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This note builds on the ideas of the proof of the Modularization Theorem in [1, 2] and Veloso’s
more recent proof.

I assume that (1) theories are single-sorted and (2) a theory morphism is presented by a signature
morphism: a symbol-to-symbol map. The symbol map can be straightforwardly extended to a
language translation.

If Ais a theory, let ¥4 = FUN4 |J PRED 4 be the function and predicate symbols of A, L4 the
sentences of A, and Ax 4 the axioms of A.

Here are some basic results needed in the proof. First, consider the properties of proofs under
translation by a signature morphism.

Proposition 1. (Deducibility is preserved under translation by signature morphism).
Let g: ¥4 — X be a signature morphism, J C L4, and ¢ € L4, then

JFEo = g(J)Fg(9).

Proof: Show for each of the inference rules of the logic (e.g. resolution) that it is preserved under
translation.

Corollary 1. If g is injective, then g(J) F g(¢) = JF ¢.

proof:
9(J) Fg(9)
= applying Proposition 1
97 (g(1) F g7 (g(e)
= simplifying

J+ 6.

Comment: The proposition and the corollary just show that the name of a symbol doesn’t matter
very much — proofs are isomorphic up to renaming.

To generalize the Corollary to arbitrary signature morphisms, we need to account for the identifi-
cations that g makes on Y 4.

Let!
Idjun(g) = {Y(2)(fi(z) = f2(2)) | f1, f2 € FUNa A g(f1) = 9(f2)}

!These definitions need to be elaborated to handle the different arities of function and predicates.




Idprea(g) = {¥(z)(p1(z) = pa(z)) | p1,p2 € PREDA A g(p1) = g(p2)}

Id(g) = Idfun(g) U Idpred(g)'

Proposition 2. (Preservation of proofs under back-translation).
Let g : A — B be a signature morphism, J C L4, and ¢ € Ly, then

g(J) Fg(¢) = J | 1d(g) - ¢.

Proof: The trick is to create an injective variant of g, called g*, by requiring that ¢* = g except
when g maps two symbols p, ¢ to the same symbol, in which case g* maps p and g to fresh symbols.
The effect of identifying p and ¢ can be added back in via an axiom of the form p = ¢; i.e. the
identities in Id(g).

9(J) = 9()

— see above
g*(J) U g*(Id(g)) + g*(¢)

— applying Proposition 1
g Hg"(J) U g*(1d(9))) - g*~H(g"(0))

simplifying

J U Id(g) F ¢.

Proposition 3. (Preservation of conservativeness under addition of axioms).
If <2A,A:L'A> < (EB,A$B> and J - LA
then (X¥4,Aza U J) < (Ep,Azp U J).

Proof: Let ¢ € L.
Azp J JF o

= using compactness (if necessary) and the deduction theorem
AzptJ = ¢

= since (X4, Azg) < (X, Azp)
AzpabJ = ¢

== using the deduction theorem

Azg U J+ 6.



The Craig Interpolation Lemma is critical to the proof of the Modularization Theorem. The
“splitting” version goes as follows.

Craig Interpolation Lemma. Given theories A and B,
if pc Lp,and Aza |J AzpF ¢
then there exists I C L4 N Ly such that

(1) Aza b1

(2) Azp U I+ ¢.

The Modularization Theorem is concerned with the preservation of properties of morphisms under
a pushout operation.

Q S=QoR
d (conservative) e (conservative?)
P / - R

We are given theory P and a conservative extension to @, and a theory morphism f : P — R.
The pushout construction creates theory S = @ @ R plus the theory morphisms g and e. The
Modularization Theorem asserts that the inclusion e : R — S is conservative.

Modularization Theorem. The pushout construction preserves conservativeness.

Proof: To show that e : R — S is conservative, assume ¢ € Lr and Azg F ¢. We must show that
Axp F ¢. The pushout construction of S gives us Lg = g(Lg) |J Lr and Azg = g(Azg) U Azr.
We can apply the Craig Interpolation Lemma via the correspondance

La = g(Lq)
Axy — g(Azq)

LB — LR
Brxp — Azxp

So there exists some set of sentences I C g(Lg) N Ly such that
(1) g(Azq) F 1
(2) Azp U I+ ¢.

We’ll show that g(Axp) F I, but assume it for now and prove the theorem. We know Azg - g(Azp)
since g is a theory morphism, so combining these we get Azg F I. Judgement (2) is then equivalent
to the desired result: Axg - ¢.

So it remains to prove g(Axzp) - I. First, note that since I C g(Lg) N Lg, there is some subset of
sentences J C Lp such that I = g(J) (I C g(Lg) means that each sentence in I is the translation
of a sentence of Lg, and furthermore I C Lr means that each such sentence could only have come
from Lp). Second, note that by Proposition 3 (and the assumption P < @) we have

(Sp, Azp ] Id(g)) < (Zq, Azq | 1d(9))-

Third, note that g(Id(g)) is universally valid, since each identity in /d(g) translates to the form
p=D.



g(Azp) F I follows from g(Azg) F I (judgement (1) above) as follows:

g(Azg) H 1

first note above

9(Azq) = g(J)

= applying Proposition 2
Axg U Id(g) - J

= second note above
Azp U Id(g) F J

- applying Proposition 1

g(Azp U 1d(g)) F g(J)

E third note above

g(Azp) F I
QED
Corollary 2. If R is consistent, then so is the pushout theory.
Veloso has also proved the following interesting results.

Proposition 4. (Preservation of conservativeness under addition of operator symbols).
If (¥X4,Azs) < (Ep,Azxp) and VU is a fresh set of operator symbols (i.e. ¥ NXp = {})
then (¥4 J ¥, Aza) < (Ep U ¥, Azp).

Surprisingly, Proposition 4 is equivalent in first-order logics to the Craig Interpolation Lemma.
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