
Cost-Based Learning for Planning

Srinivas Nedunuri and William R. Cook
Dept. of Computer Science, University of Texas at Austin

{nedunuri,wcook}@cs.utexas.edu

Douglas R. Smith
Kestrel Institute, Palo Alto

smith@kestrel.edu

Abstract

Most learning in planners to date has been focused on
speedup learning. Recently the focus has been more on learn-
ing to improve plan quality. We introduce a different dimen-
sion: learning not just from failed plans, but learning from
inefficient plans. We call thiscost-based learning(CAL).
CBL can be used to improve both plan quality and provide
speedup learning. We show how cost-based learning can also
be used to learn plan rewrite rules that can be used to rewrite
an inefficient plan to an efficient one, in the style of Planning
by Rewriting (PbR). We do this by making use of dominance
relations. Additionally, the learned rules are compact anddo
not rely on state information so they are fast to match.

1 Introduction
One way to produce good quality plans is to transform the
output of a fast but lower quality planner using plan rewrit-
ing (YFGG08; PMP+03; AKM05). Plan rewriting was
investigated quite extensively by Ambite et al. (AKM00;
AKM05). They demonstrated impressive improvements in
plan quality across a number of domains, even orders of
magnitude in one (Distributed Query Optimization). Plan
rewriting works by iteratively applying rewrite rules to an
existing plan. One drawback of Ambite et al.’s particular
approach is that some rules do nothing to improve plan qual-
ity, and can even lead to cycling (e.g. rules that do a simple
transposition of two actions), so they must be applied care-
fully. Another more significant drawback is the need for
a user to supply the rewrite rules, which is an error prone
and time consuming task. In this paper we show how such
rewrite rules can be automatically learned. Additionally,the
learned rules are guaranteed to improve plan quality. Al-
though Ambite et al. (AKM05) and others (eg. (NM10))
have looked at learning rewrite rules or plan improvement
rules, the learned rules are often dependent on context or
state in order to be applied, which makes them more expen-
sive to apply and can lead to the utility problem that plagued
early EBL approaches (Min90). Ambite et al.’s work is dis-
cussed further in the section on Related Work. The rewrite
rules we learn do not depend on state or context so they
are fast to match and apply. In order to do this we intro-
duce a novel form of learning calledcost-based learning
(CBL) applied to search. CBL works by learning not just
from planning failures (or successes) as conventional learn-

ing does but by learning from inefficient plans. We do this
by applyingdominance relationsto the planning problem.
A dominance relation is typically characterized by a pred-
icate over pairs of partial plans. If a pair of partial plans
p andp′ satisfy the predicate thenp′ is guaranteed to lead
to a worse solution thanp, and can therefore be discarded
from the search. We show how to learn suchdominance
pairs, and then show that under some fairly relaxed con-
ditions it is possible to remove the common prefix of both
partial plans, leaving a pair(q, q′) which can immediately
be turned into a plan-improving rewrite ruleq′ ⇒ q, useable
in anyplanning problem in the same domain. Using this ap-
proach we are able to automatically learn most of the (hand
written) rewrite rules of Ambite et al, as well as some addi-
tional ones that were missed by them. The dominance pairs
can also be used as they are learned to speed up the current
search. Unlike similar approaches using EBL (Min90), our
stored knowledge does not depend on current state, compli-
cating the matching. Our patterns are simple sequences of
operators that can be efficiently matched.

2 Background
2.1 Problem Specification
The starting point is a statement of the problem to be solved.
Formally, aproblem specificationis a 4-tuple〈D, R, o, c〉,
whereD is the domain of input values,R is the range of
result values,o : D × R → Boolean is anoutputor post
conditioncharacterizing the relationship between valid in-
puts and valid outputs, andc : D × R → Nat is a cost
functionthat is being optimized. The operatorso andc take
the input as an argument because they need information sup-
plied with the input. The intent is that a functionf : D → R
that solves the problem will take an inputx : D (a problem
instance) and return asolutionz : R that satisfieso (making
it a feasiblesolution) and minimizesc.
Example 1. Problem specification for sorting

D 7→ [Nat]

R 7→ [Nat]

o 7→ λ(x : D, z : R) . asBag(x) = asBag(z)

∧∀i < ‖z‖ − 1. zi ≤ zi+1

c 7→ λ(x : D, z : R) . 1

In Eg. 1 the domainD and the rangeR are instantiated to
be the type of lists of natural numbers. The symbol7→ is

D 7→ {ops : OpTbl, type : TypeTbl, init : State, goal : State}

TypeTbl = Id 7−→ Type

OpTbl = OpId 7−→ OpInfo

OpInfo = {params : [Id], pre : State, post : State}

State = [Id 7−→StateV al]

StateV al = Boolean | Nat | Id

R 7→ [Action]

Action = {opId : OpId, args : [Id]}

o 7→ λ(x, z) . σ(x.init, z) ⊇ x.goal

σ(s, p++[a]) = let acc = σ(s, p)

aPre = (x.ops(a.opId).pre)θa

in if acc ⊇ aPre then τ(acc, a) else∅
σ(s, []) = s

τ(s, a) = let aPost = (x.ops(a.opId).post)θa

in s ≪ aPost

θa = x.ops(a.opId).params 7−→ a.args

c 7→ λ(x, z) . ‖z‖

Figure 2.1: Specification for Planning

to be read as “translates to” and the “[,]” as “list of”. The
output conditiono is a predicate, written as a lambda expres-
sion, that requires that the two argumentsx of typeD andz
of typeR when viewed as bags contain the same elements,
and furthermore that every element ofz except the last be
smaller than its successor. This is not an optimization prob-
lem so the cost functionc is constant. Any algorithm for
sorting that meets this specification (such as quicksort, in-
sertion sort, etc.) is considered correct.

Specification of (Classical) Planning Fig. 2.1 gives a
problem specification for planning problems1. The reason
for this particular specification format is that the develop-
ment environment we use, called Specware (S), can check
the specification for errors and also provide a customizable
search program to implement the specification, as described
in Section 2.2. The explanation of it (including notation) is
as follows: The domain (type of the input to a planner) is
collection of operators, a types table, an initial state, and a
goal state, each of which has a type, analogous to a type in
language like Java. For this reason, it is written as a record
type{ops : Ops, type : TypeT bl, init : State, goal :
State}, wheref : t means fieldf has typet. TheTypeTbl
is another structured type, in this case afinite map(written
Id 7−→ Type) which returns the PDDL type of an id (e.g.
for Blocksworld,type(Block-1)would returnBlock). Simi-
larly, OpTbl is another finite map, in this case returning the
information (OpInfo) pertaining to a given operator id (such
as Stk or UnStk). OpInfo is a record type that gives the
parameter list and pre and post conditions for each operator.
Sinceparamsis a list of Id, its type is denoted[Id] . We use
the state variable representation (GNT04) in which state is
a list of state components (one for each property of interest),
each of which is a finite map. Each entry in the map cor-
responds to a state variable (e.g. ifon is a map thenon(A),
on(B), etc. are state variables). The output type (R) of the

1Translating from a standard format such as PDDL to this form
is straightforward.

Op.
Name

Params Precond Postcond

stk a, t, c

{clr?(a),
clr?(c)}
{on(a) = t}

{¬clr?(c)}
{on(a) = c}

ust a, b, t

{clr?(a),
¬clr?(b)}
{on(a) = b}

{clr?(b)}
{on(a) = t}

tr a, b, c

{clr?(a),
clr?(c)}
{on(a) = b}

{¬clr?(c)}
{clr(b)}
{on(a) = c}

Table 1: Specification of the operators in Blocks World

planner is a sequence of actions. Each action is specified
by an operator id and a list of arguments (meaning the cor-
responding operator is instantiated with those arguments).
The output condition,o, is a boolean function (aλ term) re-
quiring that the final state of the system (determined by the
state functionσ) is a superset of the goal state. The recursive
call in σ determines the state just before the final action (if
there is one) in a sequence of actions and checks that this
state contains the precondition of the final action (ie. the fi-
nal action is enabled) and if so, applies the state transition
function τ to determine the next state. The≪ operator in
τ updates the states with the postcondition of the action,
leaving alone any terms that are not changed by the action
postcondition (this ensures the frame axioms are satisfied).
Evaluation of bothσ andτ uses the substitutionθ binding
operation parameters to arguments. Finally, the cost of a
plan is simply the length of the plan (but could in general be
any compositional cost function). At this point, we have a
specification of Planningin general. A particular planning
domain is then aninstanceof this specification, as the next
example demonstrates.

Example 2. Blocks World (BW)
To create a planner to solve Blocks World, theops field

of the inputx contains the operator map shown in Table
1, containing three operators:stk, which stacks a block
from the table onto another block,ust, which unstacks a
block onto the table, andtr, which transfers a block from
one supporting block to another. State is represented with
the two finite maps,clr? : Id 7−→ Boolean and on :
Id 7−→ Id. An empty map means that particular state
component is unspecified. Thetypestable gives the types
of all the domain objects as well as the parameters to the
operations. For BW,a, b, c have the typeBlk, t has the
typeTbl Finally, we specify a particular BW instance. For
example, an initial state of three blocksA, B, C (all with
type Blk) all on the tableT (of type Tbl) is represented
by x.init = {{clr?(A), clr?(B), clr?(C)}, {on(A) =
T, on(B) = T, on(C) = T }} and a goal ofA onB onC is
written x.goal = {on(A) = B, on(B) = C, on(C) = T }.
Notice that the inputx combines both the BW domain de-
scription as well as a particular instance of the BW problem.
Another way of viewing it is as a two stage process: instan-
tiate theops field in the input to get a planning domain, and
then instantiate theinit andgoal to get a planning instance.

Algorithm 1 Program Schema for Global Search
def start(x:D):[R]×DomR = search(x,[],initSpace(x))

def search(x:D, best so far:[R], y:bR):[R]×DomR =

if not (filter(x,y) then (best so far,[])

else let dom pair=testForDominance(x,best so far,y) in

if dom pair /= null pair

then (best so far,[dom pair])

else let

soln = extract(y)

best now = opt(best so far ++ soln)

(childrens best,dom reln) =

searchCh x best now y (subspaces(x,y))

new best = opt(best now ++ childrens best)

in (new best,dom reln)

def subspaces(x:D,y:bR) = [y′: split(x,y,y’)]

def searchCh(x:D,best so far:[R],chldrn:[bR]):[R]×DomR =

//foldl is a higher order function that ‘‘updates’’

//the initial pair (best so far,[]) with result of

//searching each y∈ys using (seeIfTheresBettrSoln x)

foldl (seeIfTheresBettrSoln x)(best so far,[]) chldrn

def seeIfTheresBettrSoln:D -> (accum:(R×DomR)):R×DomR =

let (best so far,dom reln)= accum

(p’s best,p’s dom reln)= search(x,best so far,p)

in (opt(best so far++p’s best), dom reln++p’s dom reln)

One valid output or planz would be the list of actions
[stk(B, T, C), stk(A, T, B)]. It is straightforward to verify
that this constitutes a valid plan by confirming it satisfies
the definition ofo after expanding the function definitions.
The cost of this plan is2. Another valid plan, with a cost of
3, is [stk(B, T, A),tr(B, A, C),stk(A, T, B)]. The search
program for constructing these plans is described next.

2.2 Global Search
Global Search(GS) (Smi88) (also calledAbstract Search
or Refinement Search(GNT04)) provides one approach to
computing a solution to a problem specification by recur-
sive decomposition of asearch space, using the operations
of branching, pruning, and solution extraction. Since spaces
can be quite large, even infinite, they are not represented ex-
tensionally but intensionally, through a descriptor of some
sort. However to avoid being pedantic, the term space is
used instead of space descriptor.

A schema(akin to a template function in Java) for GS
is shown in Alg. 1, written in the executable subset of
MetaSlang, a specification language in theSpecwarede-
velopment environment (S). The executable sublanguage
is a pure higher order functional language in the style of
Haskell2. That is, all functions are defined in terms of other
functions, including recursive calls to the function beingde-
fined. There are no side-effecting assignment statements as
there are in a language like Java. A backend code gener-
ator generates code in one of a number of different target
languages, including Lisp, Java, and Haskell. However, no

2Unlike Haskell, MetaSlang is strict.

familiarity with MetaSlang is assumed and English language
descriptions of all code are provided, which we now do.

The declaration ofsearchsays that it takes an argumentx
of typeD, the best solution so far (represented as a list), and
the current space to search,y, of typeR̂ and returns a pair,
consisting of a list of solutions, of type[R] , and a dominance
relation of typeDomR(explained later). Search first passes
the space through afilter . A filter is a predicate which is
some relaxed form of the output condition,o, that is easy
to evaluate . If the space passes the filter, then if thetest-
ForDominancepasses (explained in Section 3.2), the search
attempts toextract a solution, and determines whether the
best solution so far or the extracted solution is the better one.
The better one along with the list of subspaces of the current
space are passed on tosearchChwhich recursively searches
each child, returning the best solution it finds. Finally, that
is compared with the better one, and the best returned. The
search is initiated by the functionstart which because it has
no solutions yet simply passes an empty list and a descrip-
tor returned by theinitSpacefunction, corresponding to the
space of all possible solutions. Because solutions are ex-
tracted from spaces, a space is also called apartial solution
or sometimes anodein a search tree. To use the schema, the
typeR̂ and the operatorsinitSpace, extract, filter, andsplit
need to be instantiated.

Type and Operator instantiation for Planning Partial
plans have just the same structure as complete plans, namely
a list of actions, so the typêR is the same asR. For this
reason, when there is no confusion, references to plans also
apply to partial plans. TheinitSpaceoperator just returns an
empty list. Thesplit operator appends some action (chosen
from all the possible actions, that is all possible instantia-
tions of operators by assignment of type-compatible domain
objects to parameters) to the partial plan.Filter ensures that
the appended action is enabled by the preceding partial plan.
Extract can extract a complete plan at any time (it may of
course be infeasible). Specware automatically composes the
program schema with the instantiations to produce an exe-
cutable program.

2.3 Dominance Relations
If a pair of spaces is in a dominance relation, the first will al-
ways lead to at least as “good” an optimal solution as the sec-
ond, where “goodness” is measured by some cost function
on solutions. The first one is said todominatethe second,
which can be eliminated from the search. Dominance rela-
tions have a long history in search (Iba77). Here though we
follow the approach of Nedunuri and Cook (NC09) which
is briefly summarized below. For readability, ternary rela-
tions that take the input (x) as one of their arguments are
shown in subscripted infix form and implicitly quantified
over (eg. ∀x. ⊲ (x, a, b) is written a ⊲x b). ⊕ denotes
a left-associative domain specific operator used toextend
a partial solution. That isy ⊕ e, obtained by extending
the partial solutiony with e (called anextension), denotes
a new partial solution that is more defined thany (ie. if
a solution can be derived fromy ⊕ e then it can be de-
rived fromy). Its definition depends on̂R and the type of

e (e.g. if R̂ is a list type ande is a list, then⊕ might be
list concatenation,++). A cost functionc is compositional
if c(x, u ⊕ v) = c(x, u) + c(x, v).

Definition 1. Semi-Congruenceis a relation x⊆ D × R̂2

such that

∀e, y, y′ . y x y′ ⇒ o(x, y′ ⊕ e) ⇒ o(x, y ⊕ e)

That is, semi-congruence ensures that any feasible exten-
sion ofy′ is also a feasible extension ofy.

Definition 2. SC-Dominanceis a relation⊲̂x ⊆ D × R̂2

such that

∀e, y, y′ . y⊲̂xy′ ⇒

o(x, y ⊕ e) ∧ o(x, y′ ⊕ e) ⇒ c(x, y ⊕ e) < c(x, y′ ⊕ e)

That is, sc-dominance ensures that one feasible comple-
tion of a partial solution is less expensive3 than the same
feasible completion of another partial solution. The follow-
ing theorem and proposition show how the two concepts are
combined.
Theorem 1. If x is a semi-congruence relation, and̂⊲x

is a sc-dominance relation, andc∗ : R̂ → Nat denotes the
least cost solution in a space, then

∀y, y′ . y⊲̂xy′ ∧ y x y′ ⇒ c∗(y) < c∗(y′)

Wheny⊲̂xy′ ∧ y x y′ we sayy dominatesy′, written
y ⊲x y′. The collection of pairs(y, y′) such thaty domi-
natesy′ forms theextensionof the dominance relation.

The following proposition shows how to get a straightfor-
ward sc-dominance condition. Note that we have lifted the
cost function to partial solutions.
Proposition 1. If c is compositional thenc(x, y) < c(x, y′)
is a sc-dominance relation

For Planning, the⊕ operator is simply list concatenation,
denoted++.

3 Learning Rewrite Rules
We now describe the contribution of this paper which is two-
fold. First we define a domain-independent dominance re-
lation which is applicable to all planning problems. Given
such a definition, and the instantiated program schema of
Alg. 1, any two nodesp, p′ in the search tree can be tested
at run-time to see if one dominates the other. In general,
performing this test on all pairs of nodes in a search tree
is computationally infeasible, but we only need small exam-
ples to discover useful dominance pairs, so its cost is accept-
able. The second part of our contribution is to show how to
generalize such pairs and then extract a pair of context-free
plan segmentsq, q′. The pair(q, q′) forms a rewrite rule
which can now be applied to any plan in the domain to get
an improved plan, for example one generated by a custom
planner. Furthermore, the rewrite rules can be applied to
the dominance pairs themselves to simplify them relative to
each other. In this way, the large number of learned domi-
nance pairs often reduces to a handful of small useful rules.

3More generally, it is sufficient ifc(x, bz⊕e) ≤ c(x, bz′⊕e) but
we are looking for a guaranteed improvement, so we use the strict
inequality

3.1 A Dominance Relation for Planning
First we derive a semi-congruence condition, which (Def. 1)
ensures that if one partial planp′ can be feasibly extended
with an extension, then so can another planp with the same
extension. That is, we seek a condition betweenp andp′

that ensures∀e. o(x, p′ ⊕ e) ⇒ o(x, p ⊕ e). We find this by
backwards calculation from the conclusion. Before doing
so, we need the following proposition which provides a way
of calculating the stateσ after extending a partial plan with
a given extension

Proposition 2. ∀s, p, e . σ(s, p++e) = σ(σ(s, p), e)

The calculation of the required condition is:

o(x, p ⊕ e)
= {defn ofo}

σ(x.init, p++e) ⊇ x.goal
= {Prop. 2}

σ(σ(x.init, p), e) ⊇ x.goal
⇐ {o(p′) ie. σ(σ(x.init, p′), e) ⊇ x.goal}

σ(x.init, p) ⊇ σ(x.init, p′)

That is,p is semi-congruent withp′ if the state after exe-
cuting partial planp from an initial state is a superstate of the
state of partial planp′ executed from the same initial state.
Combining this with Thm 1 we conclude thatp dominates
p′ if σ(x.init, p) ⊇ σ(x.init, p′) ∧ c(x, p) ≤ c(x, p′).

3.2 Learning Ground Dominance Pairs
To learn a dominance pair, suppose the search has previ-
ously explored one path, finding a solutionz. Now suppose
the search reaches a current partial solutionp′. If some an-
cestorp of z dominatesp′ thenp′ need not be searched any
further and the pair (p, p′) is added to the extension of the
dominance relation. This idea is implemented in thetest-
ForDominanceprocedure in Alg. 1 which returns the pair
(p, p′) if p dominatesp′ and the null pair otherwise. The
termdomreln contains the current set of such pairs, which
is returned to the top level when the search completes.

Example 3. Blocks World
Consider the BW input in Ex.3. Suppose

the search has already discovered the solution
z = [stk(B, T, C),stk(A, T, D), stk(A, D, B)] and is
currently at the partial solutiony′′

1 = [stk(B, T, A)]. No
ancestor ofz is semi-congruent with this partial solu-
tion. The same holds fory′′

2 . The search continues to
y′′
3 = [stk(B, T, A), ust(B, A, T), stk(B, T, C)] with

which the ancestory1 of z is (the highest ancestor which is)
semi-congruent.y1 is also cheaper thany′′

3 and so no plan
that follows fromy′′

3 will be better thanz. Therefore the
pair (y1, y

′′
3) can be added to the dominance relation.

3.3 Generalization to First Order Dominance
Pairs

The resulting set of dominance pairs could be considered
the ground extension of a domain-specific dominance re-
lation. The first step is to parameterize it to a first order
(but still extensional) relation. This can be done using ei-
ther the EGGS generalization mechanism of Mooney and

Y2

s(A,T,D)

y1

y0

s(B,T,C)

z'

s(A,T,B)

z

s(A,D,B)

y1"

s(B,T,A)

y2"

u(B,A,T)

y3"

s(B,T,C)

s(A,T,B) ...
s(M.T,N)

Figure 3.1: Dominance example for Blocks World (only the
relevant portion of the search tree is shown)

Bennett (MB86) or the mechanism of Kambhampati et al
(KKQ96). Kambhampati’s approach is the more straight-
forward one: it allows for the replacement of any constants
by variables provided the domain theory does not refer to
any object constants by name (for example if the specifi-
cation of thestk operator referred to the tableT in either
the pre or post condition, it would not be a name insensi-
tive theory4. For example, generalization of the dominance
pair in Eg. 3 is∀a, b, c : Blk, t : Tbl. [stk(b, t, c)]) ⊲x

[stk(b, t, a), ust(b, a, t), stk(b, t, c)]. This dominance pair
can be used elsewhere in the search to prune off unpromising
spaces by skipping branches that match the second element
of the dominance pair.

3.4 Generalization to Rewrite Rules
The second step is to try to generalize a dominance pair
in the relation to one applicable to any blocks world prob-
lem instance. This requires identifying those pairs of plan
segments that do not depend on the initial state. For ex-
ample,[ust(b, c, t), stk(b, t, c)] is a useless series of steps
no matter what the common prefix is and can always
be replaced with the empty sequence[]. That is [] ⊲x

[ust(b, c, t), stk(b, t, c)].
Under what circumstances can the common prefix be

stripped off a dominance pair? Intuitively, it is when the
dominated branch relies on what is established by the prefix
(to achieve its current state) at least as much as the domi-
nating branch does. This can be determined byregressinga
state (in the manner described in (KKQ96)) back up the tree.
Regressing a state over a series of branches simply amounts
to computing the weakest precondition of the given series of
branches. It determines what state must hold before the se-
ries of branches in order to ensure the given state at the end.
Its formal definition is as follows:

Definition 3. The regressionof a states over an extension
e denotedσ−1(s, e), is defined as:

σ−1(s, e ⊕ b) = σ−1(σ−1
p (s, b), e)

σ−1(s, ε) = s

4However, it is easy to turn it into one: just replace the constant
T in the pre/post conditions with a variablet, define a typeTbl (or
equivalently a predicate such astbl?) and assert thatt’s type isTbl.
The problem input would specify thatT is a table by asserting its
type isTbl. This is what we have done.

whereb is the branch to the partial solution from its parent,
ie.split(x, e, e⊕ b). σ−1

p (s, b) is a primitive regression step
whose definition in the case of planning isσ−1

p (s, a) = (s−
a.post) ∪ a.pre.

Definition 4. Thesmallest prestateof a non-empty plane⊕b
denotedσ−1(e ⊕ b) is defined asσ−1(b.pre, e) .

The smallest prestate (sp) of a plan gives the smallest state
that must hold at the start of the plan to ensure the final ac-
tion in the plan is successfully executed. Finally, letW (p)
be set of state variables whose values are modified by plan
p (that is, their values at the end of executingp are different
from the their values at the start ofp). The following theo-
rem defines when it is safe to strip off the common prefix:

Theorem 2. Given a compositional cost function, for all
x, q, q′ :

(∃p. p⊕q ⊲x p⊕q′)∧σ−1(q) ⊆ σ−1(q′)∧W (q) = W (q′)

⇒ ∀p′ : R̂. p′ ⊕ q ⊲x p′ ⊕ q′

Intuitively, the theorem says that if some partial planp⊕q
dominates another partial planp ⊕ q′ and thesp of q is no
bigger than that ofq′, and bothq andq′ modify the same
state variables, then foranyp′, p⊕q dominatesp⊕q. Finally,
the following theorem states that it is profitable to carry out
such a rewrite on any feasible planπ

Theorem 3. ∀q, q′. o(x, π) ∧ (∀p′. p′ ⊕ q ⊲x p′ ⊕ q′) ⇒
c(x, π[q′ := q]) < c(x, π)

Example 4. Blocks World. Returning to Fig. 3.1, suppose
the (generalized) solutionz′ = [stk(b, t, c), stk(a, t, b)]
is discovered first and then the (generalized) solution
z = [stk(b, t, c), stk(a, t, d), tr(a, d, b)]. The exten-
sion of z′ from the lowest common ancestor ofz′ and
z, namely y1, is [stk(a, t, b)]. The smallest prestate
σ−1([stk(a, t, b)]) is σ−1({clr?(a), clr?(b), on(a) =
t}, []) = {clr?(a), clr?(b), on(a) = t}. For z, its ex-
tension from the ancestory1 is [stk(a, t, d), tr(a, d, b)]
and its smallest prestate calculated in a similar manner
is giving {clr?(a), clr?(b), clr?(d), on(a) = t}, which
is a superset of{clr?(a), clr?(b), on(a) = t}. Finally,
W ([stk(a, t, b)]) = W ([stk(a, t, d), tr(a, d, b)]) =
{on(a), clr?(b)}. Therefore the sequence
[stk(a, t, d), stk(a, d, b)] can be replaced with[stk(a, t, b)]
in anyBW plan.

3.5 Efficiency Considerations
For efficiency reasons, we do not attempt to match a partial
solution with every previously discovered partial solution,
but only with the current best solution. Also, the regression
is done incrementally as the search tree is unwound, and is
cached for the currently best known solution.

4 Experiments
We ran our learning algorithm on a number of domains taken
from (AKM05) as well as the one from the 3rd International
Planning Competition (IPC). Some sample results are de-
scribed below.

4.1 Blocks World
Given a simple input of 3 blocks, the learning system learnt
both the (manually written) rules in (AKM05) shown below

[stk(a, t, c), ust(a, c, t)] ⇒ []
[ust(a, b, t), stk(a, t, c)] ⇒ [stk(a, b, c)]

Using these rules, Ambite et al. were able to achieve
an average reduction in plan length over a naive plan of
about 20%. The naive plan was generated by a custom
planner that first unstacked all the blocks to the table, and
then stacked them. This avoids having to ever having
to move a block directly from one block to another. In
addition, our learning system learned an additional rule,
[stk(a, t, b), tr(a, b, c)] ⇒ [stk(a, t, c)] but the left hand

side does not occur in the naive plan so it is not used.

4.2 Logistics
The Logistics problem consists of delivering each of a num-
ber of packages from its current location to the desired loca-
tion using a truck. The operators in the domain arel(oad),
u(nload),andd(rive). Given a simple input of 2 packages
and 2 locations, the planner learns theLoop rule of Ambite
([d(t, a, b), d(t, b, a)] ⇒ []) as well as a rule not mentioned
by them: ([u(p, t, a), l(p, t, a)] ⇒ []). Given an input with 3
packages and 3 locations, the planner learns theirTriangle
Inequalityrule: ([d(t, a, b), d(t, b, c)] ⇒ [d(t, a, c)]). They
also have another rule (Load Earlier) which their rule
learning algorithm is unable to learn.Load Earliersuggests
loading a package at the earliest opportunity to save having
to potentially make a specific trip later to pick up that
package. The extra trip can occur any number of steps later.
Because we learn specific sequences, our learning system is
unable to learn the most general form of this rule, but learns
instead the specific cases where the extra trip occurs 1,2,3...
steps later. For example, the 1 step form of the rule it learns
is [d(t, a, b), l(p, t, b), d(t, b, a), l(q, t, a), d(t, a, b)] ⇒
[l(q, t, a), d(t, a, b), l(p, t, b)]. Using the Loop, Triangle
Inequality, andLoad Earlier/Unload Laterrules, Ambite et
al. were able to achieve an average reduction in plan length
from a naive plan of over 40%.

4.3 ZenoTravel (3rd IPC)
The domain definition translated from the Strips PDDL
description is shown in Table 2. State is represented with
three finite maps,at, giving the location of a person or
airplane,fl, giving the current fuel level of the airplane,
and dec, which is a table of consecutively decreasing
fuel levels (dec ensures that there is enough fuel for the
flight) Given a simple input with 2 people, and 2 cities,
and 1 plane, the learning system learns several hundred
dominance pairs (rules). After using smaller rules to
simplify larger rules, they reduce down to a handful of
rules, of which some of the interesting left-hand sides are:
(all rewrite to the empty list[]) [em(p, a, c), dem(p, a, c)],
[ref (a, f, l, m),fly(f, t, m, l),fly(t, f, l, k), ref (a, f, k, l)],
and[ref (a, f, k, l),fly(f, t, l, k), ref (a, t , k , l),fly(t, f, l, k)].
Given 3 cities, it also learns
[ref (a, c, k, l),fly(f, d, l, k), ref (a, d , k , l),fly(d, e, l, k)] ⇒

Op.Name Params Precond. Postcond.

em p, a, c

{at(p) = c,

at(a) = c}

{}

{}

{at(p) = a}

{}

{}

dem p, a, c

{at(p) = a,

at(a) = c}

{}

{}

{at(p) = c}

{}

{}

fly a, f, t, l, k

{at(a) = f}

{fl(a) = l}

{dec(l) = k}

{at(a) = t}

{fl(a) = k}

{}

zoom a, f, t, l, k, j

{at(a) = f}

{fl(a) = l}

{dec(l) = k,

dec(k) = j}

{at(a) = t}

{fl(a) = j}

{}

ref a, f, k, l

{at(a) = f}

{fl(a) = k}

{dec(l) = k}

{}

{fl(a) = l}

{}

Table 2: Specification of the operators for Zeno Travel

Input

Size

(n)

Naive

Plan

Length

Rewritten

Plan

Length

FF Plan

Length

FF Time

Taken

10 76 54 36 0s

20 179 127 80 0s

40 290 218 138 1s

80 588 448 308 41s

160 1220 920 - >30 m

Table 3: Comparison of Plan Length and Times with FF

[ref (a, c, k, l),fly(c, e, l, k)]. Applying these rules to naive
plans resulted in an average plan length reduction of around
25%. The naive planner visits each city in turn, picking
up all the passengers, and taking each one in turn to their
destination.

Table 3 compares the output of our naive planner along
with with the rewritten plan obtained by applying the learned
rewrite rules to the naive plan with the results of running
FF (HN01), a state of the art planner, on the same inputs.
For simplicity we considern passengers inn cities and1
plane. In all cases, the total time taken by our naive plan-
ner plus the rewrite engine was under a second.In contrast,
the time taken by FF appears to grow exponentially. Al-
though the resulting plan length was about 50% longer than
what was produced by FF5, our system scales much better as
Tbl 3 shows. We also tried the more recent Fast Downward
planner (Hel06) with a variety of heuristics (landmark-cut,
merge-and-shrink, and blind) but the planning times were
longer than they were for FF.

5 Summary and Further Work
Currently a custom hand-written planner is used to produce
an initial plan. More work is needed to integrate learned in-

5We are currently working on synthesizing domain-specific
planners which will reduce this difference considerably

formation into state-of-the-art domain independent heuristic
planners such as FF (HN01) and FD (Hel06). As an alterna-
tive, we are working onsynthesizingdomain specific satis-
ficing planners, continuing the early work of Srivastava and
Khambampati (SK98). Such planners are synthesized by the
use ofdomain-specificdominance relations, with the intent
of reducing the branching in the search space, sometimes at
the cost of extra plan length. The rewrite rules are then ap-
plied the same way as they are now to the output of such
planners to produce a near-optimal plan.

We also do not currently handle constraints or temporal
planning. We expect to address both limitations in future
work.

6 Related Work
Dominance relations appear not to have been used much in
planning. A rare exception is Mills-tettey et al (MtSD06)
who incorporate a form of dominance into a regression path
planner with good results. Yu and Wa (YW88) study how
to inductively learn intentional definitions of dominance re-
lations. They demonstrate their approach on a variety of
knapsack problems and show good results. However, their
learned rules are not logically sound.

Ambite et. al (AKM05) have investigated learning plan
rewrite rules in great detail. They do this by comparing an
initial inefficient plan with a plan generated by some other
approach (e.g. local search). By doing a graph comparison
they extract the rewrite rules. We will refer to their approach
as Learning by Graph Matching (LGM). Our learning ap-
proach has the following advantages over LGM:

• LGM requires 2 complete plans to compare. Moreover,
one of the plans has to be an optimal plan. We do not
require complete or optimal plans (although in the inter-
est of efficiency we often delay dominance testing until a
complete plan has been found).

• LGM is a separate phase from planning. In our case,
the learning mechanism could potentially be incorporated
into the planner to speed up its current search.

• LGM relies on an approximation to testing for subgraph
isomorphism. As such it misses some rewrites (such as
the “Load Earlier” rule mentioned previously) that we
are able to find (although our learned rule suffers from
a different shortcoming, described earlier). The learned
rules in LGM are also context-dependent, complicating
the subsequent rewrite phase.

• LGM learns rules which do not by themselves improve
plan quality (for example, simple interchanges of actions).
Our learned rules are guaranteed to improve plan quality
(for the given cost functionc).

Our rewriting engine is also much simpler than theirs. We
only need to match context-free sequences of actions, not
context-dependent subgraphs. On the other other hand their
use of partial order planning allows them to match subplans
in which an action can precede another by an arbitrary num-
ber of actions. We cannot do that.

Using an earlier version of the Specware framework
(KIDS), Srivastava and Khambampati (SK98) were able to

successfully synthesize efficient domain-specific planners
for several domains. However, they limited their attentionto
satisficing planners and did not attempt learning or consider
dominance relations. We are able to automatically learn
some of their pruning rules, eg. the “Limit Useless Moves”
rule in BlocksWorld that avoids two consecutive moves of
a block, and their rule in Logisitics that says planes should
not make consecutive flights without loading or unloading a
package.

EBL also generalizes explanations of failure, but early at-
tempts ran into the Utility problem (Min90) on account of
the large amount of learned information as well as the costs
associated with matching. Although our current rewrite en-
gine is extremely naive, it ought to be possible to make
it much more efficient by a compact representation of the
patterns coupled with efficient pattern matching algorithms
such as Aho-Corasick or Rabin-Karp (CLRS01) along the
lines of what is done in spell-checkers for large documents.

References
J.L. Ambite, C.A. Knoblock, and S. Minton. Learning plan
rewriting rules. InArtificial Intelligence Planning Systems
(AIPS), 2000.
J.L. Ambite, C.A. Knoblock, and S. Minton. Plan optimiza-
tion by plan rewriting. InIntelligent Techniques for Plan-
ning. 2005.
T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduc-
tion to Algorithms. MIT Press, 2nd edition, 2001.
M. Ghallab, D. Nau, and P. Traverso.Automated Planning:
Theory and Practice. Morgan Kaufmann, 2004.
M. Helmert. The fast downward planning system.J. of AI
Research, 26:191–246, 2006.
J. Hoffmann and B. Nebel. The ff planning system: Fast
plan generation through heuristic search.J. of AI Research,
14, 2001.
T. Ibaraki. The power of dominance relations in branch-and-
bound algorithms.J. ACM, 24(2):264–279, 1977.
S. Kambhampati, S. Katukam, and Y. Qu. Failure driven
dynamic search control for partial order planners: An expla-
nation based approach.Artificial Intelligence, 88:253–315,
1996.
R. Mooney and S.W. Bennett. A domain independent
explanation-based generalizer. InAAAI-86, 1986.
S. Minton. Quantitative results concerning the utility of
explanation-based learning.Artif. Intell., 42, March 1990.
G. A. Mills-tettey, A. Stentz, and M. B. Dias. Dd* lite: Effi-
cient incremental search with state dominance. 2006.
S. Nedunuri and W.R. Cook. Synthesis of fast programs for
maximum segment sum problems. InIntl. Conf. on Gener-
ative Programming and Component Engineering (GPCE),
Oct. 2009.
H. Nakhost and M. Müller. Action elimination and plan
neighborhood graph search: Two algorithms for plan im-
provement. InICAPS, pages 121–128, 2010.
J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and
S. Thrun. Towards robotic assistants in nursing homes:

Challenges and results.Robotics and Autonomous Systems,
42, 2003.
Specware. http://www.specware.org.
B. Srivastava and S. Kambhampati. Synthesizing cus-
tomized planners from specifications.J. of AI Research,
8:61–75, 1998.
D. R. Smith. Structure and design of global search algo-
rithms. Tech. Rep. Kes.U.87.12, Kestrel Institute, 1988.
S. Yoon, A. Fern, R. Givan, and C. Guestrin. Learning con-
trol knowledge for forward search planning.J. of Mach.
Learn. Research, 9, 2008.
C-F. Yu and B. W. Wah. Learning dominance relations
in combined search problems.IEEE Trans. Softw. Eng.,
14:1155–1175, August 1988.

7 Appendix: Proofs of Theorems
Proposition 2. ∀s, p, e . σ(s, p++e) = σ(σ(s, p), e)

Proof. By induction. (In all cases where the definition of
σ is expanded, we assume the non-empty branch, ie. the
subsequent action is enabled. The empty branch is easy to
demonstrate)

Base Case:e = [a]

σ(s, p++[a])
= {unfold defn ofσ ande}

τ(σ(s, p), a)
= {let p = fp++[lp], p = [] case is trivial}

τ(τ(σ(s, fp), lp), a)
= {intro σ by folding base case ofσ}

τ(σ(τ(σ(s, fp), lp), []), a)
= {fold inductive case in defn ofσ}

(σ(τ(σ(s, fp), lp), [a])
= {replaceτ by foldingσ}

σ(σ(s, fp++[lp]), [a])
= {fold p = fp++[lp], e = [a]}

σ(σ(s, p), e)

Inductive Case: Assume result holds fore, considere++[a].

σ(s, p++(e++[a]))
= {assoc. of++, defn ofσ}

τ(σ(s, p++e), a)
= {IH}

τ(σ(σ(s, p), e), a)
= {fold defn ofσ}

σ(σ(s, p), e++[a])

Theorem 2. Given a compositional cost function, for all
x, q, q′ :

(∃p. p⊕q ⊲x p⊕q′)∧σ−1(q) ⊆ σ−1(q′)∧W (q) = W (q′)

⇒ ∀p′ : R̂. p′ ⊕ q ⊲x p′ ⊕ q′

Proof. Let s and s′ denote σ(x.init, p′ ⊕ q) and
σ(x.init, p′ ⊕ q′) resp. To demonstrate dominance we need
to show thats ⊇ s′ ∧ c(x, p′ ⊕ q) ≤ c(x, p′ ⊕ q′). Be-
cause the cost function is compositional, the SC-dominance

condition follows by Prop. 1 so we focus on demonstrating
semi-congruence,s ⊇ s′. Now given an assignmentv = a
in s′, there are two cases to consider: eitherv /∈ W (q′) or
v ∈ W (q′).

Casev /∈ W (q′): Since it was not modified byq′, the
state variablev had the valuea at the start ofq′. (This
follows from the definition ofσ). By Proposition 2s =
σ(σ(x.init, p′), q) ands′ = σ(σ(x.init, p′), q′). Therefore
any state assignment is present at the start ofq iff it is also
present at the start ofq′. Assumeσ(x.init, p) ⊇ σ−1(q′),
otherwiseq′ will not lead to a feasible plan. Now by the as-
sumptionσ−1(q) ⊆ σ−1(q′), and Lemma 1, any assignment
at the start ofq is present at the end ofq unless overwritten .
From the assumptionW (q) = W (q′), v is also not inW (q),
ie. it is not modified byq. Thereforev = a must also be
present inσ(x.init, p′ ⊕ q).

Casev ∈ W (q′): If, on the other hand,v ∈ W (q′) then
again from the assumptionW (q) = W (q′), it must be in
W (q). Supposeq last assignsb to v, ie. v = b is present
in σ. Thenb must equala otherwise we would not have
σ(x.init, p ⊕ q) ⊇ σ(x.init, p ⊕ q′) as implied by the as-
sumptionp ⊕ q ⊲x p ⊕ q′.

Lemma 1. s ⊇ σ−1(p) ⇒ ∀(v = e) ∈ s. v /∈ W (p) ⇒
(v = e) ∈ σ(s, p)

Proof. By induction. For a single action planp = [a], given
the antecedent and the definition ofσ, the state is at least
aPre, so by the definition ofτ , the post state isσ(s, [a]) ≪
aPost but sincea does not writev, (v = e) ∈ σ(s, [a]) as
required. Assume now the result holds for a planp and con-
siderp++[a]. If v /∈ W (p++[a]) then alsov /∈ W (p) and
by the IH,(v = e) ∈ σ(s, p). Sinces ⊇ σ−1(p++[a]), the
required stateaPre is exceeded, so again from the definition
of τ , the post state isσ(s, p) ≪ aPost but sincea does not
write v, (v = e) ∈ σ(s, p++[a]) as required.

Theorem3. ∀q, q′. o(x, π) ∧ (∀p′. p′ ⊕ q ⊲x p′ ⊕ q′) ⇒
c(x, π[q′ := q]) < c(x, π)

Proof. Sincep′ ⊕ q ⊲x p′ ⊕ q′ for anyp′, it follows that
p ⊕ q ⊲x p ⊕ q, and from the definition of dominance that
p⊕ q⊲̂xp⊕ q . Thereforec(x, p⊕ q ⊕ r) < c(x, p⊕ q′ ⊕ r)
as required.

