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Minitask Approach

• Use the minitask to exercise NEST 
software technology concepts
– identify NEST components in the context of 

a specific application
– relationship among components
– key challenges
– candidate solutions

• rather than to test particular controller 
designs in the small



Application Scenario

• Dense field of small local 
sensor nodes over a 
portion of a large space
– limited power & bandwidth
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Application Scenario

• Dense Field of small local 
sensor nodes over a 
portion of a large space
– limited power, BW

• Sparse higher powered 
resources with capable 
directional modes
– cameras
– limited field of view

• Multiple objects moving 
through

• Track and image subset 
with particular feature



Binding the Basic Scale

• 104 nodes, 10m ave. spacing, 
– 30m range (~20 neighbors)
– 1km2 of patches out of ~20km2 of space

• 1% higher powered nodes (100)
– roughly 300m x 300m patches

Feature: fastest moving objects



Goal → Metrics

• Keep the fastest moving objects in field of 
view within available energy budget

• Metric: 
– maximize at each time t, Σtarget i w(i) × viz(i)
– where weight w(i) ~ speed(i)2, 
– visibility viz(i) ~ quality of imaging (1/distance)

• subject to
– camera: limited view, limit number, 
– communication: limited bandwidth and range
– energy: limited # messages per unit time
– fault rate in nodes & links > 0



Basic Capabilities

• Local sensor observations at defined 
rate

• Messaging
• Energy monitoring (& harvesting?)
• Camera control and video processing



Parameterized Services

• Time synchronization (fidelity)
• Local coordinates of the nodes (fidelity)
• Estimated target position and velocity 

(fidelity)
• Routing (redundancy)



Classifying Activity over Space

Numerous areas 
of activity
- detected locally

Subset determined to 
be worth monitoring



Classifying Activity over Space

Numerous areas 
of activity
- detected locally

Subset determined to 
be worth monitoring

Few individuals
targeted

State → active, monitored, targeted



Platform



Hardware units

• Large number of constrained wireless nodes
– two modes of sensing (acoustic and magnetic or vibration)
– limited radio range
– event-driven OS structure
– limited energy reserves

• Small number of more powerful nodes
– bridge short-range RF to long range communication
– processing and storage capabilities

• Specialized “power assets”
– computation and storage resources
– cameras – pan, tilt and zoom but not covering entire space
– panels with microphone arrays



Field Nodes (“motes”)

• Atmel ATMEGA103 
– 4 Mhz 8-bit CPU
– 128KB Instruction Memory
– 4KB RAM

• 4 Mbit flash (AT45DB041B)
– SPI interface, 1-4 µj/bit r/w

• RFM TR1000 radio
– 50 kb/s
– Sense and control of signal strength

• Network programmable in place
• Multihop routing, multicast
• Sub-microsecond RF node-to-node synchronization
• Provides unique serial ID’s



Power Nodes and Assets

• Bridge low-power network to 
802.11

• Full Linux environment
• Cameras with pan and tilt
• Panels with microphone array 
• Potentially: additional 

computational support such as 
DSP and FPGA for high-end 
acoustic, vision processing



Key Components

• Basic Capabilities
– messaging, sensing, pointing, processing

• Parameterized Coordination Services
– time synchronization 
– local coordinates of all the nodes
– target position and velocity estimation
– routing 

• Synthesis and Composition
– key requirements clear from service interaction 

(below)



Interactions Among Components



Time Synchronization & Local 
Coordinates

• Required to correlate observations from 
multiple nodes
– local estimation of target position and velocity
– non-local activity classification

• Fidelity depends on use and resources
– high local accuracy is inexpensive
– higher accuracy needed at higher state
– more expensive to maintain over distance
– higher level resources can refine accuracy

• energy cost in doing so



Local Estimation of Target Position  
& Velocity

• Inputs
– local sensor observations
– local estimate of location and time +

courser global reference
– neighbors’ observations and their loc. & time
– refinements from global level
– fidelity requirements

• Use of estimates
– traversal of observation activity across network

• see next slides
– notification of candidate for classification
– initial camera pointing



Local Observation Tracking

• Use estimates 
of position and 
velocity to alert 
potential next 
observers

• Focus activity 
to reduce 
energy

• Local 
algorithms 
robust to faults 
and delays



Tracking Drives Efficient Routing

• Multihop routing 
paths to higher 
monitoring 
nodes evolve

• Tracking and 
higher-level 
goals guide 
network 
scheduling

• Fault tolerance 
determines 
redundancy in 
routing 



Higher Level Processing

• Given classification and assignment 
– control camera to maximize visibility of targeted objects
– reinforce information fidelity from monitored sites

• amount & timeliness of information sensed / communicated
– suppress information fidelity from uninteresting sites
– feed information back to enhance fidelity

• time or location
• Reconfiguration: Given classification and old 

assignment, assign monitoring and targeting to 
powered resources
– e.g., handoff to new cameras or monitors

• Reclassification
– new objects become “among fastest”
– pushing information out regarding feature thresholds
– propagating potential triggers up



Issues that drive the NEST discussion

• Targeting of the cameras so as to have objects of 
interest in the field of view
– tracking control is routine, assignment is issue

• Collaboration between field of nodes and platform to 
perform ranging and localization to create coordinate 
system with adaptive fidelity

• Adaptive routing structures between field nodes and 
higher-level resources

• Targeting of high-level assets
• Sensors guide video assets in real time
• Video assets refine sensor-based estimate
• Network resources focused on region of importance



Closed Loop at many levels

• Field nodes collaborate with power nodes to perform 
ranging and localization to create coordinate system

• Need to maintain associations between field nodes 
and power assets (monitors relation)

• Selection of low-level assets per object over time
– determined by local sensor processing and high-level 

coordination
• Selection of power assets over time

– determined by in-coming data and higher processing
– determines dynamic association (incl. routing structures) over 

time
• Targeting of power assets

– sensors guide camera assets in real time
– camera assets refine sensor-based estimate in real time

• Network resources focused on regions of importance



Time-Bounded Synthesis



Configurations/Schedules

• Resource Assignment
– given classification, allocation and rate of change, 

compute new allocation
– time and energy to affect change
– energy and visibility cost as targets move away 

from current assignment
• Multihop Routing Resource Scheduling

– given selection of monitored sites and mapping to 
higher level nodes, compute (rough) 
communication schedule in time and space



Application-Requirements Constraint

• Constraint:
– the assignment of cameras to targets is “optimal” (see later)

• Design decisions:
– go for “naïve” local improvement scheme
– “data diffusion”: each node maintains nearby-world-state 

estimate
• Constraint is maintained by:

– (code making sure that) camera changes field of regard 
whenever this improves the assignment quality

• Subsidiary constraints:
– nodes know nearby target states (position and velocity)
– nodes know nearby camera assignments



Optimality Metric

• Boundary conditions on metric:
– the faster a target, the more important it is that some camera 

view it
– nearby cameras are better for viewing than far-away 

cameras
• Formula:

– sum over targets of: (target weight) x (target visibility)
– target weight = (target speed)2
– target visibility = zero if no camera assigned; or minimum 

over assigned cameras of 1 / distance(target, camera) 
• Remarks:

– formula uses estimates for position and speed
– suitable for local anytime optimization 
– simplified for purpose of exposition
– untested; may need tweaking for satisfactory results



Information-Consistency Constraints

• Generic constraint:
– neighboring nodes agree on overlapping information

• Design decisions:
– bootstrapped information-quality decay estimators (for 

example)
– max likelihood reconciliation (for example)

• Constraint is maintained by:
– nodes obtain sensor measurements whenever information 

quality would fall below threshold
– nodes update estimates using new information
– nodes transmit overlapping information to neighbors

• New constraints:
NONE



Specifically for Tracks:

• Data exchanged:
– set of (time, position, speed) for targets; one element per 

detected target
– data includes uncertainty information

• New data:
– obtained from sensors (including cameras)

• Reconciliation:
– performed independently by each node
– sensor data is brought into same framework of (time, 

position, speed) + uncertainty, and added to the data set
– obsolete data (too old or superseded) and data on 

“irrelevant” targets (too far) is discarded
– node computes the most likely track data for the present 

situation explaining the data set, giving a new data set to be 
communicated to neighboring nodes



Specifically for Camera Assignment:

• Data exchanged:
– each data-set element is extended with: set of 

cameras assigned to this target + for each 
camera: when assigned

• New “data”:
– only camera proxy nodes revise assignments: 

determine the best target assignment for this
camera given known data

• Reconciliation:
– the track-data computation is extended with: find 

the most likely current camera assignment



Run-Time Adaptation

• Mode change (in both Motes and Power Nodes) due 
to major changes in resource and/or environment 
conditions 
– mode 1

• mission 1
• fault tolerance goal 1 

– mode 2 
• mission 2 
• fault tolerance goal 2 

• Activation and deactivation of components  
e.g.,  vibration sensors are not needed in this application. 

• Adjustment of parameterized components 
e.g.,  the RF signal strength of this level is adequate in this 

application environment. 



Composition



Inputs to Composition

A. Libraries of
• various coordination and other middleware service schemas
• information-consistency maintenance schemas
• anytime optimization schemas
• application-specific schemas
where a schema consists of a parameterized triple:
1. constraint to be maintained
2. (symbolic) maintenance code
3. subsidiary constraints

B. Application requirements expressed as top-level 
constraint (typically a conjunction of many simple 
constraints)

Constraints are soft and typically involve temporal 
operators (“everywhere eventually always . . .”)



Construction Process

• General construction approach
– at design time constraints are matched to schemas
– instantiation results in production of maintenance code (to be 

executed at run time) and new (“subsidiary”) constraints
– repeat until no constraints left

• Information-consistency constraints
– real-world information as maintained by nodes is consistent 

with sensor readings
– shared information is locally consistent

• Information maintenance design-time decisions
– choice of data-fusion algorithms
– frequency of updates and other trade-offs



Code Generation

• High-level, symbolic code produced by 
construction process is collected

• Iterative symbolic simplification, pruning and 
high-level optimization (e.g. incrementalizing
information-updates by data differencing)

• Mapping to low-level executable code



Coordination Service Approaches



Time Synchronization

“here at t=0!”

“here at t=1!”
“here at t=5!”

“here at t=3!”

• Time sync among motes allows them to compute target 
tracks collaboratively

• Target detections are communicated (along with position 
of detector in derived coordinate system) with approximate 
global or shared time

• More accurate time sync (µsec) will allow sharing of 
acoustic time-series, not just detections



Multi-Hop Time Sync

“Here 0 sec after red 
pulse!”

“Here 1 sec after red pulse!”

“Here 3 sec after
blue pulse!”

“Here 1 sec after
blue pulse!”

• Some nodes broadcast RF synchronization pulses
• Receivers in a neighborhood are synced by using the pulse as 

a time reference.  (The pulse senders are not synced.)
• Nodes that hear several pulses can relate the time bases to 

each other

“Blue pulse 2 sec
after red pulse!”



• Time of flight and 
phase offsets used 
to compute many-
to-many ranges

• Multilateration
algorithm 
computes local 
coordinate system 
from ranges
– when nodes know 

their location they 
can help track 

7654321

“My phase offset is 4”

“My phase offset is 7”

1      0       1        0       0

0      1       0        0       1        0       1

Local Coordinate System (1)



Local Coordinate System (2)

2ft

• Acoustic motes emit coded pulses that are 
detected by the panel’s microphone array + CPU

• “GPS” equations used to compute mote location 
independent of synchronization

• Computes local coordinate system
• RF RSSI and mote-mote acoustics provide 

additional ranging modalities



Relating Local Coordinate Systems

• As for time sync, motes that can receive several
panels can relate the local coordinate systems to 
each other

• For the 2D case this requires a non-colinear
constellation of two panels + two motes that were 
heard by both panels

• Messages passed between regions with different 
local systems can be translated in transit to new local 
system



Real Time and Fault Tolerance



Major Factors in Component Selection

• Quality requirements (imposed on components)
– real-time service qualities 
– fault tolerance contributions 
– power consumption contributions 
– memory requirements 
– scalability 

• For each component type, multiple versions with 
differing qualities exist. 

• Compatibility (or composability) among the 
chosen component (versions) 

• Analyzability of the qualities of composed 
systems or subsystems 



Power Consum.

L1
(Level 1)

L2 Lm

FT Reqts

L1
(Level 1)

L2 Lm

RT Reqts

L1
(Level 1)

L2 Lm

The Target-Tracking System Goal

Other Reqts

L1
(Level 1)

L2 Lm

Component Selection & Gluing
- An  Example 

Appl Module
Y

Net Surveillance
v2:  Supervisor based

Net Surveil

Reconfiguration
v1:  Simple

Localization
v1:  Acoustic
sensor based

TT Func Invoca
v1:  Simple

Deadline Violation Alarm
v1:  Simple

Time Synch
v1:  Master's 

multicast

Support



System Parameters: Platform

• Sensor network features:
– average nodes distance, area covered 
– max sampling period 
– time and energy cost per estimation (fidelity)
– time and energy cost per communication 

• Power node features:
– camera range, motion, quality
– computational capacity

• Target features:
– max number of targets
– maximum speed, acceleration



System Parameters:
Fault Types & Rates

msecsecssecsPowerNode - Camera
secsPowerNode - processor

msecsecssecsPowerNode-to-PowerNode link
msecsecssecsPowerNode- from-Mote link
msecsecssecsPowerNode- to-Mote link
msecsecssecsMote - incoming comm link

msec
msec
msec

msec

MDNMTBN

secssecs…
secs

secs

secs

secsMote - outgoing comm link

secsMote - sensor 2

secsMote - sensor 1

secsMote - processor

MTBFFaulty Component

• MTBF:  Mean time between failures
• MTBN:  Mean time between naps 
• MDN:    Mean duration of each nap 



Performance Goals at a Lower Level:

• Detection latencies   <  κ msec
• Recovery time bounds

– Max difference between a normal task execution time and the time for a 
task execution involving fault detection and recovery events 

--- msec

η msec 
(e.g., 200 msec)

Recovery Time <

----------

Order to a camera for 
chasing + alerting motes

1st detection by a sensor 
in a whispering mode 

ToFrom

• Time overhead during fault-free operations 
– Time costs of enabling fault detection & advance prep for 

recovery

--- msec

η msec 
(e.g., 200 msec)

Time Overhead < 

----------

Order to a camera for 
chasing + Alerting motes

1st detection by a sensor 
in a whispering mode 

ToFrom



Conclusions



Conclusions

• For an application of this level of sophistication we 
currently have no analytical tools to quantify the expected 
system performance for a realistic model of the system in 
its physical environment

• Lacking such tools (which require development of new 
theory) the ability to run a simulation will be essential for 
the application designer

• Will the generated code actually fit in 128KB ? Some code 
reduction — at a yet unknown cost in performance — is 
possible by simplifying parts of the approach



Conclusions (continued)

• The tracking application appears to be fully scalable — the 
crux being defining an “Optimality Metric” not precluding 
full scalability

• We believe that our solution is robust (resilient for 
transient failures; limited effect of localized permanent 
failures) but have no proof of this

• “Coordination” and “Time-Bounded Synthesis” have a 
fuzzy boundary; the distinction is not a principled one



Conclusions (continued 2)

• Interface between components is not a conventional API 
but describes and names information to be maintained 
(conceptual model: services are “daemons” that deposit 
info when and were it is needed

• Middleware-service algorithms need to be “decompiled” / 
reverse-engineered into a maintenance pattern

• The results of the exercise suggest that there may be a 
small set (perhaps even less than a dozen) of basic
patterns from which almost all fully scalable middleware-
service algorithms can be generated as a composition of 
instantiations
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