

vpa

Bv

> aB[r
u(X)]. Finally, after discharging the assump-

tion in the polarity law for f we infer

fB(rv(a
′
A))

vpf(a)

Bs

> fB(aB [r
u(X)]).

✷

Before proceeding on to the main result of this section, one last bit of additional
notation is needed. Let G[U,E] denote a closed formula in prenex normal form where
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U : v denotes the sequence of variables that are universally quantified and E : w denotes
the sequence of variables that are existentially quantified. For example, the formula

∀(x : D) ∃(y : R) ∀(z : W )(I(x, z) =⇒ P (x, y, z))

can be described in this notation via the correspondence
U 7→ [x, z]
E 7→ [y]

Let δ be a specification that extends specifications α, β, and γ; and let there be
signature morphisms from specification T into α, β, and γ. Let β

αGγ [U,E] denote the
translation of G[U,E] in δ in which the sorts of universally quantified variables are
interpreted in α, the sorts of existentially quantified variables are interpreted in β, and
G is interpreted in γ. Returning to the example above, A

BGB[[hD(x), hW (z)], [y]] denotes

∀(x : DB) ∃(y : RA) ∀(z : WB) (IB(hD(x), hW (z)) =⇒ PB(hD(x), y, hW (z))).

Simplifying slightly, Theorem 4.2 states that if σB : T → B is a signature morphism
and σA : T → A is a specification morphism and C is a connection from A to B,
then σB is a specification morphism (from T to C). This result reduces the problem of
constructing a specification morphism to the problem of constructing a connection. As
can be seen in the examples in Section 5, connections can be constructed using a series
of unskolemize-and-prove steps.

Theorem 4.2. Let T = 〈S,Ω, Ax〉 be a po-specification; let C be the specification of a
T -connection from A to B obtained via analysis of the axioms Ax′ ⊆ Ax. If
(i) σA : T → A is a signature morphism that properly translates the axioms of Ax′ into
A;
(ii) σB : 〈S,Ω〉 → B is a signature morphism;
(iii) σB properly translates the preorder and polarity laws of T into B;
then σB properly translates the axioms of Ax′ into C. In particular, if Ax′ = Ax then
σB is a specification morphism.

Proof. Let G ∈ Ax′. A proof of BBGB[U,E] in C can be constructed as follows. Let U : v
and E : w. By assumption (i), A

AGA[U,E] is a theorem of A and therefore ⊢C
A
AGA[U,E].

A
AGA[U,E]

=⇒ changing the sort for universally quantified variables;
see Note 1

A
BGA[h

v(U), E]

=⇒ applying Theorem 4.1; see Note 2

A
BGB[U, h

w(E)]

=⇒ changing the sort for existentially quantified variables;
see Note 3

B
BGB[U,E].
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Then by modus ponens we infer ⊢C
B
BGB[U,E].

Notes

1. IfG contains no variables that are universally quantified then the step holds vacuously.
Suppose that G contains the subexpression ∀(x : D)P [x]. By polarity analysis,
πD ∈ {−,±} so hD : DA ← DB (where hD may be the identity map). Also, since
G is assumed to be in prenex form, the derived polarity of ∀(x : D)P [x] in G must
be positive. By the polarity law for universally quantified sorts (see Section 4.3.1),

∀(x : DA)PA[x] =⇒ ∀(y : DB)PA[hD(y)]

and then by Proposition 4.3

G[∀(x : DA)PA[x]] =⇒ G[∀(y : DB)PA[hD(y)]].

Continue in this manner for each variable that is universally quantified.

2. Since G is in prenex form, let G = QH where Q denotes the quantifiers, H denotes
the matrix. Axioms are assigned polarity +, so the derived polarity on H is also +.
By Theorem 4.1 we have

∀(U : Dv, E : Dw , z : boolean)

(z
+

Boolean

> HA[ℓ
v(U), ℓw(E)]) =⇒ (z

+

Boolean

> HB[r
v(U), rw(E)]).

This formula simplifies as follows: each universally quantified sort in G (i.e. each
component of Dv) has nonpositive sort polarity, thus ℓv(U) is hv(U) and rv(U) is
simply U ; each existentially quantified sort in G (i.e. each component of Dw) has
nonnegative sort polarity, thus ℓv(E) is E and rv(E) is simply hw(E). Thus the
connection condition simplifies to

∀(U : Bv, E : Aw, z : boolean) (z =⇒ HA[h
v(U), E]) =⇒ (z =⇒ HB[U, h

w(E)]).

and then to

∀(U : Bv, E : Aw) HA[h
v(U), E] =⇒ HB[U, h

w(E)].

By substitution we obtain

A
BQ HA[h

v(U), E] =⇒ A
BQ HB[U, h

w(E)].

3. If G contains no existentially quantified variables then the step holds vacuously. Sup-
pose that G contains the subexpression ∃(x : D)P [x], so D has nonnegative sort-
polarity. From the connection we have hD : DA → DB . By polarity analysis, the
polarity of ∃(x : D)P [x] in G must be positive. By the polarity theorems for exis-
tentials (see Section 4.3.1)

∃(x : DA)P [hD(x)] =⇒ ∃(y : DB)P [y]

and then by Proposition 4.3

G[∃(x : DA)P [hD(x)]] =⇒ G[∃(y : DB)P [y]].

Continuing in this manner for each existential quantification, we achieve the desired
result.
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✷

Theorem 4.2 corresponds to the following fact about models: if MA is a model for spec-
ification T and SB (a Σ-reduct of SC) is a structure for T and there exists a connection
(between structures) from MA to SB , then SB is a model of T .
Again, connections provide a proper generalization of homomorphisms. A strong homo-

morphism is a connection in which all sort polarities are nonnegative and the polarities
of all function and predicate symbols are ±. A weak homomorphism allows predicate
symbols to have polarity +. Under this polarity assignment the connection conditions
simplify to the homomorphism conditions.
Regarding condition (iii) in Theorems 4.1 and 4.2, it can be shown that if the preorder

and polarity laws are included in the subset of axioms that undergo polarity analysis,
then condition (iii) is unnecessary.

4.6. Example: Program Specification

The proof construction in the proof of Theorem 4.2 can be illustrated (abstractly)
using ProgramSpec.

Spec ProgramSpec

Sorts D,R

Operations I : D → Boolean

O : D× R→ Boolean

f : D → R

Axiom ∀(x : D)(I(x) =⇒ O(x, f(x)))
endspec

Polarity analysis of the axiom yields (see previous sections):

πboolean = ±
πD = −
πR = +
πI = −
πO = +
πf = ±

Suppose that there is a specification morphism from ProgramSpec into specification
A and a signature morphism from ProgramSpec into specification B. Based on the the
preceding polarity analysis, a specification C of a ProgramSpec-connection from A to B

would have conversion maps

hD : AD ← BD

hR : AR → BR



Constructing Specification Morphisms 27

and the simplified connection conditions†

(I) ∀(x : BD) IA(hD(x)) ⇐= IB(x)
(O) ∀(x : BD , z : AR) OA(hD(x), z) =⇒ OB(x, hR(z))
(f) ∀(x : BD) hR(fA(hD(x))) = fB(x)

Note that the connection condition (f) gives a definition for fB by showing how to
invoke fA and translate its results. The connection effectively defines a simple problem
reduction from problem B to problem A.
Note also that Booleans remain unchanged under the connection, therefore boolean op-

erators translate to themselves under a connection. The proof that the axiom of Program-
Spec translates (via the signature morphism into B) into a theorem of C is constructed
as follows. By assumption

⊢A ∀(x : AD)(IA(x) =⇒ OA(x, fA(x)))

which implies (since C is an extension of A)

⊢C ∀(x : AD)(IA(x) =⇒ OA(x, fA(x))).

We proceed by reasoning within C as follows.

∀(x : AD)(IA(x) =⇒ OA(x, fA(x)))

=⇒ changing the quantification of x

∀(x : BD)(IA(hD(x)) =⇒ OA(hD(x), fA(hD(x))))

=⇒ by the connection condition for I

∀(x : BD)(IB(x) =⇒ OA(hD(x), fA(hD(x))))

=⇒ by the connection condition for O

∀(x : BD)(IB(x) =⇒ OB(x, hR(fA(hD(x)))))

⇐⇒ by the connection condition for f

∀(x : BD)(IB(x) =⇒ OB(x, fB(x)))

thus ⊢C ∀(x : BD)(IB (x) =⇒ OB(x, fB(x))).

† The connection conditions usually collapse to a simpler form. For example, the condition for (I) is

∀(x : BD, z : boolean) ((ℓboolean(z)
πI

boolean

> IA(ℓD(x))) =⇒ (rboolean(z)
πI

boolean

> IB(rD(x))))

or
∀(x : BD, z : boolean) ((z ⇐= IA(hD(x))) =⇒ (z ⇐= IB(x)))

which simplifies to
∀(x : BD) (IA(hD(x)) ⇐= IB(x)).
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4.7. Generalizations

Straightforward application of polarity analysis sometimes leads to connection condi-
tions and conversion maps that are too strong to be useful. By adroitly distinguishing
uses of operators and sorts, we can weaken the connection conditions and sort relations.
The problem is that the same operator may be used for several purposes in different con-
texts. By renaming the operator for its different uses (without changing its meaning), we
can weaken and thus generalize the connection condition for that operator. Analogously,
a sort may be used for different purposes in different contexts. Again, by renaming the
sort for its different uses we get a weaker polarity.
There is a dual formulation of sort polarity analysis that is also useful. We conjecture

that it allows a generalization of Lyndon’s theorem that homomorphisms preserve models
iff the source theory has positive axioms (Lyndon (1959)). It also seems to subsume pre-
vious work on datatype implementation via abstraction and refinement functions (Smith
(1992a)).

5. Applications

Theorem 4.2 supports the following method for constructing a specification morphism
from T to B. Suppose σ is a partial specification morphism from T to B. We can extend
σ to a (total) signature morphism by extending B with fresh symbols to obtain B ′

and defining σ(q) = q′ for each symbol q in T that is untranslatable under sigma and
fresh symbol q′. We then construct a connection from A to B′ using unskolemization on
the connection conditions to define the conversion functions. The connection conditions
provide definitions for the new symbols of B′ such that the axioms of T are properly
translated by σ into C (which extends B′).
We illustrate the unskolemization and connection techniques through two concrete

examples.

5.1. Simple Problem Reduction

In this example, we use unskolemization and connections to reduce a given sorting prob-
lem to a library sorting program. Suppose that we have a presentation of the domain of
sorting that includes definitions for operations such as ordered : seq(integer) → Boolean

(which decides if a sequence of integers is ordered) and Quicksort : bag(integer) →
seq(integer) which sorts a bag of integers. Quicksort can be presented as a correct pro-
gram via a specification morphism from ProgramSpec into the domain theory of sorting:

D 7→ bag(integer)
I 7→ λ(x) true
R 7→ seq(integer)
O 7→ λ(x, z) x = bagify(z) ∧ ordered(z)
f 7→ λ(x) Quicksort(x)

The function bagify maps a sequence to the bag of its elements. Suppose now that we
are given the problem of sorting sequences, i.e., we obtain a specification Seq-Sorting for
sorting sequences (rather than bags):
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D 7→ seq(integer)
I 7→ λ(x) true
R 7→ seq(integer)
O 7→ λ(x, z) bagify(x) = bagify(z) ∧ ordered(z)
f 7→ λ(x) SeqSort(x)

where SeqSort is the name of our desired sequence-sorting program. The problem is
to provide a definition for SeqSort such that this signature morphism is a specification
morphism from ProgramSpec. To do so we first develop a ProgramSpec-connection from
Sorting to Seq-Sorting. Reusing the polarity analysis from Section 4.6, we need conversion
maps with signatures

hD : bag(integer) ← seq(integer)
hR : seq(integer) → seq(integer)

such that the following simplified connection conditions are theorems:

(I) ∀(x : seq(integer)) true =⇒ true

(O) ∀(x : seq(integer), z : seq(integer))
hD(x) = bagify(z) ∧ ordered(z)
=⇒ bagify(x) = bagify(hR(z)) ∧ ordered(hR(z))

(f) ∀(x : seq(integer)) hR(Quicksort(hD(x))) = SeqSort(x)

To establish the connection we must derive expressions for the conversion maps such
that the connection conditions hold. To do that we can use unskolemization! Condition (I)
provides no information. However, focusing on (O) and replacing hD by y : bag(integer)
and hR by w : seq(integer) and noting dependencies we obtain the unskolemized formula

∀(x : seq(integer)) ∃(y : bag(integer)) ∀(z : seq(integer)) ∃(w : seq(integer))
(y = bagify(z) ∧ ordered(z)
=⇒
bagify(x) = bagify(w) ∧ ordered(w)).

Proof of this formula results in the substitutions

{y 7→ λ(x) bagify(x), w 7→ λ(z)z}

giving us hD and hR respectively and simultaneously ensuring that the connection con-
dition (O) is a theorem. Next we establish condition (f) by unskolemizing SeqSort (re-
placing it with variable z : seq(integer) and using the derived expressions for hD and
hR)

∀(x : seq(integer)) ∃(z : seq(integer)) Quicksort(bagify(x)) = z

which trivially yields the substitution

{z 7→ λ(x) Quicksort(bagify(x))}.

This gives us a definition for SeqSort that simultaneously ensures that the connection
condition (f) is a theorem. Putting the pieces together and applying Theorem 4.2 we
have that
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D 7→ seq(integer)
I 7→ λ(x) true
R 7→ seq(integer)
O 7→ λ(x, z) bagify(x) = bagify(z) ∧ ordered(z)
f 7→ λ(x) Quicksort(bagify(x))

is a specfication morphism. In words, the expression Quicksort(bagify(x)) would correctly
sort any given sequence x.

5.2. Global Search Theory

In (Smith (1987), Smith and Lowry (1990)) we present a formal theory of backtrack al-
gorithms, called global search theory (or simply gs-theory). Global search theory provides
the general concepts, operations, and laws that underlie concrete backtrack programs.
The basic idea of global search is to represent and manipulate sets of candidate solu-

tions. The principal operations are to extract candidate solutions from a set and to split
a set into subsets. Derived operations include various filters which are used to eliminate
sets containing no feasible or optimal solutions. Global search algorithms work as follows:
starting from an initial set that contains all solutions to the given problem instance, the
algorithm repeatedly extracts solutions, splits sets, and eliminates sets via filters until
no sets remain to be split. The process is often described as a tree (or DAG) search in
which a node represents a set of candidates and an arc represents the split relationship
between set and subset. The filters serve to prune off branches of the tree that cannot
lead to solutions.
The sets of candidate solutions are often infinite and even when finite they are rarely

represented extensionally. Thus global search algorithms are based on an abstract data
type of intensional representations called space descriptors (denoted by hatted symbols).
In addition to the extraction and splitting operations mentioned above, the type also
includes a predicate satisfies that determines when a candidate solution is in the set
denoted by a descriptor.
Formally, global search theory is presented as follows:

Spec Global Search Theory
Sorts

D input domain
R output domain

R̂ space descriptors
Operations

I : D → boolean input condition
O : D ×R → boolean input/output condition

Î : D × R̂ → boolean subspace descriptors condition

r̂0 : D → R̂ initial space

Satisfies : R × R̂ → boolean denotation of descriptors

Split : D × R̂ × R̂ → boolean split relation

Extract : R × R̂ → boolean extractor of solutions from spaces
Axioms

GS0. I (x) =⇒ Î (x , r̂0 (x))

GS1. I (x) ∧ Î (x , r̂) ∧ Split(x , r̂ , ŝ) =⇒ Î (x , ŝ)
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GS2. I (x) ∧ O(x , z ) =⇒ Satisfies(z , r̂0(x))

GS3. I (x) ∧ Î (x , r̂)
=⇒ (Satisfies(z , r̂) ⇐⇒ ∃(ŝ) ( Split∗(x , r̂ , ŝ) ∧ Extract(z , ŝ)))

where the subspecification 〈{D ,R}, {I ,O}, {}〉 is ProblemSpec, R̂ is the type of space
descriptors, Î defines legal space descriptors, r̂ and ŝ vary over descriptors, r̂0 (x) is the
descriptor of the initial set of candidate solutions, Satisfies(z , r̂) means that z is in the set
denoted by descriptor r̂ or that z satisfies the constraints that r̂ represents, Split(x , r̂ , ŝ)
means that ŝ is a subspace of r̂ with respect to input x , and Extract(z , r̂) means that
z is directly extractable from r̂ . Axiom GS0 asserts that the initial descriptor r̂0 (x) is
a legal descriptor. Axiom GS1 asserts that legal descriptors split into legal descriptors.
Axiom GS2 constrains the denotation of the initial descriptor — all feasible solutions are
contained in the initial space. Axiom GS3 gives the denotation of an arbitrary descriptor
r̂ — an output object z is in the set denoted by r̂ if and only if z can be extracted after
finitely many applications of Split to r̂ where

Split∗(x , r̂ , ŝ) ⇐⇒ ∃(k : Nat) ( Splitk(x , r̂ , ŝ) )

and

Split0(x , r̂ , t̂) ⇐⇒ r̂ = t̂

and for all natural numbers k

Splitk+1(x , r̂ , t̂) ⇐⇒ ∃(ŝ : R̂) ( Split(x , r̂ , ŝ) ∧ Splitk(x , ŝ, t̂)).

In (Smith (1987)) we show the consistency of an abstract global search program in
a program theory parameterized on global search theory. Consequently, construction of
a correct global search program reduces to the problem of constructing a specification
morphism from global search theory to a given problem specification.
As an example of a concrete gs-theory, consider the problem of enumerating sequences

over a given finite set S. A space is a set of sequences with common prefix part sol and is
represented by part sol. The descriptor for the initial space is just [] (the empty sequence).
Splitting is performed by appending an element from S onto the end of the common prefix
part sol. The sequence part sol itself is directly extractable from the space. This global
search theory for enumerating sequences, called gs-sequences, can be presented via a
specification morphism:

D 7→ set(α)
I 7→ λ(S) true
R 7→ seq(α)
O 7→ λ(S, q) range(q) ⊆ S

R̂ 7→ seq(α)

Î 7→ λ(S, part sol) range(part sol) ⊆ S

Satisfies 7→ λ(q, part sol) ∃(r) (q = concat(part sol, r))
r̂0 7→ λ(S) [ ]

Split 7→ λ(S, part sol, part sol′)
∃(i : α) (i ∈ S ∧ part sol′ = append(part sol, i))

Extract 7→ λ(q, part sol) q = part sol

Suppose that we obtain a specification for a simple scheduling problem: given a set
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of jobs (Jobs) and a precedence relation on jobs (PRECEDES) that is a partial order,
enumerate all feasible schedules, where a schedule is a sequence of jobs that satisfy the
precedence constraints.
A domain specification for scheduling might be parameterized on JOB (the parameter

TRIV requires a single sort plus equality on the sort) and be presented

Spec Scheduling(JOB :: TRIV )
Operations Partial−Order : set(JOB × JOB)→ Boolean

Bijective : seq(JOB) × set(JOB) → Boolean

Consistent : seq(JOB) × set(JOB × JOB)→ Boolean

Axioms ... axioms defining the operations ...
endspec

We do not give formal definitions for Partial−Order, Bijective, and Consistent since
they will not be needed later. Informally, a sequence S is bijective into a set R iff the
elements of the sequence are in one-to-one correspondence with R. A sequence S is
consistent with a partial order ⊑ if S(i) ⊑ S(j) whenever 1 ≤ i ≤ j ≤ length(S). We can
present the scheduling problem via a signature morphism of ProblemSpec into expressions
of the Scheduling specification.
The problem can be presented via a signature morphism fromProblemSpec into Schedul-

ing:

D 7→ set(JOB) × set(JOB × JOB)
I 7→ λ(Jobs, P recedes) Partial−Order(Precedes)
R 7→ seq(JOB)
O 7→ λ(Jobs, P recedes, S) Bijective(S, Jobs) ∧ Consistent(S, P recedes)

Once we have a global search theory of scheduling, then it is a simple mechanical step
to obtain a correct global search program (Smith (1987), Smith (1990)). The problem
then is to develop a specification morphism from global search theory into Scheduling.
We do so by constructing a connection from gs-sequences to Scheduling.
We proceed by extending Scheduling with fresh symbols so that the signature mor-

phism above can be extended to a signature morphism from gs-theory to Scheduling.

D 7→ set(JOB) × set(JOB × JOB)
I 7→ λ(Jobs, P recedes) Partial−Order(Precedes)
R 7→ seq(JOB)
O 7→ λ(Jobs, P recedes, S) Bijective(S, Jobs) ∧ Consistent(S, P recedes)

R̂ 7→ R̂sched

Î 7→ Îsched
Satisfies 7→ Satisfiessched

r̂0 7→ r̂0 sched

Split 7→ Splitsched
Extract 7→ Extractsched

Next we develop a gs-theory-connection from gs-sequences to Scheduling. Polarity anal-
ysis results in the following polarity assignments based on the four axioms of gs-theory:
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πD = −
πR = +
πR̂ = ±

πI = −
πÎ = ±
πO = −
πSatisfies = ±
πr̂0

= ±
πSplit = ±
πExtract = ±

A connection specification has conversion function signatures

hboolean : boolean↔ boolean

hD : set(JOB) ← set(JOB) × set(JOB × JOB)
hR : seq(JOB) → seq(JOB)
hR̂ : seq(JOB) ↔ seq(JOB)

and the simplified connection conditions

(I) ∀(Jobs, P recedes) (true ⇐= Partial−Order(Precedes))
(O) ∀(Jobs, P recedes, Sched)(range(hR(Sched)) ⊆ hD(Jobs, P recedes)

⇐= Bijective(Sched, Jobs) ∧ Consistent(Sched, P recedes))

(Î ) ∀(Jobs, P recedes, part sol) (range(part sol) ⊆ hD(Jobs, P recedes)

⇐⇒ Îsched(Jobs, P recedes, part sol))
(r̂0 ) ∀(Jobs, P recedes) [] = r̂0 sched(hD(Jobs, P recedes))
(Satisfies) ∀(Sched, part sol) ∃(r)

(hR(Sched) = concat(part sol, r) ⇐⇒ Satisfiessched(Sched, part sol))
(Split) ∀(Jobs, P recedes, part sol, part sol′)

∃(i) (i ∈ hD(Jobs, P recedes) ∧ part sol′ = append(part sol, i))
⇐⇒ Splitsched(Jobs, P recedes, part sol, part sol′)

(Extract) ∀(Sched, part sol) hR(Sched) = part sol ⇐⇒ Extractsched(Sched, part sol)

As in the previous example, we derive expressions for the conversion maps such that
the connection conditions hold. Condition (I) is universally valid so it provides no in-
formation. However, focusing on (O) and replacing hD by y : set(JOB) and hR by
w : seq(JOB) and noting dependencies we obtain the unskolemized formula

∀(Jobs, P recedes) ∃(y : set(JOB)) ∀(Sched) ∃(w : seq(JOB))
(Bijective(Sched, Jobs) ∧ Consistent(Sched, P recedes) =⇒ range(w) ⊆ y)

Proving this formula requires the definition

Bijective(sq, st) ⇐⇒ Injective(sq, st) ∧ range(sq) = st.

After expanding the term Bijective(Sched, Jobs) in the antecedent and unifying, we
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obtain the substitutions

{w 7→ λ(Sched) Sched, y 7→ λ(Jobs, P recedes) Jobs}

giving us hD and hR respectively and simultaneously ensuring that the connection con-
dition (O) is a theorem.
Next we establish condition (Î ) by unskolemizing Îsched (replacing it with variable

z : seq(JOB) and using the derived expressions for hD and hR)

∀(Jobs, P recedes, part sol) ∃(z : seq(JOB)) (range(part sol) ⊆ Jobs ⇐⇒ z)

which trivially yields the substitution

{z 7→ λ(Jobs, P recedes, part sol) range(part sol) ⊆ Jobs}.

This gives us a definition for Îsched that simultaneously ensures that the connection
condition (Î ) is a theorem. The remaining connnection conditions are treated in the
same way.
Putting the pieces together and applying Theorem 4.2 we have a specification mor-

phism from Global Search to Scheduling.

D 7→ set(JOB) × set(JOB × JOB)
I 7→ λ(Jobs, P recedes) Partial−Order(Precedes)
R 7→ seq(JOB)
O 7→ λ(Jobs, P recedes, Sched)

Bijective(Sched, Jobs) ∧ Consistent(Sched, P recedes)

R̂ 7→ seq(JOB)

Î 7→ λ(Jobs, P recedes, part sol) range(part sol) ⊆ Jobs

Satisfies 7→ λ(Sched, part sol) ∃(r) (Sched = concat(part sol, r))
r̂0 7→ λ(Jobs, P recedes) [ ]

Split 7→ λ(Jobs, P recedes, part sol, part sol′)
∃(i) (i ∈ Jobs ∧ part sol′ = append(part sol, i))

Extract 7→ λ(Sched, part sol) Sched = part sol

This morphism specifies a global search theory for generating sequences over a given
set of Jobs. It is used to instantiate a global search program scheme to obtain a concrete
scheduling program. Other steps in the global search design tactic use unskolemization to
derive pruning tests and constraint propagation mechanisms (see (Smith (1987), Smith
(1990), Smith (1992b))).

6. Concluding Remarks

We have presented several methods for constructing specification morphisms. The two
new methods, unskolemization and connections, carefully exploit the axioms of the source
theory to derive symbol translations such that the source axioms translate to theorems.
Most of the steps in the algorithm design tactics of KIDS can be viewed as applying

either the unskolemization or connection techniques. We have designed and optimized
over fifty algorithms using KIDS. Despite the apparently complex machinery, our expe-
rience is that the unskolemization and connection techniques tend to break the design
task into a series of relatively simple deduction problems that are tractable with respect
to current theorem-proving technology.
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One goal of the research described in this paper is to develop a mechanized envi-
ronment that supports the acquisition, development, and implementation of specifica-
tions. In addition to modelling application domains and developing formal requirement
specifications, users could supply design knowledge in the form of specifications (for ab-
stract algorithms, abstract datatypes, system architectures, etc.). Tools for constructing
specification morphisms would support the application of design knowledge during the
implementation of requirements specifications.
We are currently implementing the techniques described in this paper within the KIDS

system. The immediate aim is to support algorithm design directly from a hierarchy of
algorithm theories (Smith and Lowry (1990)), rather than relying on a collection of
manually coded special-purpose design tactics. Longer term goals are to explore the
design of data structures and the application of software architecture theories to system
design.
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