
CONSONA:
Constraint Networks for the Synthesis

of Networked Applications

Lambert Meertens
Cordell Green

Kestrel Institute
Palo Alto, California

http://consona.kestrel.edu/

NEST Kickoff Meeting, Napa, CA, June 5�7, 2001

The CONSONA team
! Lambert Meertens co-PI
! Cordell Green co-PI
! Doug Smith research scientist
! Stephen Westfold research scientist

Relevant Kestrel technology
! Provably correct refinement from high-level specs

to executable code (Specware)
! Generator for highly optimized off-line schedulers

based on (hard) constraint-propagation compilation
(Planware)

! Design taxonomies (Designware)
! Anytime scheduling based on soft constraints

(DARPA ANTs program)

Problems specific to creating
NEST services & applications

! In large-scale distributed fine-grained systems
the �state space� lacks manageable structure
! traditional methods for developing distributed

applications are not suited to handling the
requirements of the NEST program

! IPC stacks (for example) do not exploit
application-level properties to boost
performance
!NEST applications built the traditional way on

top of a pre-compiled layer of middleware
services will incur heavy performance
overhead penalties

Aim of the CONSONA project
! Develop model-based methods and tools for the

goal-oriented integrated design and synthesis of
NEST applications and services
� Use system-wide constraints to specify !what is to

be achieved ", not !what is to be done"
� Iteratively match constraint requirements to

middleware service (coordination) schemas and
instantiate to refine the design, expressed as a
constraint network

� Generate optimized code from such constraint-
network models using constraint maintenance
and propagation

Example: UAV swarm
! Assumptions:

� UAVs communicate through
wireless broadcasts

� range is limited (scalability!)
� signal strength can be used to

estimate distance

!! Assumptions:Assumptions:
�� UAVsUAVs communicate through communicate through

wireless broadcastswireless broadcasts
�� range is limited (scalability!)range is limited (scalability!)
�� signal strength can be used to signal strength can be used to

estimate distanceestimate distance

! Safety requirements:
� vehicles must maintain safe distance

! Progress requirements:
� patrol given area
� collect information timely

! �Non-functional� requirements:
� minimize energy expenditure

(The example happens to be homogeneous,
but that is not essential to the approach)

Example problem requirements

! System-wide constraint: Projected flight paths
(�cones� with increasing uncertainty) don�t
intersect � a tough problem when time is of
the essence

! This constraint can be maintained by
adjusting the flight paths
! requires maintaining knowledge of relative

positions, velocities, �
!which is a newly introduced requirement!

Example requirement:
" Maintain safe distance

! Constraint network:
� Each UAV has a map of some other UAVs�

positions
� Each UAV�s map must be consistent with

observed signal strengths
! Constraint can be maintained by adjusting

estimated positions
! But doing this just locally is bound to create

inconsistencies between the various maps
!yet another introduced requirement: an

instance of the general requirement of
consistency in distributed knowledge!

Newly introduced requirement:
" Maintain knowledge of relative positions

! Constraint propagation: knowledge
maintained by proximate nodes must be
compatible
� UAV maps must agree on overlap to within

some tolerance/latency
! This kind of constraint can be maintained by

comparing and reconciling knowledge, in this
case the maps

! In general: need to confine this to �relevant�
knowledge

Now the newest requirement:
" Maintain �inter-map� consistency

! We expressed the application requirements
as system-wide constraints

! We decomposed these constraints into a
constraint network (basically a conjunction of
�local� constraints)

! We refined the constraints using applicable
schemas,

! which identify constraint-maintenance
methods, expressible as symbolic code

! Actual code can be generated as �residual
code� after symbolic constraint propagation
and simplification

Roadmap

Refinement
Set of constraints:

{... , P, . . .}

Applicable schema:

R " S

where

Rθ = P

for unifier θ{... , Sθ, . . .}

the refinement

Technical Approach
! Model requirements as soft constraints

� better suited to real-time, distributed systems:
hard constraints lead to intractability

! Identify applicable constraint schemas (patterns)
suited to distributed maintenance

! Use model-based transformations for high-level
optimization
� e.g., flattening middleware layers

! Use symbolic constraint propagation for optimized
code generation

Claims
! Modeling method is amenable to composition and

parameterization
� keyword: modular

! Soft constraints can model resource aggregation
and dynamic selection of task-execution strategies
� keyword: adaptive

! They are particularly suited for obtaining �graceful
degradation� in case of physical malfunction or
task overload
� keyword: robust

Project tasks (highlights)
! Modeling using constraints :

� basic protocols and algorithms
� increasingly complex applications
� composition and parameterization

! Constraint technology:
� analysis/propagation for soft constraints

! Toolset:
� modeler
� knowledge base of middleware schemas
� constraint-solver generator

Main deliverables
! Modeling using constraints:

� Models of basic protocols and algorithms
(December 2001)

� Suite of coordination services (September 2003)
! Constraint technology:

� Solver-driven integration of services for OEP
architecture(s) (June 2002)

! Toolset:
� Preliminary design (June 2002)
� Prototype modeling toolset (March 2003)
� Prototype generator (June 2003)
� Integrated modeler-generator (March 2004)

OEP integration
! The generator will target one or more OEP

architectures
! All software will be installed at one or more

OEP labs
! Demo of modeler and generator for large

example NEST application on one or more
OEPs

Further integration
! Choice of protocols/algorithms/services

modeled will be inspired and informed by
the needs and results of other groups in the
NEST program

! We�ll welcome and encourage others to
experiment with the modeling toolset and
generator

