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Abstract. Model Refinement is a uniform approach to generating correct-by-construction designs for
algorithms and systems from formal specifications. Given an overapproximating model M of system
dynamics and a set Φ of required properties, model refinement is an iterative process that eliminates
behaviors of M that do not satisfy the required properties. The result of model refinement is a refined
model M′ that satisfies by-construction the required properties Φ. The calculations needed to generate
refinements of M typically involve quantifier elimination and extensive formula/term simplification
modulo the underlying domain theories. This paper focuses on the enforcement of basic safety properties
in the form of state and action invariants. Several extensions of the safety language are presented
and normalization rules are given to reduce them to basic safety properties. We have run a prototype
implementation of model refinement based on the Z3 SMT solver over a variety of system and algorithm
design problems.

1 Introduction

Program synthesis is the process of transforming a formal specification of requirements to a pro-
gram that provably satisfies the specification. Historically, program synthesis stems from logical
investigations into the connection between provability of formulas of the form

∀x ∃z φ(x, z) (1)

and computable functions; prominently, Kleene’s 1945 work on realizability [26]. In modern terms,
we say that a witness to the existential in (1) is a computable function f such that ∀x. φ(x, f(x)).
The development of resolution and constructive proof tools in the 1960’s led computer scientists to
develop techniques for extracting functional programs from proofs of (1) [22, 13, 29] . Current sup-
port for program extraction from proofs is typically provided in proof environments for constructive
logics such as NuPRL [14] and Coq [1].
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Going beyond synthesis of functions, in 1957 Church proposed the problem of synthesizing nonter-
minating computations that react to a stream of inputs from the environment [10, 11] as in digital
circuits. This corresponds to generalizing formula (1) to an infinite alternation of quantifiers:

∀x0 ∃x1 ∀x2 ∃x3 · · ·φ(x0, x1, x2, x3, · · · ) (2)

Formula (2) is naturally interpreted as a game between the program and its environment with
winning condition φ. For every move or choice x0 that the environment makes, there is choice x1
that the program can make, such that for every move or choice x2 that the environment makes, ...
such that the formula φ holds, in which case the program wins, otherwise the environment wins.
Solutions to Church’s problem [7, 33] established a double exponential bound on the complexity of
finding a nonterminating program (now called a reactive system) for certain classes of games with
a finite state space. More recent research focuses on classes of game-like specifications for which
the synthesis process has a lower worst-case complexity [4, 3, 6].

Formal approaches to program synthesis start with a logical specification essentially of the form (1)
or (2) which decides the desired behaviors of a program. The essence of many synthesis techniques is
to eliminate undesired behaviors from a model whose behaviors overapproximate the set of desired
behaviors. In this paper we propose a unifying framework, called model refinement, for specifying
such overapproximating models, together with a constraint system whose solution corresponds to
the elimination of undesired behaviors from the model. The framework serves to unify and extend
previous work on function/algorithm synthesis with reactive system synthesis. Given a model M
that overapproximates system behaviors and a set Φ of required properties, the goal of model
refinement is to generate the least refinementM′ of modelM such thatM′ satisfies the specified
properties Φ. If the set of legal initial states in M′ differs from the initial states of M, then the
difference characterizes the set of initial states from which the system does not have a winning
strategy. Model checking [12] is the special case in which refinement of the model is not an option.

Overapproximating models can arise in a variety of ways. For control system problems, the model
captures the dynamics of a physical asset (aka the “plant”) to be controlled. In information sys-
tem design, the model captures the APIs and possible operations of a component and perhaps
a restricted grammar for expressing programs [2]. In general system design, a model can express
a system design pattern [19, 9, 36]. In algorithm design, a model can reflect the imposition of a
parametric solution pattern, such as an algorithm theory [44] or a sketch [48].

This paper focuses on enforcement of basic safety properties. In later sections, we introduce a wider
fragment of temporal logic that can be reduced to the basic safety fragment. We choose to model
the state space logically, which enables representing and reasoning about large or infinite state
spaces. Most current work on the synthesis of reactive systems focuses on circuit design and starts
with specifications in propositional Linear Temporal Logic (LTL) [6, 24]. Model Refinement allows
specifications that are first-order and uses a temporal logic of action that is amenable to refinement,
which LTL is not, allowing a broader range of applications to be tackled.

Model refinement is intended to support highly automated refinement-generating tools that produce
correct-by-construction designs together with machine-checkable proofs. The essential barrier to full
automation is the computational complexity of formula simplification in the application domain
theories that support the system specification. When the domain theories are decidable (e.g. by
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SMT solvers) and admit quantifier elimination, then model refinement can run fully automatically.
We have used our SMT-based prototype to perform model refinement on a variety of examples.

Our contributions include

1. a uniform framework for specifying algorithms and reactive systems by a combination of over-
approximating behavioral models and logical specifications of required behavior,

2. a characterization of model refinement via a system of definite constraints that can be efficiently
solved by fixpoint-iteration procedures,

3. a variety of examples to show the breadth of the technique,
4. a prototype implementation based on the Z3 SMT-solver [43].

Motivating Example A secure enclave has a door whose latch is controlled by a card reader. A
user can Insert or Remove a card from the reader. The system controls the latch and can perform
Lock or Unlock actions. When unlocked, the Door can be opened. A model for this enclave has
actions or transitions for Insert and Remove a card from the reader (we ignore the aspect of actually
authenticating the card). It also has actions for Locking and Unlocking the door. In this simple
initial model, many behaviors are allowed, such as the door Unlocking without any card in the
reader. As such the model provides a superset of the behaviors that we desire. We specify those
desired behaviors by means of safety properties: (1) whenever an Insert action occurs, then the
door must Unlock (within k time units), (2) whenever an Unlock action occurs, then there must
have been an Insert action (within the previous k time units). The intent of model refinement is to
strengthen the four actions of the model so that only behaviors satisfying the two global properties
hold. This example is worked in detail in Section 5.2.

We first introduce model refinement over basic safety properties. We then show how safety properties
that are expressed using bounded-time past and future temporal operators (Section 5.1) and path
properties (Section 7) can be reduced to basic safety properties. Each of our examples runs in a
few seconds on our prototype Z3-based model refinement tool.

2 Preliminaries

2.1 Required Properties

We focus on safety properties formulated in a simple linear temporal logic of actions, similar to
Lamport’s TLA [27]. A state is a (type-consistent) map from variables to values. State predicates
are boolean expressions formed over the variables of a state and the constants (including functions)
relevant to an application domain. A state predicate p denotes a relation JpK over states, so p(s)
denotes the truth value JpK(s) for state s. Actions are boolean expressions formed over variables,
primed variables, and the constants (including functions) relevant to an application domain. An
action a specifies a state transition and it denotes a predicate JaK over a pair of states, and a(s, t)
denotes the truth value JaK(s, t) for states s and t. The expression x = x′+1+ y is a typical action
where the unprimed variables refer to the first state and primed variables refer to the second state.

A basic safety property (or simply a safety property) has the form φ or φ where φ is a state
predicate or an action. The truth of a safety property φ at position n of a trace σ (an infinite
sequence of states), written σ, n ⊨ φ, is defined as follows:
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– σ, n ⊨ p, for p a state predicate, if p holds at state σ[n], i.e. JpK(σ[n]);
– σ, n ⊨ a, for a an action, if a holds over the states σ[n], σ[n+ 1], i.e. JaK(σ[n], σ[n+ 1]);
– σ, n ⊨ φ if σ, i ⊨ φ for all i ≥ n.

2.2 Behavioral Models

Formally, a model is a labeled control flow graph (LCFG)M = ⟨V, N,A,L⟩ where
– V: a countable set of variables; implicitly each variable has a type with a finite (typically first-
order) specification of the predicates and functions that provides vocabulary for expressions and
constrains their meaning via axioms. The aggregation of these variable specifications is called
the application domain theory (or simply domain theory) of the problem at hand.

– N : a finite set of nodes. Associated with each node m ∈ N , we have a finite subset of observable
variables V (m) ⊆ V. N has a distinguished nodem0 that is the initial node. An LCFG is arc-like
if it also has a designated final node mf .

– A: a finite set of directed arcs, A ⊆ N × N . Each node m has an identity self-transition
idm = ⟨m,m⟩, called stutter, that changes the values of no observable variables.

– L: a set of labels. For each node m ∈ N , we have a label Lm ∈ L that is a state predicate over
V (m) representing a node invariant. For each arc a = ⟨m,n⟩, label La ∈ L is an action over
V (m), V (n), and auxiliary variables e and u which are discussed below.

In reactive system design, it is commonly the case that the variables at all nodes are the same, so
V (m) = V (n) for all nodes m,n ∈ N and all variables are global. In functional algorithm design
it is typical that the variables at each node are disjoint, effectively treating all variables as local
to a unique node. Most programming languages support models that have both global and local
variables.

A state stm at node m is a type-consistent map from V (m) to values. To simplify notation, we often
write Lm(stm) to denote stm ⊨ Lm(V (m)) (and similarly for arc labels). A node m denotes the set
of states JmK = {st | Lm(st)}. The label Lm0 is the initial condition of the model and denotes the
set of initial states.

Arc label La generally specifies a nondeterministic action, whose nondeterminism may be reduced
under refinement. In reactive systems, which have a game-like character, some of the nondetermin-
ism is due to the uncontrollable behavior of the environment or an adversarial agent. For refinement
purposes, it is necessary to specify which parts of the nondeterminism are refinable and which are
unrefinable. Accordingly, the label La of an action has the general form:

La(stm, e, u, stn) ≡ e ∈ Ea(stm) ∧ Ua(stm, u) ∧ stn = fa(stm, u, e)
where

1. e is treated as an uncontrollable environment or adversary input that ranges over the unrefinable
set Ea(stm);

2. u is treated as a controllable value that satisfies the refinable constraint Ua(stm, u);
3. function fa gives the deterministic response of the action.

The variability of the control value specifies the refinable part of La(stm, e, u, stn). This kind of
formulation of actions is common in modeling discrete and continuous control systems [49]. LetJaK = {⟨stm, stn⟩ | ∃e, u. La(stm, e, u, stn)}.
Note that e and u are independent of each other. Alternative formulations are easily made in which
one depends on the other.
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We specify an action a = ⟨m,n⟩ via a predicate over V (m)×V (n) that denotes a transition relation

JaKM = {⟨stm, stn⟩ | La(stm, stn)} ⊆ Sm × Sn.

When the LCFG is clear from context we omit the subscript.

An action with a degenerate sytem input is called an environment action since it is triggered and
instantiated solely by the environment. Similarly for system actions. In some models it is possible to
extract an entire Environment LCFG consisting of environment actions that models the behaviors
of the Environment treated as an agent or process. See for example the Card Reader model in
Section 5.2.

Semantics. A trace is an infinite sequence of states. An LCFGM = ⟨V, N,A,L⟩ generates a trace
tr = st0, st1, . . . if

1. Initially, st0 is a legal state of the initial node m0, i.e. st0 ∈ Jm0K;
2. Inductively, if i ≥ 0 and sti is a legal state of node m, i.e. sti ∈ JmK, then there exists arc
a = ⟨m,n⟩ where ⟨sti, sti+1⟩ ∈ JaK and where sti+1 is a legal state of node n; i.e. sti+1 ∈ JnK.JMK is the set of all traces that can be generated byM.

A node m and a legal state stm is nonblocking if there is an arc a = ⟨m,n⟩ and control choice u
such that Ua(stm, u) and a transitions to a legal state of n regardless of the environment input.
In game-theoretic terms, if all reachable nodes and states of the model are nonblocking, then the
system has a winning strategy. A key part of model refinement is the elimination of blocking states
in the model.

2.3 Specification and Refinement

Refinement of LCFG modelM1 to modelM2 is a preorder relation, writtenM1 ⊑M2, that holds
when there exists a simulation map ξ : M2 → M1 that maps the nodes and arcs of M2 to the
nodes and arcs ofM1; i.e. where ξ : N

M2 → NM1 and ξ : AM2 → AM1 such that

1. Initial nodes are preserved: ξ(mM2
0 ) = mM1

0 ;
2. Observable variables: VM2(m) ⊇ VM1(ξ(m)) for each node m ∈ NM2 ;
3. Node labels: LM2

m =⇒ LM1

ξ(m) for each node m ∈ NM2 ;

4. Arc labels: LM2
a =⇒ LM1

ξ(a) for each arc a ∈ AM2 .

There are several kinds of transformations of models that generate refinements, including (1)
strengthening the invariant at a node, and (2) strengthening the action at an arc. These are used in
the model refinement procedure in the next section. A third transformation, structure refinement,
replaces an arc by an arc-like LCFG. This transformation may be used when imposing a design
pattern or program scheme as a constraint on how to achieve the action of the arc. An example of
this is given in Section 7.1.

A specification S = ⟨M, Φ⟩ is comprised of a model M and a set of properties Φ that we require
to incorporate or enforce inM. A specification denotes the set of traces generable byM that also
satisfy all properties in Φ: JSK = {tr | tr ∈ JMK ∧ tr ⊨ Φ} = JMK ∩ JΦK.
Refinement of specification S to specification T is a preorder relation, written S ⊑ T , that holds
when there is a mapping ξ from traces of T to traces of S such that
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∀σ.σ ∈ JT K =⇒ ξ(σ) ∈ JSK
or more succinctly ξ(JT K) ⊆ JSK.
Theorem 1. If

1. S1 = ⟨M1, Φ1⟩ and S2 = ⟨M2, Φ2⟩ are specifications,
2. ξ :M2 →M1 is a simulation map
3. Φ2 =⇒ Φ1

then S1 ⊑ S2.

Proof: The simulation map ξ from H to G defines a simulation relation so we can show that every
trace of H maps to (or simulates) a trace of G, as illustrated in Figure 1. Effectively, H simulates
the observable behavior of G with no more nondeterminism.

σ : m0
// m a // m′ //

σ′ : h0

ξ

OO

// h b //

ξ

OO

h′

ξ

OO

//

Fig. 1: Simulating a trace

Given a trace σ′ of H, we show how to construct a trace σ of G. If h0 is the start node of H, then
σ′[0] ∈ Jh0K. By construction, ξ(h0) = m0 where m0 is the start node of G, so we can construct a
start state in Jm0K by simply forgetting/eliminating those variables of h0 that are not in m0 (since
VH(h0) ⊇ VG(ξ(h0)) = VG(m0); i.e.

σ[0] = {v 7→ val | v ∈ V (m0) ∧ val = σ′[0](v)}.

σ′[0] ⊨ Lh0

=⇒ σ′[0] ⊨ Lm0 since Lh0 ⇒ Lξ(h0) ⇐⇒ Lξ(m0)

=⇒ σ[0] ⊨ Lm0 retracting the model to just the variables of m0

Inductively, consider the transition σ′[i] → σ′[i + 1] where σ′[i] ∈ JhK (σ′[i] ⊨ Lh) and ξ(h) = m.
Let σ[i] be the state constructed from σ′[i] by forgetting of irrelevant variables. Let b = ⟨h, h′⟩ be
the H arc such that σ′[i + 1] ∈ Jh′K. Let ξ(b) = a = ⟨n, n′⟩, then since b was enabled in state σ′[i]
we have

⟨σ′[i], σ′[i+ 1]⟩ ⊨ Lb

=⇒ ⟨σ′[i], σ′[i+ 1]⟩ ⊨ La since Lb ⇒ Lξ(b) ⇐⇒ La

≡ ⟨σ[i], σ[i+ 1]⟩ ⊨ La retracting the models to just the variables of m and n

So, the arc a is enabled in state σ[i] and thus σ[i+ 1] is part of a legal trace of G. This shows that
ξ(JM2K) ⊆ JM1K. To show specification refinement:
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ξ(JS2K)
= ξ(JM2K ∩ JΦ2K) definition

= ξ(JM2K) ∩ ξ(JΦ2K) distributing

⊆ JM1K ∩ JΦ2K since ξ(JM2K) ⊆ JM1K
⊆ JM1K ∩ JΦ1K assumption that Φ2 ⇒ Φ1

= JS1K. definition

That is, S1 ⊑ S2. QED

3 Model Refinement as Constraint Solving

Model refinement transforms a model M and required properties Φ into a model M′ such that
M⊑M′ ∧M′ ⊨ Φ. We define now a constraint system whose solutions correspond to refinements
of M that satisfy Φ. The intent is to find the greatest solution of the constraint system, which
corresponds to the minimal refinement of M that satisfies Φ. In later sections we characterize
several situations in which only a near-greatest solution can be found.

In formulating model refinement as a constraint satisfaction problem, we treat the node labels Lm

and arc labels La as variables, whose assigned values are state and action predicates, respectively.
We can view the constraint system as taking place in the Boolean lattice of formulas with implication
as the partial order (i.e. a Tarski-Lindenbaum algebra). Each constraint provides an upper bound
on feasible values of one variable. A feasible solution to the constraint system is an assignment of
formulas to each variable that satisfies all the constraints of the system. We discuss below how to
assure finite convergence of the constraint solving process as the lattice may be of infinite height.

We characterize the model refinement transformation by a three-stage constraint system. The first
stage enforces general behavioral constraints, and the second stage enforces initial state constraints
and frame constraints that arise from protected variables.

wcp is the weakest controllable predecessor (WCP) predicate transformer and is defined by
wcp(La, Ln) ≡ ∀e. e ∈ E(stm) =⇒ ∃stn. stn = fa(stm, e, u) ∧ Ln(stn)

or, simply
wcp(La, Ln) ≡ ∀e. e ∈ E(stm) =⇒ Ln(fa(stm, e, u))

where Ln is a state predicate. wcp is the weakest formula over V (m)
∪
{u} such that for any

environment input e the transition a is assured to reach a state stn satisfying the post-state predicate
Ln. Its effect is to define the nonblocking states at node m – those states from which there is some
control value that forces the transition to a legal state at n regardless of the environment input.

Stage 0.
0. State Initialization: Let m0 be a solution to the constraint-satisfacton problem posed by the
conjunction Θ of required properties that are state properties (not temporal properties). For each
variable v ∈ Vm0 , set the initial value of v to m0(v).

Stage 1. Generate the following constraints for each required temporal property φ:

1. Node Localization: Lm =⇒ φ for each node m ∈ N if φ is a state predicate expressed
over the variables at m;
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2. Arc Localization: La =⇒ φ for each arc a = ⟨m,n⟩ ∈ A if φ is an action expressed over
the variables at m and n;

3. Control Constraint: Ua =⇒ wcp(La, Ln) for each arc a = ⟨m,n⟩
4. Node Invariant: Lm =⇒

∨
a=⟨m,n⟩

∃u. Ua for each node m ∈ N .

Stage 2.
5. Variable Protection: La =⇒ unchanged(v) for each arc a = ⟨m,n⟩ ∈ A in which there
is no mention of v′ for protected v ∈ V in La.

Given a specification S = ⟨M,Φ⟩, the model refinement transformation first refines S by solving
the stage 0 constraint problem to initialize state variables, then further refines the specification by
solving the stage 1 constraints, and then further refines it by solving the stage 2 constraints.

The Localization constraints (1) and (2) provide upper bounds on the node labels. The Control
constraints (3) are the essentially synthetic aspect of model refinement as they serve to eliminate
any state transitions in which the environment can force the system to a state not satisfying the
safety properties. The Node Invariant constraints (4) serve to eliminate blocking states at a node
with respect to all of its outgoing arcs.

if φ is a state predicate
then for m ∈ N : Lm ← Lm ∧ φ
else for a ∈ A : La ← La ∧ φ

do
for a ∈ A : Ua ← Ua ∧ wcp(La, Ln)
for m ∈ N : Lm ← Lm ∧

∨
a=⟨m,n⟩

∃u. Ua

until Lm is unchanged for all nodes m ∈ N .

Fig. 2: Model Refinement Algorithm

A straightforward algorithm for solving the con-
straint system over the labels on a model is pre-
sented in Figure 2. The iteration converges to a fix-
point when the labels do not change in an itera-
tion. Upon convergence to a refined model M′, we
have JM′K ⊆ JMK ∩ JΦK, and in the case that the
algorithm converges to a greatest fixpoint we haveJM′K = JMK ∩ JΦK.

The constraints have definite form3 and the algorithm in [35] provides a more efficient control
strategy that exploits dependencies between the constraints.

The derived initial condition is the final refined invariant Lm0 which characterizes the set of non-
blocking initial states from which the system can ensure that all behaviors satisfy the specified
safety properties. In a model-checking scenario where the model doesn’t check, the derived initial
condition may provide a useful characterization of the model’s failure, complementing any coun-
terexamples produced by the model-checker.

Correctness and Complexity

The correctness of this algorithm is a consequence of Tarski’s theorem. Each constraint has definite
form v ≤ g(v), so we can express solutions as fixpoints of v = g(v). As we are looking for the most
general (i.e. least refinement of the initial model), the algorithm aims to converge on the greatest
fixpoint using a Kleene iteration.

3 A constraint over a meet semilattice is definite or Horn-like if has the form v ≤ g(v) for variable v and monotone
function g.
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If the state space is finite, then the fixpoint iteration process will be finite too. In fact, the number
of iterations is linear in the height of the lattice.

There are several challenges that arise in solving the constraint system. First, to aid convergence
and improve performance, it is necessary to aggressively simplify expressions at each step. Each iter-
ation generates instances of wcp with its universal quantification over environment inputs. Formula
simplification techniques, especially quantifier elimination, are needed to eliminate redundancy and
keep the intermediate forms of the labels as compact as possible. Second, forcing termination in
a fixpoint iteration algorithm is addressed by the concept of widening from abstract interpreta-
tion [15]. When computing a greatest fixpoint, the idea is to underapproximate the bounds in the
constraint system resulting in a fixpoint that underapproximates the greatest fixpoint. In terms of
model refinement, an underapproximation would result in a possibly stronger derived initial con-
dition; that is, it would operate safely but only from a subset of initial states. We can address the
challenges of convergence and quantifier elimination by underapproximating a universally quantified
formula from wcp. The operator A x.p(x) results in the weakest quantifier-free formula such that
Ax.p(x) =⇒ ∀x.p(x) with respect to background theory T . When T admits quantifier elimination,
then we have A x.p(x) ≡ ∀x. p(x), otherwise it underapproximates the quantified formula. Re-
placing wcp(La, Ln) in the Control Constraint by A stn.wcp(La, Ln) in the Basic Safety Constraint
System provides the possibility of (1) greater formula simplification capability, and (2) more rapid
convergence, particularly when fragments of the background domain theory do not admit (tractable)
quantifier elimination. The tradeoff is that the resulting model may underapproximate the greatest
fixpoint model. Loosening the requirement that A yields the weakest sufficient condition would
further increase the range of applicability of this approach. The techniques of abductive inference
[32] and directed inference [38] aim to find a simplest and weakest possible sufficient condition
on a given formula. The fact that many theories do not admit quantifier elimination in general
and the computational complexity of elimination algorithms has motivated several efforts to define
inexpensive underapproximations and overapproximations to quantified formulas, e.g. [23]. Finally,
the problem of detecting equivalence between two formulas is, of course, undecidable in first-order
and higher-order logics. Practically, we restrict our examples to the decidable theories of current
SMT solvers, some of which admit quantifier elimination. More generally, tactic-driven interactive
provers/calculators may be necessary to support model refinement.

Example: Packet Flow Control

In this example, based on [37], a buffer is used to control and smooth the flow of packets in a
communication system. We model this problem as in discrete control theory with a plant (a buffer
of length buf), environment/disturbance input e, and control value u. The environment supplies a
stream of packets that varies up to 4 packets per time unit. The plant is modeled by a single linear
transition that updates the state of the plant. The goal is to assure that the system keeps no more
than 20 packets in the buffer buf and keeps the outflow rate out at no more than 4 packets per
time unit.

This is a classical discrete control problem with a single node and a single linear transition. It can
be specified by the following TLA-like notation for an LCFG, which lists the one node with its state
variables and their initial invariant, the one arc and its initial action (dependent on environment
input e and control value u), and the required safety properties.
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Specification FC0
Node: m0

vars: buf, out : Integer
invariant: 0 ≤ buf ∧ 0 ≤ out

Arc: a = ⟨m0,m0⟩
action: Update(u, e) ≜ −1≤u≤1 ∧ 0≤e≤4 ∧ buf ′ = buf + e− out ∧ out′ = out+ u

Required Properties
buf = 0
out = 0
 0≤buf ∧ buf≤20 ∧ 0≤out ∧ out≤4

End Specification

The first two required properties set the initial state values. For the last required property, the
algorithm in Figure 2 instantiates wcp to generate the following formula as an upper bound on the
control condition U(buf, out, u) ≡ −1≤u≤1

∀e. 0≤e≤4 =⇒ 0≤buf + e− out≤20 ∧ 0≤out+ u≤4.
This formula is in the language of integer linear arithmetic which admits quantifier elimination and
our Z3-based prototype simplifies it to the equivalent of

1 ≤ buf − out ≤ 16 ∧ 0 ≤ out+ u ≤ 4.
According to the algorithm in Figure 1, the control condition U(buf, out, u) strengthens to

−1≤u≤1 ∧ 1 ≤ buf − out ≤ 16 ∧ 0 ≤ out+ u ≤ 4
and the state invariant strengthens to

0 ≤ buf ∧ 0 ≤ out ∧ 1 ≤ out− buf ≤ 16.
Next, our prototype simplifies the control condition with respect to the strengthened state invariant,
and the control condition becomes

−1≤u≤1 ∧ 0 ≤ out+ u ≤ 4.
Since the control condition for the sole transition has changed, the iteration continues. For this
problem convergence happens after four iterations and generates the following refined model, in
which the required properties are enforced by-construction and so they are theorems of the model
(as can be checked by a model checker).

Specification FC1
Node: m0

vars: buf, out : Integer = 0
invariant: 0≤out≤4 ∧ 0≤buf−out≤16 ∧ −3≤buf−3 ∗ out≤11 ∧ −6≤buf−4 ∗ out≤10

Arc: a = ⟨m0,m0⟩
action: Update(u, e) ≜ −1≤u≤1 ∧ 0≤out+ u≤4 ∧ −6≤buf − 4 ∗ u− 5 ∗ out≤6

∧ − 1≤buf − 2 ∗ u− 3 ∗ out≤9
∧ 0≤e≤4 ∧ buf ′ = buf + e− out ∧ out′ = out+ u

Theorems
buf = 0
out = 0
 0≤buf ∧ buf≤20 ∧ 0≤out ∧ out≤4

End Specification

10



The strengthened state invariant on node m0 is also the derived initial condition and specifies the
set the initial states from which we have assurance that the system will keep within the required
bounds regardless of environment inputs.

The refined transition now defines a somewhat complex polyhedron around the control values. If
there are no more required properties to enforce, then the next step will be to synthesize a control
function that selects a specific control value u in each given state. This is also known as extracting
a winning strategy for the system game modulo the derived initial conditions.

The version of this problem in which the variables are Reals or Rationals, with an infinite state
space, is also solved in a small number of iterations in a few seconds, with a different invariant
polytope and derived initial condition defining the safe operating space.

4 Synthesis of Control Functions

In the Flow Control example, model refinement generates a specification for the control constraint
Ua(st, u) at each arc a, for state st and control variable u. In words, if the system is in state st (s.t.
L(st)), and the system chooses control value u such that Ua(st, u), then the arc a is enabled with
assurance that taking the transition results in a safe state.

In the Flow Control example, we have the control constraint

Control(⟨buf, out⟩, u) ≜ −1≤u≤1 ∧ 0≤out+ u≤4
∧ −6≤buf−4∗u−5∗out≤6 ∧ −1≤buf−2∗u−3∗out≤9

The control constraint specifies the control function, which has the generic form

controlFun(st | L(st)) = {u | Ua(st, u)}.

with input condition L(st) and input/output condition Ua(st, u). Implicitly this is formula 1 from
Section 1:

∀st. L(st) =⇒ ∃u. U(st, u).

Algorithm or function synthesis is appropriate for this specification, since the behaviors are specified
by a simple input-output relation.

In the Flow Control case, since there are only three possible control values, the synthesis of a
case switch function seems appropriate. Our prototype has two variant algorithm synthesis tactics,
described next. In outline, given that {u | U(st, u)} is a finite set {u0, u1, ...un−1}, the tactic
generates the nondeterministic code

controlFun(st | L(st)) =
if Ua(st, u0) → u0
[] Ua(st, u1) → u1
[] · · ·
[] Ua(st, un−1) → un−1

fi

For Flow Control problem, we obtain
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controlFun(st | L(st)) =
if 4∗out−buf>−5 ∧ 2∗out−buf>−12 ∧ out≥1 ∧ 5∗out−buf>−3 → −1
[] 2∗out−buf>−13 ∧ buf−4∗out>−4 ∧ buf−2∗out>−1 ∧

4∗out−buf>−8 ∧ 5∗out−buf +>−7 ∧ buf−5∗out>−7 → 0
[] buf−4∗out>−1 ∧ buf−2∗out>0 ∧ buf−5∗out>−3 ∧ out ≤ 3 → 1
fi

which can be determinized/simplified by ordering the cases and using context to simplify tests:

controlFun(st | L(st)) =
if 4∗out−buf > −5 ∧ 2∗out−buf > −12
∧ out≥1 ∧ 5∗out−buf > −3 then −1

else if buf−2∗out>0 ∧ out≤3 then 0
else 1

The second strategy uses an EF-SMT-solver such as Yices [16]. It uses the SMT solver to find a
solution to the EF problem:

∃u. ∀st, e. L(st) ∧ e ∈ E(st) ∧ α(st, e, u).

This tactic does not find a solution for the Flow Control problem.

5 Property Normalization

The model refinement process defined above enforces basic safety properties. In this section we
study two extensions of the property language and how to reduce them to basic safety properties. In
Section 5.1 we present a family of refinement-generating transformations that eliminate occurrences
of time-bounded operators. In Section 7 we present a refinement-generating transformation that
reduces path properties (expressed over a path of arcs in the model) to basic safety properties.

5.1 Properties Expressed Using Time-Bounded Temporal Operators

Time constraints play an essential role in many control programs. We add time to LCFG models
by assuming a global variable start that records the start time of each state in a trace. Time is
assumed to strictly increase without bound along the states of a trace. We leave the action of
updating start implicit.

For a state or action predicate φ, consider the following time-bounded operators:

1. k φ means that φ was true in some state no more than k time units in the past:
σ, i ⊨k φ iff there exists j < i such that σ[i](start) ≤ σ[j](start) + k and σ, j ⊨ φ.

2. k φ means that φ will be true in some state no more than k time units in the future:
σ, i ⊨k φ iff there exists j > i such that σ[j](start) ≤ σ[i](start) + k and σ, j ⊨ φ.

3. k φ means that φ holds in each state for the next k time units:
σ, i ⊨ kφ iff for each j > i such that σ[j](start) ≤ σ[i](start) + k we have σ, j ⊨ φ.

4. k φ means that φ held in each state over the previous k time units:
σ, i ⊨ kφ iff for each j < i such that σ[i](start) ≤ σ[j](start) + k we have σ, j ⊨ φ.
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We extend the definition of basic safety property as follows: state/action predicates may include
predicates of the form k φ and k φ where φ is a state/action predicate.

Transformations to reduce positive occurrences ofk,k,k, andk are presented next. Negative
occurrences of k and k can be treated by applying the equivalences k φ ≡ ¬k¬φ and
k φ ≡ ¬k¬φ, resulting in positive occurrences of k and k. Negative occurrences of k and
k can be treated by applying the equivalences k φ ≡ ¬k¬φ and k φ ≡ ¬k¬φ, resulting
in positive occurrences of k and k.

The transformations defined in the next subsections introduce fresh variables to the model and
required properties that specify how they evolve. We specify them as protected to ensure that they
evolve without interference under subsequent refinements. When a variable v is protected, there is
a final step to the model refinement transformation that adds the frame or invariance condition
unchanged(v) (defined by v′ = v) to all actions that do not mention v′.

4.1.1 Eliminating the Time-Bounded Past Operator k

Transformation 1. Given a specification S = ⟨M,Φ⟩, transform S as follows: for each positive
occurrence of a subformula of the form kψ in Φ:

1.1 add a fresh protected variable lastpsi : Time to V (m) for each m ∈ N , which records the latest
time at which ψ held, and add to Φ the new goal formulas

1.1.1 lastpsi = −∞
1.1.2  ψ =⇒ lastpsi′ = start

1.2 replace the occurrence of k ψ with start ≤ lastpsi+ k.

Return the modified specification S ′ = ⟨M ′, Φ′⟩.

Theorem 2. If S ′ is the result of applying Transformation 1 to specification S, then S ⊑ S ′.

Proof: Since the transformation adds no new nodes or arcs, a simulation map ξ will be the obvious
bijection between the old and new nodes and arcs. To apply Theorem 1, it remains to show that
Φ′ =⇒ Φ. Let σ ∈ JM′K ∩ JΦ′K and consider the state σ[i] for some i ≥ 0. If σ[i](lastpsi) = −∞
then there has been no prior state that satisfies ψ, so both (σ, i) ⊨ start ≤ lastpsi + k and
(σ, i) ⊨ k ψ are false. Otherwise, let j < i be the largest index such that (σ, j) ⊨ ψ, then
σ[j + 1](lastpsi) = σ[j](start) by the action of property (1.1.2). So we have

σ, i ⊨ start ≤ lastpsi+ k
≡ σ[i](start) ≤ σ[i](lastpsi) + k definition

≡ σ[i](start) ≤ σ[j + 1](lastpsi) + k lastpsi is protected and

ψ doesn’t hold between indices j + 1 and i

≡ σ[i](start) ≤ σ[j](start) + k by assumption and the action of (1.1.2)

≡ σ, i ⊨k ψ. definition

From this inference, we conclude generally that in the context of any trace of JM′K ∩ JΦ′K that
the state predicate start ≤ lastpsi + k holds exactly when the property k ψ holds; i.e. start ≤
lastpsi+ k ≡ k ψ. Since we have formed Φ′ by modifying positive occurrences of subformulas of
the form kψ, Φ is monotone in those locations, and so we infer Φ′ =⇒ Φ.
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4.1.2 Eliminating the Time-Bounded Future Operator k

In the following transformation, we assume a variable psiDeadlines : Set(Time) that represents a
set of deadlines and has the operation min(psiDeadlines) which returns the least element of the
set, if one exists, otherwise ∞.4

Transformation 2. Given a specification S = ⟨M, Φ⟩, transform S as follows: for each positive
occurrence of a subformula of the form kψ in Φ:

2.1 add fresh protected variable psiDeadlines : Set(Time) to each V (m) for node m ∈ N , and add
to Φ the new goal formulas:
2.1.1 psiDeadlines = {}
2.1.2  ψ =⇒ psiDeadlines′ = {}
2.1.3  start ≤ min(psiDeadlines)

2.2 replace the occurrence of k ψ in Φ with
psiDeadlines′ = psiDeadlines ∪ {start+ k}.

Return the modified specification S ′ = ⟨M ′, Φ′⟩.

Theorem 3. If S ′ is the result of applying Transformation 2 to specification S, then S ⊑ S ′.

Proof: Since the transformation adds no new nodes or arcs, a simulation map ξ will be the
obvious bijection between the old and new nodes and arcs. To apply Theorem 1, it remains
to show that Φ′ =⇒ Φ. Let σ ∈ JM′K ∩ JΦ′K and consider arbitrary index p ≥ 0 such that
σ[p + 1](psiDeadlines)\σ[p](psiDeadlines) = {d} for deadline d. State σ[p + 1] must have been
produced by an action that implies psiDeadlines′ = insert(d, psiDeadlines) arising from the re-
placement of a subformula kψ where d = σ[p](start) + k. We now show that σ, p ⊨ k ψ. Let
r > p + 1 be the least index such that σ[r](start) > d. If d ∈ σ[r](psiDeadlines) then we have
σ, r ⊨ start > d ≥ min(psiDeadlines) which contradicts the state invariant (2.1.3). Consequently,
d /∈ σ[r](psiDeadlines). Therefore d was removed from psiDeadlines at some point q ∈ [p+2, r−1].
But since psiDeadlines is protected, only the action 2.1.2 can change psiDeadlines, specifically
setting it to empty. Again by 2.1.2 this means that ψ held at q − 1, i.e. σ, q − 1 ⊨ ψ. Since
σ[q](start) ≤ d < σ[r](start) by choice of r, we have (σ, p) ⊨ k ψ. This shows that whenever
the action psiT imer′ = psiDeadlines ∪ {start+ k} takes place in an arbitrary trace, then we also
have the property kψ; i.e. psiT imer

′=psiDeadlines∪{start+ k} =⇒ kψ. Since we have only
replaced positive occurrences of subformulas of the form kψ, Φ is monotone in those locations,
and so we infer Φ′ =⇒ Φ.

4.1.3 Eliminating the k Operator

Transformation 3. Given a specification S = ⟨M,Φ⟩, transform S as follows: for each positive
occurrence of a subformula of the form kψ in Φ:

3.1 add a fresh protected variable lastnotpsi : Time to V (m) for each m ∈ N , which records the
latest time at which ¬ψ held, and add to Φ the new goal formulas

4 While for this specific operator k, we could replace the set with just a nextDeadline variable, generally a future
time requirement will be supported by a priority queue of currently undischarged tasks or obligations, and some
kind of scheduler to manage the queue.
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3.1.1 lastnotpsi = −∞
3.1.2  ¬ψ =⇒ lastnotpsi′ = start

3.2 replace the occurrence of k ψ with start > lastnotpsi+ k.

Return the modified specification S ′ = ⟨M ′, Φ′⟩.

Theorem 4. If S ′ is the result of applying Transformation 3 to specification S, then S ⊑ S ′.

Proof: Since the transformation adds no new nodes or arcs, a simulation map ξ will be the obvious
bijection between the old and new nodes and arcs. To apply Theorem 1, it remains to show that
Φ′ =⇒ Φ.

Let σ ∈ JM′K∩ JΦ′K and consider the state σ[i] for some i ≥ 0. If σ[i](lastnotpsi) = −∞ then there
has been no prior state that satisfies ¬ψ, so both (σ, i) ⊨ start > lastnotpsi+ k and (σ, i) ⊨ k ψ
are true. Otherwise, let j < i be the largest index such that (σ, j) ⊨ ¬ψ, then σ[j+1](lastnotpsi) =
σ[j](start) by the action of property (3.1.2). So we have

σ, i ⊨ start > lastnotpsi+ k
≡ σ[i](start) > σ[i](lastnotpsi) + k definition

≡ σ[i](start) > σ[j + 1](lastnotpsi) + k lastnotpsi is protected and

¬ψ doesn’t hold between indices j + 1 and i

≡ σ[i](start) > σ[j](start) + k by assumption and the action of (3.1.2)

≡ σ, i ⊨ ¬k ¬ψ definition

≡ σ, i ⊨ k ψ. definition

From this inference, we conclude generally that in the context of any trace of JM′K∩ JΦ′K that the
state predicate start > lastnotpsi+ k holds exactly when the property k ψ holds; i.e.

start > lastnotpsi+ k ≡ k ψ.
Since we have formed Φ′ by modifying positive occurrences of subformulas of the form kψ, Φ is
monotone in those locations, and so we infer Φ′ =⇒ Φ (or more strongly Φ′ ≡ Φ).

4.1.4 Eliminating the k Operator

In the following transformation, we assume a variable notpsiESTs : Set(Time) that represents
a set of Earliest Start Times, and has the operation max(notpsiESTs) which returns the largest
element of the set, if one exists, otherwise −∞.

Transformation 4. Given a specification S = ⟨M, Φ⟩, transform S as follows: for each positive
occurrence of a subformula of the form kψ in Φ:

4.1 add fresh protected variable notpsiESTs : Set(Time) to each V (m) for node m ∈ N , and add
to Φ the new goal formulas:
4.1.1 notpsiESTs = {}
4.1.2  ¬ψ =⇒ notpsiESTs′ = {}
4.1.3  start ≤ max(notpsiESTs) =⇒ ψ

4.2 replace the occurrence of k ψ in Φ with
notpsiESTs′ = notpsiESTs ∪ {start+ k}.
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Return the modified specification S ′ = ⟨M ′, Φ′⟩.

Theorem 5. If S ′ is the result of applying Transformation 4 to specification S, then S ⊑ S ′.

Proof: Since the transformation adds no new nodes or arcs, a simulation map ξ will be the
obvious bijection between the old and new nodes and arcs. To apply Theorem 1, it remains
to show that Φ′ =⇒ Φ. Let σ ∈ JM′K ∩ JΦ′K and consider arbitrary index p ≥ 0 such that
σ[p + 1](notpsiESTs)\σ[p](notpsiESTs) = {est} for earliest start time est. State σ[p + 1] must
have been produced by an action that implies notpsiESTs′ = notpsiESTs∪{est} arising from the
replacement of a subformula kψ where est = σ[p](start) + k. We now show that σ, p ⊨ k ψ. Let
r > p+1 be any index such that σ[r](start) ≤ est. If est ̸∈ σ[r](notpsiESTs), then est was removed
from notpsiESTs at some point q ∈ [p + 2, r − 1]. But since notpsiESTs is protected, only the
action 4.1.2 can change notpsiESTs, specifically setting it to empty. Again by 4.1.2 this means that
¬ψ held at q−1, so we have both σ, q−1 ⊨ ¬ψ and σ, q−1 ⊨ ψ and there can be no such state. So,
we have est ∈ σ[r](notpsiESTs) and σ[r](start) ≤ est ≤ max(notpsiESTs). By (4.1.3) σ, r ⊨ ψ,
hence σ, p ⊨ k ψ. This shows that whenever the action notpsiESTs′ = notpsiESTs∪ {start+ k}
takes place in an arbitrary trace, then we also have the property kψ; i.e.

notpsiESTs′=notpsiESTs ∪ {start+ k} =⇒ kψ.
Since we have only replaced positive occurrences of subformulas of the form kψ, Φ is monotone
in those locations, and so we infer Φ′ =⇒ Φ.

5.2 Example: Secure Enclave

Transformations 1 and 2 normalize a specification by refining it to another specification that only
requires basic safety properties. The following example illustrates a two-step process of property
refinement transformation followed by model refinement.

A secure enclave has a door whose latch is controlled by a card reader. A user can Insert or Remove
a token from the reader. The system controls the latch and can perform Lock or Unlock actions.
When unlocked, the Door can be opened. Suppose that we have the following specification for a
secure enclave.

Specification SecureEnclave0
Node: m0

vars: token, lock : Boolean
k : Time

invariant: true
Arc: a = ⟨m0,m0⟩

actions: Insert ≜ ¬token ∧ token′
Remove ≜ token ∧ ¬token′
Lock ≜ lock′

Unlock ≜ ¬lock′
Required Properties
Insert =⇒ kUnlock
Unlock =⇒ kInsert

End Specification
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where the required properties specify that (1) whenever an Insert action occurs then there will be
Unlock action no more than k time units in the future, and (2) whenever an Unlock action occurs
then there was an Insert event no longer than k time units in the past.

Applying the property refinement transformations from the previous section, we generate a speci-
fication refinement SecureEnclave0 ⊑ SecureEnclave1 where SecureEnclave1 has no occurrence
of time-bounded temporal operators in its required properties.

Specification SecureEnclave1
Node: m0

vars: token, lock : Boolean
k : Time

protected vars: unlockDeadlines : Set(Time)
lastInsert : Time

invariant: true
Arc: a = ⟨m0,m0⟩

actions: Insert ≜ ¬token ∧ token′
Remove ≜ token ∧ ¬token′
Lock ≜ lock′

Unlock ≜ ¬lock′
Required Properties

lastInsert = −∞
unlockDeadlines = {}
Insert =⇒ lastInsert′ = start
Unlock =⇒ start− k ≤ lastInsert
Unlock =⇒ unlockDeadlines′ = {}
start ≤ min(unlockDeadlines)
Insert =⇒ unlockDeadlines′ = unlockDeadlines ∪ {start+ k}

Theorems
Insert =⇒ kUnlock
Unlock =⇒ kInsert

End Specification

The initial required properties are theorems in this refined model (as consequences of Theorems 2
and 3). Applying the model refinement procedure from Section 3, we generate a refined model that
satisfies the initial goals by-construction and has no unrealized required properties.

Specification SecureEnclave2
Node: m0

vars:
token : Boolean = false
lock : Boolean = true
k : Time

protected vars: unlockDeadlines : Set(Time) = {}
lastInsert : Time = −∞

invariant: start ≤ min(unlockDeadlines)
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Arc: a = ⟨m0,m0⟩
actions:

Insert ≜ ¬token ∧ token′ ∧ lastInsert′ = start
∧ unlockDeadlines′ = unlockDeadlines ∪ {start+ k}

Remove ≜ token ∧ ¬token′ ∧ unchanged(lastInsert) ∧ unchanged(unlockDeadlines)
Lock ≜ lock′ ∧ unchanged(lastInsert) ∧ unchanged(unlockDeadlines)
Unlock ≜ start− k ≤ lastInsert ∧ ¬lock′ ∧ unlockDeadlines′ = {}

∧ unchanged(lastInsert)
Required Properties
Theorems
Insert =⇒ kUnlock
Unlock =⇒ kInsert

End Specification

The refined state invariant implies that when unlockDeadlines is nonempty, then the system must
execute the Unlock transition before the earliest deadline min(unlockDeadlines). The initial re-
quired properties hold by-construction in this refined model and can be verified by a model-checking
algorithm.

5.3 Other Examples

In [5], the Cinderella game is introduced and solved using sketches as hints to the solver. The game
is parametric on a real value c used to define the Stepmother’s (antagonist’s) task. It is conjectured
that automatic solutions (i.e. without human-provided hints) are “unrealistic” for values of c in a
certain range. Our model refinement prototype automatically generates winning strategies in that
range using roughly a minute of CPU time.

6 Refinement-Generating Transformations

The previous sections present some refinement-generating transformations for the purpose of re-
ducing syntactic sugar to basic safety properties. Here, we briefly note a few other transformations
that are commonly used to improvement the performance of a system or algorithm design.

The finite differencing transformation (aka incrementalization) [31, 28, 39], can be expressed as a
transformation that introduces a safety property to enforce by model refinement. The key idea is
to introduce a protected fresh variable, say c, and an invariant safety property c = e(st), where
e is some function of state st. The references develop this transformation on both imperative and
functional models.

Example: Transformations 1 and 2 above provide implicit examples of finite differencing. Transfor-
mation 1 introduces the fresh protected variable lastpsi together with the safety property Ψ =⇒
lastpsi′ = start (or equivalently lastpsi′ = ifΨthenstartelselastpsi). The model refinement pro-
cess then effectively refines the actions of the model to incrementally compute lastpsi.
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7 Path Properties

Some required properties are naturally expressed over the endpoints of a path in the model, rather
than state and action invariants. They express required properties that hold between values that
are not near in time or space (as between the prestate and poststate of an action). We express path
properties as predicates over the variables of states and constants, as with state properties, except
that when necessary we prefix the variable with the node at which the value is referenced. If a
variable is only accessible at one node (i.e. it is local), the prefix can be omitted.

We define next some normalization rules that can be used to reduce path properties to action
properties. The normalization rules work by propagating the path property through the structure
of the path, resulting in the strengthening of the labels on particular arcs. The resulting refined
path implies the path property by-construction. At that point, the constraint system of Section 3
can be defined and solved.

Path properties may arise by the imposition of model substructure, where an arc is replaced by an
arc-like LCFG (i.e. a submodel). This may happen when an action specifies a complex state change
that requires, say, an iterative or recursive computation to complete. We call this process structure
refinement. Suppose that we have a required property φm,p(stm, stp) that relates the state at node
m to the state at node p, where there exists a path from m to p in the modelM. Our strategy is
to propagate φ through the structure ofM until we have inferred properties that can be localized
to the nodes and arcs ofM. For purposes of reasoning about path properties we proceed as if we
have path labels inM for all pairs of nodes; e.g. Lm,p is treated as the label expressing properties
of the paths from node m to node p.

There are two propagation rules that reduce the scope of a path property, with the goal of reducing
the property to localized refinements on actions in the path: either propagate forward from node
m toward p, or propagate backward from node p toward m. Rules for both are defined next. Each
rule reduces the span of a path predicate by one, so we iterate their application until we generate
a path predicate than spans a single arc, whereupon we can enforce it locally.

Forward Propagation: Let S = ⟨M, Φ⟩ be a specification and let φm,p ∈ Φ be a path property
from node m to the state at node p. We can refine S to reduce a path property as follows: (1) Delete
φm,p from Φ, and (2) for each arc a = ⟨m,n⟩ ∈ Arc, add the path formula wcPostSpec(La, φm,p) to
Φ where wcPostSpec(La, θ) is the Weakest Controllable PostSpecification of action La with respect
to path formula θ over V (m) ∪ V (p) and is defined by

wcPostSpec(La, θ) ≡ ∀stm, u, e, stn.Lm(stm)∧U(stm, u)∧e ∈ E(stm)∧stn = fa(stm, u, e) =⇒ θ.

wcPostSpec is the weakest path formula over V (n) ∪ V (p) such that for any transition instance
of a from some state stm to state stn, there is some stp such that θ(stm, stp). We repeat Forward
Propagation until all path properties have been reduced to actions (and thus can be enforced by
model refinement).

Backward Propagation: Let S = ⟨M, Φ⟩ be a system specification and let φm,p ∈ Φ be a path
formula from nodem to the state at node p. We can refine S to reduce the path property occurrences
as follows: (1) Delete φm,p from Φ, and (2) for each arc a = ⟨n, p⟩ ∈ Arc where there exists a
path from m to n, add the path formula wcPreSpec(La, φm,p) to Φ where wcPreSpec(La, θ) is the
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Weakest Controllable PreSpecification of action La with respect to path formula θ over V (m)∪V (p)
and is defined by

wcPreSpec(La, θ) ≡ ∀u, e, stp. Ln(stn) ∧ U(stn, u) ∧ e ∈ E(stn) ∧ stp = fa(stn, u, e) =⇒ θ.

wcPreSpec is the weakest path formula over V (m) ∪ V (n) such that for any transition instance of
a from some state stn to state stp, there is some stm such that θ(stm, stp). We repeat Backward
Propagation until all path properties have been reduced to actions (and thus can be enforced by
model refinement).

Both of these propagation rules work by propagating the path property φ through the transition
a, whether forward or backwards. To get useful results, there must be some structure in La. These
rules are often applied after one has chosen a candidate function/operation for transition a and
then desires to play out the consequences. This process is analogous to SAT algorithms in which
one chooses a variable and a value heuristically and then explores the consequences via boolean
propagation and conflict-driven learning in the failure case. The choice of a simple operation that
is natural in context, as a structure refinement, enables the propagation to go through. This is a
choice and alternative choices lead to different designs, as illustrated in the next section.

7.1 Algorithm Design Example: Sorting

One feature of model refinement is that it subsumes a major part of the automated algorithm design
work performed in earlier function synthesis systems such as KIDS [39]. In retrospect, the success
of KIDS in algorithm design is partly due to its automated inference system which was designed
to propagate output conditions through the structure of a chosen program scheme. To illustrate,
consider the design of a sorting algorithm using a binary divide-and-conquer program scheme as a
model. In a functional notation, the model can be expressed as

F (x : D) : (z : R) = if primitive(x) then direct(x) else compose ◦ (F × F ) ◦ decompose(x)

and the required property is bag(x) = bag(z) ∧ ordered(z), where x and z are lists of numbers,
bag(x) returns the bag or multiset of elements in list x, and ordered(z) holds when list z is in
sorted order. The property is simply an input/output predicate since the only observable behavior
of an algorithm is its (uncontrollable) input and (controllable) output value. In a functional setting,
there are no global variables and hence no global state. The input to each functional component is
the environment input and the control value is the output of the action.

There are several common tactics for designing divide-and-conquer algorithms. One is to select
a simple decompose operation on the input type, and then to calculate a compose operator that
achieves the correct output. A dual tactic is to select a simple compose operation on the output
type, and then calculate a decompose operator that achieves a decomposition of the input into
parts that can be solved and composed to yield a correct solution.

We might represent the key recursive part of the scheme as a dataflow path:

⟨x0⟩
decompose(x0,x1,x2)// ⟨x1, x2⟩

F (x1,z1)×F (x2,z2) // ⟨z1, z2⟩
compose(z0,z1,z2) // ⟨z0⟩
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where a node represents a state by the variables that exist in it (and their properties), and each arc
specifies an action by a predicate over input and output variables. This particular model derives
from a functional program, so the abstract “states” actually do not represent stored values, but the
value flow at intermediate points in a computation. For simplicity and clarity, we use this graphical
representation rather than perform the straightforward translation to the TLA-like notation used
in previous examples.

In terms of the dataflow path, the goal constraint is a predicate over x0 and z0: φ(x0, z0) ≡
bag(x0) = bag(z0)∧ ordered(z0). Suppose that we follow the second tactic and refine the model by
choosing list concatenation as our compose operator: compose 7→ z0 = z1++z2. The ultimate effect
of this choice is to derive a variant of a quicksort algorithm. Note that in this case the environment
input is the pair ⟨z1, z2⟩ and the control value is the output z0. The Backward Propagation Rule
applies here since the goal property is not expressed over the input and output variables of compose,
so we calculate:

wcPreSpec(compose, φ(x0, z0))
≡ ∀z0. z0 = z1++z2 =⇒ bag(x0) = bag(z0) ∧ ordered(z0)
≡ bag(x0) = bag(z1++z2) ∧ ordered(z1++z2) Quantifier Elimination on z0

≡ bag(x0) = bag(z1) ∪ bag(z2) ∧ ordered(z1) ∧ ordered(z2) ∧ bag(z1) ≤ bag(z2). Simplification

where we have used domain-specific laws for distributing bag and ordered over list concatenation,
and b1 ≤ b2 holds when each element of bag b1 is less than or equal to each element of bag b2. As this
remains a path predicate φ(x0, z1, z2) (i.e. not localizable to an arc), we continue by propagating
this derived goal backward through the recursive calls:

wcPreSpec(F × F,φ(x0, z1, z2))
≡ ∀z1, z2. bag(x1) = bag(z1) ∧ ordered(z1) ∧ bag(x2) = bag(z2) ∧ ordered(z2)

=⇒ bag(x0) = bag(z1) ∪ bag(z2) ∧ ordered(z1) ∧ ordered(z1) ∧ bag(z1) ≤ bag(z2)
≡ bag(x0) = bag(x1) ∪ bag(x2) ∧ bag(x1) ≤ bag(x2). Simplification and Quantifier Elimination

This last predicate is expressed over the input/output variables of the decompose operator, so it
can be localized and enforced by strengthening the decompose action to

bag(x0) = bag(x1) ∪ bag(x2) ∧ bag(x1) ≤ bag(x2).
Note that this is a specification for (a version of) the well-known partition subalgorithm of Quick-
sort. It asserts that if we decompose the input list x0 into two lists x1 and x2 whose collective
elements are the same as the elements in x0, and such that each element of x1 is less-than-or-equal-
to each element of x2, then when we recursively sort x1 and x2, and then concatenate them, the
result will be a sorted version of x0. If we had included a well-founded order in the decompose
operator, we would infer a derived initial condition of length(x0) > 1 on decompose. This serves as
a guard on the recursive path in the algorithm.

In summary, we have used propagation rules to infer a specification on the decompose action that, if
realized by further refinement, is sufficient to establish the correctness of the whole algorithm. The
complete derivation of Quicksort, including the use of divide-and-conquer to synthesize the partition
operation, may be found in [38], which also derives several other sorting algorithms. Derivation of
several parallel sorting algorithms via divide-and-conquer may be found in [41].
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8 Refining Concurrent Models

LGCFs naturally model sequential systems that interact with an external environment. In [30]
we explore model refinement on statechart models, which admit concurrent subprocesses. Several
interesting results come from this work. Assume for simplicity that a system S has subprocesses A
and B. Process A does not know what actions B will take, and so to provide guarantees of enforcing
the global safety property Φ, process A must treat the actions of B as environment actions. That
is, the constraints that model actions of A must universally quantify over possible actions of B,
and conversely. It is easy to construct examples in which this local lack of knowledge on the part of
A and B leads to the model refinement fixpoint iteration eliminating some feasible joint behaviors.
Generally, given a concurrent system model, the greatest fixpoint of the corresponding constraint
system represents only a subset of feasible joint behaviors. The main way around this problem is
effectively to add a scheduler to the system model. The corresponding constraint system then has
a greatest fixpoint that represents all feasible joint behaviors.

9 Related Work

Our previous work on functional algorithm design used algorithm theories as over-approximating
models for various classes of algorithms. Algorithm theories and design tactics [44] were imple-
mented in KIDS [39] and Specware [25]. These synthesis systems used a form of model refinement
to instantiate algorithm models for divide-and-conquer [38], global search, dynamic programming
[40], and other classes. Synthesized applications include schedulers [8, 45], SAT-solvers [47], and
garbage collectors [46].

Sketching [48] is a currently popular program synthesis approach that can be seen as a special case
of model refinement. The model is supplied in the form of a program template with holes for missing
code. In the case of SyGuS [2], a grammar is given as an over-approximation to the missing code.
The property to be enforced may be expressed using the language of an SMT-solver, so that guesses
as to how to fill the hole can be verified. While the problem setup is similar to model refinement, the
synthesis process is based on generate-and-test rather than predicate transformer-based calculation.

Model refinement is most obviously derived from the extensive literature on controller synthesis [34,
18] and reactive system design [33]. Most current work on the synthesis of reactive systems focuses
on circuit design and starts with specifications in propositional Linear Temporal Logic (LTL) or
GR(1) [6, 24]. Model Refinement allows specifications that are first-order and uses a temporal logic
of action that is amenable to refinement, which LTL is not, allowing a broader range of applications
to be tackled.

The algorithm derivation in Section 7 highlights a novel aspect of model refinement: the imposition
of a design template rather than a plant or game model as it typical in reactive system design.
Design templates in the systems world are often discussed as Design Patterns. The refinement
mechanism is structure refinement (see Section 2.3) which refines a model arc by an arc-like LCFG,
in effect, replacing the arc with a design pattern. The arc specification becomes a path property
and the normalization rules in Section 7 are used to localize the property by strengthening arc
labels along the path. It is typical of algorithm derivation that structure refinements are needed to
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implement arc labels resulting in the top-down synthesis of subalgorithms. Algorithms often have
a deeper hierarchy of subcomputations than system control codes.

The model refinement constraints are a kind of Constrained Horn Clause (CHC) and specialized
algorithms have been explored for these as a generalization of SMT solving [17, 20, 21]. The main
application is finding inductive invariants for program verification. Our approach aims to find a
maximal solution whereas CHC tools typically aim to find any solution, since any inductive invariant
is sufficient to establish the specified verification condition.

10 Discussion

The concept of model refinement only requires a semilattice of models and a language for expressing
required properties. For concreteness, we have presented a Boolean lattice of models defined by
labeled control flow graphs with first-order constraints and required properties in the form of basic
safety properties. While this provides a fairly general and mechanizable framework for user-guided,
yet highly automated design, it also admits the possibility of high computational complexity or
undecidability due to the expressiveness of the first-order formulas. By suitably restricting the
domain of discourse to decidable theories, we can define a more tractable and automatic design
process. Our prototype implementation restricts constraints to the decidable theories in Z3, which
is sufficient for a range of applications including the examples presented above. Extension to handle
liveness properties (φ) and reactivity properties (φ) can also be handled as definite constraint
systems whose fixpoints can be found by Kleene iteration combined with widening. However, for
practical purposes, reactive systems typically want guarantees of bounded-time responsiveness,
which is a safety property as seen in Section 5.

Model Refinement is intended to be part of a library of refinement-generating transformations that
are used to develop complex algorithms and systems. In our view, a practical synthesis environment
generates a refinement chain from an initial specification down to compilable code. Each step of
the refinement chain is generated by a transformation that is also capable of emitting proofs of
the refinement relation between the pre- and post-specification [42]. Model Refinement would tend
to be used earlier in the refinement chain since it translates logical requirements into operational
designs, by enforcing properties in the model. Other refinement-generating transformations are
necessary to improve the performance of the evolving model including expression simplification,
finite-differencing or incrementalization, and datatype refinements [28, 39].

Treating a specification as a model plus required properties is a key aspect of model refinement.
Models are essentially programs annotated with invariant properties. While temporal logics can
be translated into automata (and vice-versa), for complex designs, the models can be much more
compact than logic, especially when the nodes have rich properties and the control structure is
complex. Initially, models serve to succinctly capture fixed behavioral structure in the problem
domain, such as physical plant dynamics and information system APIs. During refinement, the
model serves as the accumulation of the design decisions made so far. Another intended use of
models is via the imposition of design patterns for algorithms and systems. Patterns from a library
capture best-practice designs that might be difficult to find by search; e.g. when there is a delicate
tradeoff between “ilities”, such as between precision of output and runtime.
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Appendix: Secure Enclave Example in TLA+

The specification SecureEnclave1 in Section 5.2 can be translated into TLA+ as follows. It runs
successfully through the TLA model-checker.

----------------------------- MODULE SecureEnclave1 -----------------------------

EXTENDS Naturals, Integers, Sequences, FiniteSets, TLC

CONSTANTS

MAX_TIME, K

(*TYPES*)

Time == -MAX_TIME .. (MAX_TIME+1)

VARIABLES

clock, (* what is the current time? *)

locked, (* is the door locked? *)

token, (* is there a token in the reader? *)

lastInsertT, (* last time that a card was inserted in reader *)

unlockDeadlines, (* set of deadlines for when to unlock *)

lastUnlockT (* need to express the Eventually property below *)

vars == <<clock, locked, token, lastInsertT, unlockDeadlines, lastUnlockT>>

varsXclock == << locked, token, lastInsertT, unlockDeadlines, lastUnlockT>>

TypeCheck ==

/\ locked \in BOOLEAN

/\ token \in BOOLEAN

/\ clock \in Nat

/\ lastInsertT \in Time

/\ lastUnlockT \in Time

/\ \A x \in unlockDeadlines: x \in Nat \*everything in TLA is a set

\* MAX_TIME+1 so CheckTimeConstraint’ below doesn’t block when clock reaches MAX_TIME

min(xs) == IF xs={} THEN MAX_TIME+1 ELSE CHOOSE x \in xs : (\A y \in xs: x <= y)

(* --- SYSTEM ACTIONS --- *)

(* 1. Unlock the Latch *)

Unlock ==

clock <= lastInsertT + K

/\ locked’=FALSE /\ unlockDeadlines’ = {} /\ lastUnlockT’ = clock /\

UNCHANGED <<token, lastInsertT>>

(* 2. Lock the Latch *)

Lock ==
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locked’=TRUE /\ UNCHANGED <<token, lastInsertT, unlockDeadlines, lastUnlockT>>

(* --- ENV ACTIONS --- *)

(* 3. Insert the Token *)

Insert ==

~token

/\ token’=TRUE /\

lastInsertT’=clock /\ unlockDeadlines’ = unlockDeadlines \union {clock+K} /\

UNCHANGED <<locked, lastUnlockT>>

(* 4. Remove the Token *)

Remove ==

token

/\ token’=FALSE /\ UNCHANGED <<locked, lastInsertT, unlockDeadlines, lastUnlockT>>

(* --------- the specification of behavior ----------------- *)

Init ==

/\ locked = TRUE

/\ token = FALSE

/\ clock = 0

/\ lastInsertT = -MAX_TIME (* end of time *)

/\ lastUnlockT = MAX_TIME

/\ unlockDeadlines = {}

/\ TypeCheck

EnvActs ==

\/ Insert

\/ Remove

SysActs ==

\/ Unlock

\/ Lock

DoNothing == UNCHANGED varsXclock

(* state invariant *)

CheckTimeConstraint == clock <= min(unlockDeadlines)

(* CheckTimeConstraint’ performs a "lookahead" to ensure we don’t transition to a

state that doesn’t satisfy the invariant *)

SysOrEnvOrSkip == (EnvActs \/ SysActs \/ DoNothing) /\ CheckTimeConstraint’

ClockTick == clock’ = clock+1

Next == ClockTick /\ SysOrEnvOrSkip /\ CheckTimeConstraint
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Spec == Init /\ [][Next]_vars

(* any Unlock action must be preceded by a card Insert within k time units

UnlockPre == Unlock => (<_>_K Insert)

after prop transform this become *)

InsertBeforeUnlock == [][Unlock => (clock <= lastInsertT + K)]_vars

UnlockHappened == lastUnlockT \in lastInsertT .. clock

InsertLeadsToUnlock ==

[][(lastInsertT # -MAX_TIME /\ lastInsertT < clock /\ ~UnlockHappened) =>

clock <= min(unlockDeadlines)]_vars

THEOREM Spec => []TypeCheck

THEOREM Spec => InsertBeforeUnlock

THEOREM Spec => InsertLeadsToUnlock

=============================================================================
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