
Another Proof of the Modularization Theorem

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304

3 February 1993

This note builds on the ideas of the proof of the Modularization Theorem in [1, 2] and Veloso’s
more recent proof.

I assume that (1) theories are single-sorted and (2) a theory morphism is presented by a signature
morphism: a symbol-to-symbol map. The symbol map can be straightforwardly extended to a
language translation.

If A is a theory, let ΣA = FUNA
⋃
PREDA be the function and predicate symbols of A, LA the

sentences of A, and AxA the axioms of A.

Here are some basic results needed in the proof. First, consider the properties of proofs under
translation by a signature morphism.

Proposition 1. (Deducibility is preserved under translation by signature morphism).
Let g : ΣA → ΣB be a signature morphism, J ⊆ LA, and φ ∈ LA, then

J ` φ =⇒ g(J) ` g(φ).

Proof: Show for each of the inference rules of the logic (e.g. resolution) that it is preserved under
translation.

Corollary 1. If g is injective, then g(J) ` g(φ) =⇒ J ` φ.

proof:

g(J) ` g(φ)

=⇒ applying Proposition 1

g−1(g(J)) ` g−1(g(φ))

=⇒ simplifying

J ` φ.

Comment: The proposition and the corollary just show that the name of a symbol doesn’t matter
very much – proofs are isomorphic up to renaming.

To generalize the Corollary to arbitrary signature morphisms, we need to account for the identifi-
cations that g makes on ΣA.

Let1

Idfun(g) = {∀(x)(f1(x) = f2(x)) | f1, f2 ∈ FUNA ∧ g(f1) = g(f2)}
1These definitions need to be elaborated to handle the different arities of function and predicates.

1



Idpred(g) = {∀(x)(p1(x) ≡ p2(x)) | p1, p2 ∈ PREDA ∧ g(p1) = g(p2)}

Id(g) = Idfun(g)
⋃

Idpred(g).

Proposition 2. (Preservation of proofs under back-translation).
Let g : A→ B be a signature morphism, J ⊆ LA, and φ ∈ LA, then

g(J) ` g(φ) =⇒ J
⋃

Id(g) ` φ.

Proof: The trick is to create an injective variant of g, called g∗, by requiring that g∗ = g except
when g maps two symbols p, q to the same symbol, in which case g∗ maps p and q to fresh symbols.
The effect of identifying p and q can be added back in via an axiom of the form p = q; i.e. the
identities in Id(g).

g(J) ` g(φ)

=⇒ see above

g∗(J)
⋃
g∗(Id(g)) ` g∗(φ)

=⇒ applying Proposition 1

g∗−1(g∗(J)
⋃
g∗(Id(g))) ` g∗−1(g∗(φ))

≡ simplifying

J
⋃
Id(g) ` φ.

Proposition 3. (Preservation of conservativeness under addition of axioms).
If 〈ΣA, AxA〉 ≤ 〈ΣB, AxB〉 and J ⊆ LA

then 〈ΣA, AxA
⋃
J〉 ≤ 〈ΣB, AxB

⋃
J〉.

Proof: Let φ ∈ LA.

AxB
⋃
J ` φ

=⇒ using compactness (if necessary) and the deduction theorem

AxB ` J =⇒ φ

=⇒ since 〈ΣA, AxA〉 ≤ 〈ΣB, AxB〉

AxA ` J =⇒ φ

=⇒ using the deduction theorem

AxA
⋃
J ` φ.

2



The Craig Interpolation Lemma is critical to the proof of the Modularization Theorem. The
“splitting” version goes as follows.

Craig Interpolation Lemma. Given theories A and B,
if φ ∈ LB, and AxA

⋃
AxB ` φ

then there exists I ⊆ LA ∩ LB such that
(1) AxA ` I
(2) AxB

⋃
I ` φ.

The Modularization Theorem is concerned with the preservation of properties of morphisms under
a pushout operation.

Q
g

- S = Q⊕R

P

d (conservative)

∪

6

f
- R

e (conservative?)

∪

6

We are given theory P and a conservative extension to Q, and a theory morphism f : P → R.
The pushout construction creates theory S = Q ⊕ R plus the theory morphisms g and e. The
Modularization Theorem asserts that the inclusion e : R→ S is conservative.

Modularization Theorem. The pushout construction preserves conservativeness.

Proof: To show that e : R → S is conservative, assume φ ∈ LR and AxS ` φ. We must show that
AxR ` φ. The pushout construction of S gives us LS = g(LQ)

⋃
LR and AxS = g(AxQ)

⋃
AxR.

We can apply the Craig Interpolation Lemma via the correspondance

LA 7→ g(LQ)
AxA 7→ g(AxQ)
LB 7→ LR

BxB 7→ AxR

So there exists some set of sentences I ⊆ g(LQ) ∩ LR such that
(1) g(AxQ) ` I
(2) AxR

⋃
I ` φ.

We’ll show that g(AxP ) ` I, but assume it for now and prove the theorem. We know AxR ` g(AxP )
since g is a theory morphism, so combining these we get AxR ` I. Judgement (2) is then equivalent
to the desired result: AxR ` φ.

So it remains to prove g(AxP ) ` I. First, note that since I ⊆ g(LQ) ∩ LR, there is some subset of
sentences J ⊆ LP such that I = g(J) (I ⊆ g(LQ) means that each sentence in I is the translation
of a sentence of LQ, and furthermore I ⊆ LR means that each such sentence could only have come
from LP ). Second, note that by Proposition 3 (and the assumption P ≤ Q) we have

〈ΣP , AxP
⋃

Id(g)〉 ≤ 〈ΣQ, AxQ
⋃

Id(g)〉.

Third, note that g(Id(g)) is universally valid, since each identity in Id(g) translates to the form
p = p.

3



g(AxP ) ` I follows from g(AxQ) ` I (judgement (1) above) as follows:

g(AxQ) ` I

≡ first note above

g(AxQ) ` g(J)

=⇒ applying Proposition 2

AxQ
⋃
Id(g) ` J

=⇒ second note above

AxP
⋃
Id(g) ` J

=⇒ applying Proposition 1

g(AxP
⋃
Id(g)) ` g(J)

=⇒ third note above

g(AxP ) ` I.

QED

Corollary 2. If R is consistent, then so is the pushout theory.

Veloso has also proved the following interesting results.

Proposition 4. (Preservation of conservativeness under addition of operator symbols).
If 〈ΣA, AxA〉 ≤ 〈ΣB, AxB〉 and Ψ is a fresh set of operator symbols (i.e. Ψ ∩ ΣB = {})
then 〈ΣA

⋃
Ψ, AxA〉 ≤ 〈ΣB

⋃
Ψ, AxB〉.

Surprisingly, Proposition 4 is equivalent in first-order logics to the Craig Interpolation Lemma.

References

[1] Turski, W. M., and Maibaum, T. E. The Specification of Computer Programs. Addison-
Wesley, Wokingham, England, 1987.

[2] Veloso, P. A., and Maibaum, T. On the modularization theorem for logical specification.
Information Processing Letters 53, 5 (1995), 287–293.

4


