
2/7/2002 NEST Wireless OEP Exercise 1

NEST Wireless OEP Application
Decomposition Exercise

University of California, Berkeley
University of California, Los Angeles

Kestrel Institute, Palo Alto
University of California, Irvine

Outline

• Minitask Approach
• Application Scenario
• Platform
• Interactions Among Components
• Time-Bounded Synthesis
• Composition
• Coordination Service Approaches
• Real Time and Fault Tolerance
• Conclusions

Minitask Approach

• Use the minitask to exercise NEST
software technology concepts
– identify NEST components in the context of

a specific application
– relationship among components
– key challenges
– candidate solutions

• rather than to test particular controller
designs in the small

Application Scenario

• Dense field of small local
sensor nodes over a
portion of a large space
– limited power & bandwidth

Application Scenario

• Dense field of small local
sensor nodes over a
portion of a large space
– limited power & bandwidth

• Sparse higher powered
resources with longer
range cameras
– limited field of view

Application Scenario

• Dense field of small local
sensor nodes over a
portion of a large space
– limited power & bandwidth

• Sparse higher powered
resources with capable
directional modes
– cameras
– limited field of view

• Multiple objects moving
through

Application Scenario

• Dense Field of small local
sensor nodes over a
portion of a large space
– limited power, BW

• Sparse higher powered
resources with capable
directional modes
– cameras
– limited field of view

• Multiple objects moving
through

• Track and image subset
with particular feature

Binding the Basic Scale

• 104 nodes, 10m ave. spacing,
– 30m range (~20 neighbors)
– 1km2 of patches out of ~20km2 of space

• 1% higher powered nodes (100)
– roughly 300m x 300m patches

Feature: fastest moving objects

Goal → Metrics

• Keep the fastest moving objects in field of
view within available energy budget

• Metric:
– maximize at each time t, Σtarget i w(i) × viz(i)
– where weight w(i) ~ speed(i)2,
– visibility viz(i) ~ quality of imaging (1/distance)

• subject to
– camera: limited view, limit number,
– communication: limited bandwidth and range
– energy: limited # messages per unit time
– fault rate in nodes & links > 0

Basic Capabilities

• Local sensor observations at defined
rate

• Messaging
• Energy monitoring (& harvesting?)
• Camera control and video processing

Parameterized Services

• Time synchronization (fidelity)
• Local coordinates of the nodes (fidelity)
• Estimated target position and velocity

(fidelity)
• Routing (redundancy)

Classifying Activity over Space

Numerous areas
of activity
- detected locally

Subset determined to
be worth monitoring

Classifying Activity over Space

Numerous areas
of activity
- detected locally

Subset determined to
be worth monitoring

Few individuals
targeted

State → active, monitored, targeted

Platform

Hardware units

• Large number of constrained wireless nodes
– two modes of sensing (acoustic and magnetic or vibration)
– limited radio range
– event-driven OS structure
– limited energy reserves

• Small number of more powerful nodes
– bridge short-range RF to long range communication
– processing and storage capabilities

• Specialized “power assets”
– computation and storage resources
– cameras – pan, tilt and zoom but not covering entire space
– panels with microphone arrays

Field Nodes (“motes”)

• Atmel ATMEGA103
– 4 Mhz 8-bit CPU
– 128KB Instruction Memory
– 4KB RAM

• 4 Mbit flash (AT45DB041B)
– SPI interface, 1-4 µj/bit r/w

• RFM TR1000 radio
– 50 kb/s
– Sense and control of signal strength

• Network programmable in place
• Multihop routing, multicast
• Sub-microsecond RF node-to-node synchronization
• Provides unique serial ID’s

Power Nodes and Assets

• Bridge low-power network to
802.11

• Full Linux environment
• Cameras with pan and tilt
• Panels with microphone array
• Potentially: additional

computational support such as
DSP and FPGA for high-end
acoustic, vision processing

Key Components

• Basic Capabilities
– messaging, sensing, pointing, processing

• Parameterized Coordination Services
– time synchronization
– local coordinates of all the nodes
– target position and velocity estimation
– routing

• Synthesis and Composition
– key requirements clear from service interaction

(below)

Interactions Among Components

Time Synchronization & Local
Coordinates

• Required to correlate observations from
multiple nodes
– local estimation of target position and velocity
– non-local activity classification

• Fidelity depends on use and resources
– high local accuracy is inexpensive
– higher accuracy needed at higher state
– more expensive to maintain over distance
– higher level resources can refine accuracy

• energy cost in doing so

Local Estimation of Target Position
& Velocity

• Inputs
– local sensor observations
– local estimate of location and time +

courser global reference
– neighbors’ observations and their loc. & time
– refinements from global level
– fidelity requirements

• Use of estimates
– traversal of observation activity across network

• see next slides
– notification of candidate for classification
– initial camera pointing

Local Observation Tracking

• Use estimates
of position and
velocity to alert
potential next
observers

• Focus activity
to reduce
energy

• Local
algorithms
robust to faults
and delays

Tracking Drives Efficient Routing

• Multihop routing
paths to higher
monitoring
nodes evolve

• Tracking and
higher-level
goals guide
network
scheduling

• Fault tolerance
determines
redundancy in
routing

Higher Level Processing

• Given classification and assignment
– control camera to maximize visibility of targeted objects
– reinforce information fidelity from monitored sites

• amount & timeliness of information sensed / communicated
– suppress information fidelity from uninteresting sites
– feed information back to enhance fidelity

• time or location
• Reconfiguration: Given classification and old

assignment, assign monitoring and targeting to
powered resources
– e.g., handoff to new cameras or monitors

• Reclassification
– new objects become “among fastest”
– pushing information out regarding feature thresholds
– propagating potential triggers up

Issues that drive the NEST discussion

• Targeting of the cameras so as to have objects of
interest in the field of view
– tracking control is routine, assignment is issue

• Collaboration between field of nodes and platform to
perform ranging and localization to create coordinate
system with adaptive fidelity

• Adaptive routing structures between field nodes and
higher-level resources

• Targeting of high-level assets
• Sensors guide video assets in real time
• Video assets refine sensor-based estimate
• Network resources focused on region of importance

Closed Loop at many levels

• Field nodes collaborate with power nodes to perform
ranging and localization to create coordinate system

• Need to maintain associations between field nodes
and power assets (monitors relation)

• Selection of low-level assets per object over time
– determined by local sensor processing and high-level

coordination
• Selection of power assets over time

– determined by in-coming data and higher processing
– determines dynamic association (incl. routing structures) over

time
• Targeting of power assets

– sensors guide camera assets in real time
– camera assets refine sensor-based estimate in real time

• Network resources focused on regions of importance

Time-Bounded Synthesis

Configurations/Schedules

• Resource Assignment
– given classification, allocation and rate of change,

compute new allocation
– time and energy to affect change
– energy and visibility cost as targets move away

from current assignment
• Multihop Routing Resource Scheduling

– given selection of monitored sites and mapping to
higher level nodes, compute (rough)
communication schedule in time and space

Application-Requirements Constraint

• Constraint:
– the assignment of cameras to targets is “optimal” (see later)

• Design decisions:
– go for “naïve” local improvement scheme
– “data diffusion”: each node maintains nearby-world-state

estimate
• Constraint is maintained by:

– (code making sure that) camera changes field of regard
whenever this improves the assignment quality

• Subsidiary constraints:
– nodes know nearby target states (position and velocity)
– nodes know nearby camera assignments

Optimality Metric

• Boundary conditions on metric:
– the faster a target, the more important it is that some camera

view it
– nearby cameras are better for viewing than far-away

cameras
• Formula:

– sum over targets of: (target weight) x (target visibility)
– target weight = (target speed)2
– target visibility = zero if no camera assigned; or minimum

over assigned cameras of 1 / distance(target, camera)
• Remarks:

– formula uses estimates for position and speed
– suitable for local anytime optimization
– simplified for purpose of exposition
– untested; may need tweaking for satisfactory results

Information-Consistency Constraints

• Generic constraint:
– neighboring nodes agree on overlapping information

• Design decisions:
– bootstrapped information-quality decay estimators (for

example)
– max likelihood reconciliation (for example)

• Constraint is maintained by:
– nodes obtain sensor measurements whenever information

quality would fall below threshold
– nodes update estimates using new information
– nodes transmit overlapping information to neighbors

• New constraints:
NONE

Specifically for Tracks:

• Data exchanged:
– set of (time, position, speed) for targets; one element per

detected target
– data includes uncertainty information

• New data:
– obtained from sensors (including cameras)

• Reconciliation:
– performed independently by each node
– sensor data is brought into same framework of (time,

position, speed) + uncertainty, and added to the data set
– obsolete data (too old or superseded) and data on

“irrelevant” targets (too far) is discarded
– node computes the most likely track data for the present

situation explaining the data set, giving a new data set to be
communicated to neighboring nodes

Specifically for Camera Assignment:

• Data exchanged:
– each data-set element is extended with: set of

cameras assigned to this target + for each
camera: when assigned

• New “data”:
– only camera proxy nodes revise assignments:

determine the best target assignment for this
camera given known data

• Reconciliation:
– the track-data computation is extended with: find

the most likely current camera assignment

Run-Time Adaptation

• Mode change (in both Motes and Power Nodes) due
to major changes in resource and/or environment
conditions
– mode 1

• mission 1
• fault tolerance goal 1

– mode 2
• mission 2
• fault tolerance goal 2

• Activation and deactivation of components
e.g., vibration sensors are not needed in this application.

• Adjustment of parameterized components
e.g., the RF signal strength of this level is adequate in this

application environment.

Composition

Inputs to Composition

A. Libraries of
• various coordination and other middleware service schemas
• information-consistency maintenance schemas
• anytime optimization schemas
• application-specific schemas
where a schema consists of a parameterized triple:
1. constraint to be maintained
2. (symbolic) maintenance code
3. subsidiary constraints

B. Application requirements expressed as top-level
constraint (typically a conjunction of many simple
constraints)

Constraints are soft and typically involve temporal
operators (“everywhere eventually always . . .”)

Construction Process

• General construction approach
– at design time constraints are matched to schemas
– instantiation results in production of maintenance code (to be

executed at run time) and new (“subsidiary”) constraints
– repeat until no constraints left

• Information-consistency constraints
– real-world information as maintained by nodes is consistent

with sensor readings
– shared information is locally consistent

• Information maintenance design-time decisions
– choice of data-fusion algorithms
– frequency of updates and other trade-offs

Code Generation

• High-level, symbolic code produced by
construction process is collected

• Iterative symbolic simplification, pruning and
high-level optimization (e.g. incrementalizing
information-updates by data differencing)

• Mapping to low-level executable code

Coordination Service Approaches

Time Synchronization

“here at t=0!”

“here at t=1!”
“here at t=5!”

“here at t=3!”

• Time sync among motes allows them to compute target
tracks collaboratively

• Target detections are communicated (along with position
of detector in derived coordinate system) with approximate
global or shared time

• More accurate time sync (µsec) will allow sharing of
acoustic time-series, not just detections

Multi-Hop Time Sync

“Here 0 sec after red
pulse!”

“Here 1 sec after red pulse!”

“Here 3 sec after
blue pulse!”

“Here 1 sec after
blue pulse!”

• Some nodes broadcast RF synchronization pulses
• Receivers in a neighborhood are synced by using the pulse as

a time reference. (The pulse senders are not synced.)
• Nodes that hear several pulses can relate the time bases to

each other

“Blue pulse 2 sec
after red pulse!”

• Time of flight and
phase offsets used
to compute many-
to-many ranges

• Multilateration
algorithm
computes local
coordinate system
from ranges
– when nodes know

their location they
can help track

7654321

“My phase offset is 4”

“My phase offset is 7”

1 0 1 0 0

0 1 0 0 1 0 1

Local Coordinate System (1)

Local Coordinate System (2)

2ft

• Acoustic motes emit coded pulses that are
detected by the panel’s microphone array + CPU

• “GPS” equations used to compute mote location
independent of synchronization

• Computes local coordinate system
• RF RSSI and mote-mote acoustics provide

additional ranging modalities

Relating Local Coordinate Systems

• As for time sync, motes that can receive several
panels can relate the local coordinate systems to
each other

• For the 2D case this requires a non-colinear
constellation of two panels + two motes that were
heard by both panels

• Messages passed between regions with different
local systems can be translated in transit to new local
system

Real Time and Fault Tolerance

Major Factors in Component Selection

• Quality requirements (imposed on components)
– real-time service qualities
– fault tolerance contributions
– power consumption contributions
– memory requirements
– scalability

• For each component type, multiple versions with
differing qualities exist.

• Compatibility (or composability) among the
chosen component (versions)

• Analyzability of the qualities of composed
systems or subsystems

Power Consum.

L1
(Level 1)

L2 Lm

FT Reqts

L1
(Level 1)

L2 Lm

RT Reqts

L1
(Level 1)

L2 Lm

The Target-Tracking System Goal

Other Reqts

L1
(Level 1)

L2 Lm

Component Selection & Gluing
- An Example

Appl Module
Y

Net Surveillance
v2: Supervisor based

Net Surveil

Reconfiguration
v1: Simple

Localization
v1: Acoustic
sensor based

TT Func Invoca
v1: Simple

Deadline Violation Alarm
v1: Simple

Time Synch
v1: Master's

multicast

Support

System Parameters: Platform

• Sensor network features:
– average nodes distance, area covered
– max sampling period
– time and energy cost per estimation (fidelity)
– time and energy cost per communication

• Power node features:
– camera range, motion, quality
– computational capacity

• Target features:
– max number of targets
– maximum speed, acceleration

System Parameters:
Fault Types & Rates

msecsecssecsPowerNode - Camera
secsPowerNode - processor

msecsecssecsPowerNode-to-PowerNode link
msecsecssecsPowerNode- from-Mote link
msecsecssecsPowerNode- to-Mote link
msecsecssecsMote - incoming comm link

msec
msec
msec

msec

MDNMTBN

secssecs…
secs

secs

secs

secsMote - outgoing comm link

secsMote - sensor 2

secsMote - sensor 1

secsMote - processor

MTBFFaulty Component

• MTBF: Mean time between failures
• MTBN: Mean time between naps
• MDN: Mean duration of each nap

Performance Goals at a Lower Level:

• Detection latencies < κ msec
• Recovery time bounds

– Max difference between a normal task execution time and the time for a
task execution involving fault detection and recovery events

--- msec

η msec
(e.g., 200 msec)

Recovery Time <

Order to a camera for
chasing + alerting motes

1st detection by a sensor
in a whispering mode

ToFrom

• Time overhead during fault-free operations
– Time costs of enabling fault detection & advance prep for

recovery

--- msec

η msec
(e.g., 200 msec)

Time Overhead <

Order to a camera for
chasing + Alerting motes

1st detection by a sensor
in a whispering mode

ToFrom

Conclusions

Conclusions

• For an application of this level of sophistication we
currently have no analytical tools to quantify the expected
system performance for a realistic model of the system in
its physical environment

• Lacking such tools (which require development of new
theory) the ability to run a simulation will be essential for
the application designer

• Will the generated code actually fit in 128KB ? Some code
reduction — at a yet unknown cost in performance — is
possible by simplifying parts of the approach

Conclusions (continued)

• The tracking application appears to be fully scalable — the
crux being defining an “Optimality Metric” not precluding
full scalability

• We believe that our solution is robust (resilient for
transient failures; limited effect of localized permanent
failures) but have no proof of this

• “Coordination” and “Time-Bounded Synthesis” have a
fuzzy boundary; the distinction is not a principled one

Conclusions (continued 2)

• Interface between components is not a conventional API
but describes and names information to be maintained
(conceptual model: services are “daemons” that deposit
info when and were it is needed

• Middleware-service algorithms need to be “decompiled” /
reverse-engineered into a maintenance pattern

• The results of the exercise suggest that there may be a
small set (perhaps even less than a dozen) of basic
patterns from which almost all fully scalable middleware-
service algorithms can be generated as a composition of
instantiations

	NEST Wireless OEP Application Decomposition Exercise
	Outline
	Minitask Approach
	Application Scenario
	Application Scenario
	Application Scenario
	Application Scenario
	Binding the Basic Scale
	Goal ? Metrics
	Basic Capabilities
	Parameterized Services
	Classifying Activity over Space
	Classifying Activity over Space
	Platform
	Hardware units
	Field Nodes (“motes”)
	Power Nodes and Assets
	Key Components
	Interactions Among Components
	Time Synchronization & Local Coordinates
	Local Estimation of Target Position & Velocity
	Local Observation Tracking
	Tracking Drives Efficient Routing
	Higher Level Processing
	Issues that drive the NEST discussion
	Closed Loop at many levels
	Time-Bounded Synthesis
	Configurations/Schedules
	Application-Requirements Constraint
	Optimality Metric
	Information-Consistency Constraints
	Specifically for Tracks:
	Specifically for Camera Assignment:
	Run-Time Adaptation
	Composition
	Inputs to Composition
	Construction Process
	Code Generation
	Coordination Service Approaches
	Time Synchronization
	Multi-Hop Time Sync
	Local Coordinate System (1)
	Local Coordinate System (2)
	Relating Local Coordinate Systems
	Real Time and Fault Tolerance
	Major Factors in Component Selection
	System Parameters: Platform
	Performance Goals at a Lower Level:
	Conclusions
	Conclusions
	Conclusions (continued)
	Conclusions (continued 2)

