
Simple Verification Technique for
Complex Java Bytecode Subroutines

Alessandro Coglio

Kestrel Institute
3260 Hillview Avenue, Palo Alto, CA 94304, USA

Ph. +1-650-493-6871 Fax +1-650-424-1807
http://www.kestrel.edu/˜coglio

coglio@kestrel.edu

Abstract. Java is normally compiled to bytecode, which is verified and
then executed by the Java Virtual Machine. Bytecode produced via com-
pilation must pass verification. The main cause of complexity for byte-
code verification is subroutines, used by compilers to generate more com-
pact code. The techniques to verify subroutines proposed in the literature
reject certain programs produced by mundane compilers or are otherwise
difficult to realize within an implementation of the Java Virtual Machine.
This paper presents a novel technique which is very simple to understand,
implement, and prove sound. It is also very powerful: the set of accepted
programs has a simple characterization which most likely includes all
code generable by current compilers and which enables future compilers
to make more extensive use of subroutines.

1 Java Bytecode

Java [2, 11] is normally compiled to a platform-independent bytecode language,
which is executed by the Java Virtual Machine (JVM) [18]. This bytecode lan-
guage features intra-method subroutines, used by Java compilers to generate
more compact code [18, Sect. 7.13].

In an idealized version of Java bytecode, similar to those in [8, 13, 20, 25], a
program P is a list of instructions. The positions in the list (starting from 0) are
the addresses of P . Instructions operate on values stored in a finite collection of
named variables and in a stack of bounded size. Values are integers, floats, and
(some) addresses; values carry explicit type tags (e.g., 0I is the integer zero, 0F

the float zero, and 0I 6= 0F).
For instance, the div instruction pops two integers from the stack and pushes

back their quotient, as formalized by the following rule:

Pi = div

〈i, vr , sk · ιI · ι′I〉 ; 〈i+ 1, vr , sk · div(ι′, ι)F〉
(dv)

The triple 〈i, vr , sk · ιI · ι′I〉 is an execution state where: i is the program counter,
i.e., the address of the instruction about to the executed; variable x contains

1

the value vr(x), i.e., vr maps variable names to values; and the stack consists
of two integers ι′I and ιI on top of the (possibly empty) sub-stack sk . The rule
says that if the current instruction is div, then the program counter is advanced
to i+ 1, the two integers are popped, and the float div(ι′, ι)F is pushed (which,
for simplicity, is defined even if the divisor ι = 0).

Subroutines are realized by the jsr and ret instructions:

Pi = jsr s
|sk | < max

〈i, vr , sk〉 ; 〈s, vr , sk · iC〉
(js)

Pi = ret x
vr(x) = cC

〈i, vr , sk〉 ; 〈c+ 1, vr , sk〉
(rt)

The former pushes the calling address and jumps to the subroutine address,
provided there is room in the stack (whose size limit is max). The latter jumps to
the successor of the calling address stored in the variable. (There are instructions
to move values between variables and stack.)

There is no explicit notion of subroutine as a textually delimited piece of code:
jsr and ret may be scattered here and there in P . While compilers usually produce
code where the address range of each subroutine is clearly identifiable, certain
Java programs result in bytecode where subroutines can be exited implicitly via
branching or exceptions (see Sect. 5 for an example), making the determination
of their boundaries more difficult.

The above rules include type safety checks ensuring that the values operated
upon have the required types and that no stack overflow or underflow ever occurs.
If these checks fail, an explicit error state is reached:

Pi 6= halt
6 ∃ i′, vr ′, sk ′. 〈i, vr , sk〉 ; 〈i′, vr ′, sk ′〉

〈i, vr , sk〉 ; Err
(er)

The first condition requires the current instruction to be not halt, because halt
causes graceful program termination. The second condition requires that no nor-
mal state be reachable via the other rules, which happens when the type safety
checks of the rule for the current instruction are violated.

Typical implementations of the JVM do not perform these type safety checks
for performance reasons. The outcome of operating on values with the wrong
types is undefined [18, Sect. 6.1]; Err corresponds to the undefined state that a
JVM implementation would move into. So, the notion of type safety is:

TypeSafe(P)⇔ Init 6;+ Err,

where ;+ is the transitive closure of ; and Init = 〈0, λx.0I, []〉 is the initial
state, characterized by program counter 0, 0I in each variable, and empty stack.

2 Verification

For security reasons [31, 10] the JVM verifies incoming code prior to executing
it. The goal of this verification is to statically establish that certain type safety

2

checks (e.g., that there are two integers at the top of the stack when a div is
reached) would always succeed if they were performed at run time; so, the exe-
cution engine can safely omit them. Since compilers check equivalent properties
on Java source, code produced via compilation must pass verification.

The last requirement is not so easy to assess because there is currently no
precise characterization of the output of Java compilers, which is furthermore
susceptible to change as compilers evolve. As advocated in [3], a solution is to use
a precise characterization of a set of bytecode programs as a “contract” between
compiler developers and JVM developers: the former shall write compilers whose
generable programs belong to the set, and the latter shall write bytecode verifiers
that accept any program belonging to the set.

3 Complexity of Subroutines

Subroutines are the main cause of complexity for bytecode verification. Without
them, the simple technique described in [18, Sect. 4.9.2] works beautifully well.
But with them, in order to accept code produced by mundane compilers, a more
elaborate analysis is needed.

As explained in [18, Sect. 4.9.6], a variable x may have different types, say
int and flt, at different calling addresses c and c′ of the same subroutine. So,
inside the subroutine x has type any, the result of merging int and flt. If x is not
modified inside the subroutine, x should have type int at c+ 1 and flt at c′ + 1.
But a simple-minded data flow analysis would blindly propagate any to c + 1
and c′ + 1, thus causing mundane programs to be rejected.

Sun’s technique to verify subroutines, informally described in [18, Sect. 4.9.6]
and implemented in [26], keeps track, during the data flow analysis, of the vari-
ables modified inside subroutines. If x is not modified, its type at c+ 1 is prop-
agated from c and not from the ret.

A thorough study of Sun’s approach, along with its problems and ways to
fix some of them, is presented in [5]. The bottom line is that while it works for
simpler programs, it rejects less simple programs that are nonetheless produced
by mundane compilers (see Sect. 5 for an example).

4 The Technique

4.1 Definition

The new technique is a data flow analysis [19] based on two key ideas: (1) instead
of merging two different types into any, keep both; and (2) use calling addresses
as types for themselves.

Besides int and flt, there is a type cac for each calling address c of P ; there
is no type any. The lattice 〈L,v,u,t〉 of this data flow analysis is the result of
adjoining a top element fail to the lattice 〈P(VSType),⊆,∩,∪〉, where P is the
powerset operator and VSType is the set of all pairs 〈vt , st〉 where vt is a map
assigning a type to each variable name and st is a list of types for the stack (of

3

length at most max). So, during the analysis every address of P is labeled by a
set of such pairs or by fail. The join operation t is used to merge lattice elements
from converging control paths in P : the result of merging two sets of pairs is
simply their union, while merging fail with anything yields fail.

For each instruction (except halt), there is a transfer function tf : L→ L. For
instance, the one for div is:

tf div = lift(λ〈vt , st〉.if st = st ′ · int · int then 〈vt , st ′ · flt〉 else fail),

where the higher-order function lift : (VSType → VSType ∪ {fail})→ (L→ L) is
defined by:

lift(f)(l) = if (l 6= fail ∧ (∀〈vt , st〉 ∈ l. f(vt , st) 6= fail))
then {f(vt , st) | 〈vt , st〉 ∈ l} else fail.

The argument of lift in the definition of tf div is the function that maps a pair
〈vt , st〉 to the pair 〈vt , st ′ · flt〉 if st = st ′ · int · int, to fail otherwise; this corre-
sponds to rule (dv) in Sect. 1. This function is lifted to operate element-wise on
a set of pairs: if it yields fail on any pair, the result is fail; otherwise, the result
is the set of resulting pairs.

Also the transfer function for jsr operates on a set of pairs element-wise:

tf cjsr = lift(λ〈vt , st〉.if |st | < max then 〈vt , st · cac〉 else fail).

This transfer function is parameterized by the calling address c at which the jsr
appears. It pushes cac onto the (type) stack; see rule (js).

The only transfer function that does not operate element-wise is the one for
ret, which is parameterized by a variable x and by a calling address c:

tf x,cret (l) = if (l 6= fail ∧ (∀〈vt , st〉 ∈ l. (∃c′. vt(x) = cac′)))
then {〈vt , st〉 ∈ l | vt(x) = cac} else fail.

It filters a set of pairs with respect to c: only the pairs with cac assigned to x
are kept, while the others are discarded. The parameter c is determined by the
address c+ 1 that the result of tf x,cret is propagated to. If any pair in the set does
not assign a calling address type to x, the transfer function yields fail. See rule
(rt).

Since L is finite and all the transfer functions are monotone, the data flow
analysis always converges to the least solution σ, which assigns σi ∈ L to address
i. The notion of verification is:

Verified(P)⇔ (∀i. σi 6= fail).

If σi 6= fail, then at run time whenever i is reached there is a pair 〈vt , st〉 ∈ σi
containing the types of the values in the variables and stack.

An example of least solution is shown in Fig. 1. Some instructions have not
been previously described: push0 pushes 0I onto the stack; inc increments the
integer at the top of the stack; load x pushes the value stored in x; and store x

4

i Pi st i vt i(x) vt i(y)

0 push0 [] int int
1 push0 [int] int int
2 div [int, int] int int
3 store x [flt] int int
4 jsr 11 [] flt int
5 push0 [] flt ca4

6 store x [int] flt ca4

7 jsr 11 [] int ca4

8 load x [] int ca7

9 inc [int] int ca7

10 halt [int] int ca7

11 store y [ca4 | ca7] flt | int int | ca4

12 ret y [] flt | int ca4 | ca7

Fig. 1. Example of least solution.

moves the top value of the stack into x. Most addresses are labeled by one pair,
whose types are shown under the appropriate columns. Addresses 11 and 12
are labeled by two pairs; for improved readability, their types have been spread
across the columns: one pair consists of the types at the left of the “|” symbols,
the other pair consists of the types at the right.

The technique is very simple to understand and implement. Unlike others, it
does not attempt to determine subroutine boundaries or variables modified inside
subroutines. Rather, its “unstructured” nature reflects the possibly unstructured
occurrences of jsr and ret in programs. Its treatment of jsr and ret is as simple
as their run time behavior, described by rules (js) and (rt).

4.2 Properties

The data flow analysis explores all paths in P , simulating execution at the type
level. If P were not type-safe, fail would appear in the least solution.

Theorem 1 (Soundness). Verified(P) ⇒ TypeSafe(P)

Some type-safe programs are unjustly rejected by the technique. The reason
is the instruction if0 j, which pops an integer from the stack and then jumps
to the target address j if the integer is 0I (if not, execution continues at the
next address). If a program contains a push0 immediately followed by an if0, the
instruction following the if0 can never be reached. But the data flow analysis
is insensitive to the actual value of the integer when the if0 is encountered: it
is just an int. So, if the if0 is followed by instructions performing type-unsafe
operations, the program is rejected.

Consider an integer-insensitive operational semantics ;I that extends ; by
allowing the execution of if0 to non-deterministically transfer control to either

5

the target or the next address, regardless of the value of the popped integer. The
notion of integer-insensitive type safety, TypeSafeI(P), is defined as in Sect. 1,
with ; replaced by ;I.

Theorem 2 (Characterization). Verified(P) ⇔ TypeSafeI(P)

The rightward implication is proved analogously to Theorem 1. The leftward
implication is proved by constructing an assignment γ of lattice elements to
addresses as follows: γi is the set of all pairs 〈vt , st〉 containing the types of
some execution state 〈i, vr , sk〉 reachable from Init (with the integer-insensitive
operational semantics). By construction, γi 6= fail. It is then shown that γ is a
solution to the data flow analysis; so, fail cannot appear in the least solution σ
(because σi v γi for all i). As a matter of fact, it can be also shown that γ = σ.

Theorem 2 provides a very simple and precise characterization of the pro-
grams accepted by the technique, usable as the contract mentioned in Sect. 2.
The technique is very powerful, in the sense that it accepts a very large set of pro-
grams. To date, I have not found any bytecode program generated by a compiler
that does not satisfy this characterization. Since compilers are quite unlikely
to expect bytecode verifiers to be integer-sensitive (for the full Java bytecode,
the notion of insensitivity must be extended from integers to null references and
other features [6]), there are reasons to believe that the characterization includes
all code generable by current and future compilers. In addition, it may enable
future compilers to make a more elaborate use of subroutines in order to generate
more compact code.

While the technique can be refined to accept more type-safe programs (e.g.,
by refining int into a type for 0I and a type for possibly non-zero integers, and
refining the transfer functions for push0, if0, etc. accordingly), such refinements
would add complexity and invalidate Theorem 2. In addition, the benefit is du-
bious: for example, no sensible compiler would ever generate a program with a
push0 immediately followed by an if0. These considerations support the (infor-
mal) argument that the technique embodies an optimal trade-off between power
and simplicity.

4.3 Implementation

The need to carry around sets of pairs during the data flow analysis arises in
order to separate them at the ret instruction. But if two singleton sets are merged
that do not both contain calling addresses in the same variable or stack element,
then the two pairs will never be separated, and so they can be merged into a
single pair (re-introducing type any).

In other words, a hybrid merging strategy can be used: if pairs cannot be
later separated, they are merged into one pair; they are kept distinct if there
are different calling addresses in corresponding positions. So, if a program has
no subroutines, all sets are singletons and the analysis essentially reduces to the
one in [18, Sect. 4.9.2].

6

Experimental measures [7, 20] suggest that current compilers generate code
with very infrequent use of subroutines. So, in the presence of subroutines, the
sets of pairs should be fairly small.

5 Related Work

As a point of comparison with other techniques, consider the Java code in Fig.
2 (adapted from [24, Fig. 16.8]). The variable y, which contains an undefined
value at the beginning of the method m, is definitely assigned a value before
it is used by the return [11]. Definite assignment is part of type safety and
must be checked by bytecode verification in the JVM. The bytecode naturally
produced (e.g., with [26]) from Fig. 2 is accepted by the new technique, as shown
in Fig. 3, where the real Java bytecode instructions (not abstractions of them)
are used [18, Chap. 6], the exception handler for the try block [18, Sect. 7.12] is
omitted, the variables are denoted by names instead of numbers, and the type
udf indicates that a variable contains an undefined value.

As another point of comparison, consider the Java code in Fig. 4 (adapted
from [20, Fig. 6]). The continue inside the finally block, if executed, transfers
control to the beginning of the while loop [11]. The bytecode naturally produced
(e.g., with [26]) from Fig. 4 is accepted by the new technique, as shown in Fig.
5. Note that the subroutine, whose address range is 5–9, can be exited implicitly
(i.e., not via a ret) from address 8, thus realizing the semantics of continue.

Sun’s technique rejects the code in Fig. 3 because the types int and udf for y
are merged into udf inside the subroutine (in Sun’s technique, udf coincides with
any). Since y may be modified at address 15, udf is propagated from address 16
to both 5 and 10, and thus eventually to 17, where iload y causes verification to
fail (because it requires an int in y).

Most of the formal techniques proposed in the literature [8, 13, 23–25] also
reject the code in Fig. 3 because they inaccurately assign udf to y inside the
subroutine and propagate it to the caller’s successor, similarly to Sun’s technique.

The remaining formal techniques [20, 22, 30] are comparable in power with
the new technique, but none of them is as straightforward to realize in a JVM
implementation as a data flow analysis. While the declarative rules for type
assignments presented in [20] are easy to check, it is not so easy to compute
type assignments that satisfy those rules. The use of a model checker [22] or of
a Haskell type checker [30], while viable for off-line verification, is problematic
to realize within the JVM.

There exist several commercial and academic implementations of the JVM,
which include bytecode verifiers, but no documentation is readily available about
their treatment of subroutines. Anyhow, [24, Sect. 16.1.1] reports that the code
in Fig. 3 is rejected by all the verifiers tried by the authors, including those in
[26] and in various versions of Netscape and Internet Explorer, as well as the
Kimera verifier [16]. Probably, all these verifiers employ the “official” approach
to subroutines described in [18, Sect. 4.9.6].

7

static int m(boolean x) {

int y;

try {

if (x) return 1;

y = 2;

} finally {

if (x) y = 3;

}

return y;

}

Fig. 2. Type-safe Java code rejected by most techniques and verifiers.

i Pi st i vt i(x) vt i(y) vt i(z) vt i(w)

0 iload x [] int udf udf udf
1 ifeq 7 [int] int udf udf udf
2 iconst 1 [] int udf udf udf
3 store z [int] int udf udf udf
4 jsr 11 [] int udf int udf
5 iload z [] int | int udf | int int | int ca4 | ca4

6 ireturn [int | int] int | int udf | int int | int ca4 | ca4

7 iconst 2 [] int udf udf udf
8 istore y [int] int udf udf udf
9 jsr 11 [] int int udf udf

10 goto 17 [] int int udf ca9

11 astore w [ca4 | ca9] int | int udf | int int | udf udf | udf
12 iload x [] int | int udf | int int | udf ca4 | ca9

13 ifeq 16 [int | int] int | int udf | int int | udf ca4 | ca9

14 iconst 3 [] int | int udf | int int | udf ca4 | ca9

15 istore y [int | int] int | int udf | int int | udf ca4 | ca9

16 ret w [] int | int | int udf | int | int int | int | udf ca4 | ca4 | ca9

17 iload y [] int int udf ca9

18 ireturn [int] int int udf ca9

Fig. 3. Successful verification of the bytecode for Fig. 2.

8

static void m(boolean x) {

while (x) {

try {

x = false;

} finally {

if (x) continue;

}

}

}

Fig. 4. Type-safe Java code rejected by some techniques and verifiers.

i Pi st i vt i(x) vt i(y)

0 goto 10 [] int udf
1 iconst 0 [] int | int udf | ca3

2 istore x [int | int] int | int udf | ca3

3 jsr 5 [] int | int udf | ca3

4 goto 10 [] int ca3

5 astore y [ca3 | ca3] int | int udf | ca3

6 iload x [] int ca3

7 ifeq 9 [int] int ca3

8 goto 10 [] int ca3

9 ret y [] int ca3

10 iload x [] int | int udf | ca3

11 ifne 1 [int | int] int | int udf | ca3

12 return [] int | int udf | ca3

Fig. 5. Successful verification of the bytecode for Fig. 4.

The off-card verifier of [27], developed by Trusted Logic, uses a polyvariant
data flow analysis for subroutines, i.e., it analyzes them in different contexts
for different callers [17]. The contexts include subroutine call stacks, which are
extended by jsr and shrunk by ret. While the code in Fig. 3 is accepted, the
code in Fig. 5 is rejected. Apparently, that verifier includes checks for non-
recursive calls to subroutines, as prescribed in [18, Sect. 4.8.2]: the path out
of the subroutine and back to address 1 propagates the call stack with the
subroutine to address 3, where a false recursive call is detected.

As a matter of fact, the technique proposed in [22] also includes subroutine
call stacks and non-recursion checks, which cause the rejection of the code in
Fig. 5. However, these can be easily removed from that technique.

As evidenced by the new technique, recursive subroutine calls are harmless to
type safety. The prescription in [18, Sect. 4.8.2] prohibiting recursive subroutine
calls is not only unnecessary, but also misleading, as manifested by the two ex-
amples above. Interestingly, Sun’s verifier [26] accepts the code in Fig. 5 because
it merges subroutine call stacks by computing their common sub-stacks; so, at

9

address 10 the non-empty stack from 8 is merged with the empty stack from 0
resulting in the empty stack, which is propagated back to 1 and eventually to 3,
with no false recursion being detected.

As part of the OVM project [21], Christian Grothoff independently imple-
mented a verifier whose treatment of subroutines is the same as the new tech-
nique [12]. Trusted Logic’s on-terminal verifier [29] (for the JEFF file format
[14]), independently implemented by Alexandre Frey, also treats subroutines in
the same way [9]; this verifier is very space- and time-efficient, thus demonstrat-
ing the practicality of the technique. Anyhow, this paper is the only publication
that formalizes and proves properties about this approach to subroutines.

Alternatives to direct subroutine verification are subroutine in-lining [28] and
variable splitting [1]. But given the possibly unstructured use of jsr and ret, de-
termining subroutine boundaries (for in-lining) and variable usage (for splitting)
may require a non-trivial analysis of the code. So, it is unclear whether byte-
code rewriting followed by the simpler technique of [18, Sect. 4.9.2] is altogether
simpler or faster than using the new technique on the original bytecode.

This paper is a short version of [4], while [5] is a comprehensive paper on the
topic of subroutines. In [6] the new technique is lifted to a complete formalization
of Java bytecode verification; in 2000, I used the Specware system [15] to formally
derive a bytecode verifier from that formalization.

References

1. Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and local
variable type-precision and liveness in Java virtual machines. In Proc. 1998 ACM
Conference on Programming Language Design and Implementation (PLDI’98), vol-
ume 33, number 5 of ACM SIGPLAN Notices, pages 269–279, June 1998.

2. Ken Arnold, James Gosling, and David Holmes. The JavaTM Programming Lan-
guage. Addison-Wesley, third edition, 2000.

3. Alessandro Coglio. Improving the official specification of Java bytecode verification.
In Proc. 3rd ECOOP Workshop on Formal Techniques for Java Programs, June
2001.

4. Alessandro Coglio. Simple verification technique for complex Java bytecode sub-
routines. Technical report, Kestrel Institute, December 2001. Revised May 2002.
Available at http://www.kestrel.edu/java.

5. Alessandro Coglio. Java bytecode subroutines demystified. Technical report,
Kestrel Institute, 2002. Forthcoming at http://www.kestrel.edu/java.

6. Alessandro Coglio. Java bytecode verification: A complete formalization. Technical
report, Kestrel Institute, 2002. Forthcoming at http://www.kestrel.edu/java.

7. Stephen Freund. The costs and benefits of Java bytecode subroutines. In Proc.
OOPSLA’98 Workshop on Formal Underpinnings of Java, October 1998.

8. Stephen Freund and John Mitchell. A type system for Java bytecode subroutines
and exceptions. Technical Note STAN-CS-TN-99-91, Computer Science Depart-
ment, Stanford University, August 1999.

9. Alexandre Frey. Private communication, May 2002.
10. Li Gong. Inside JavaTM 2 Platform Security. Addison-Wesley, 1999.
11. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language

Specification. Addison-Wesley, second edition, 2000.

10

12. Christian Grothoff. Private communication, June 2001.
13. Masami Hagiya and Akihiko Tozawa. On a new method for dataflow analy-

sis of Java virtual machine subroutines. In Proc. 5th Static Analysis Sympo-
sium (SAS’98), volume 1503 of Lecture Notes in Computer Science, pages 17–32.
Springer, September 1998.

14. J Consortium. JEFFTM file format, 2002. Available at http://www.j-consortium.org.
15. Kestrel Institute. SpecwareTM. Information at http://www.specware.org.
16. The Kimera project Web site. http://kimera.cs.washington.edu.
17. Xavier Leroy. Java bytecode verification: An overview. In Proc. 13th Conference on

Computer Aided Verification (CAV’01), volume 2102 of Lecture Notes in Computer
Science, pages 265–285. Springer, July 2001.

18. Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification.
Addison-Wesley, second edition, 1999.

19. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag, Berlin, 1998.

20. Robert O’Callahan. A simple, comprehensive type system for Java bytecode sub-
routines. In Proc. 26th ACM Symposium on Principles of Programming Languages
(POPL’99), pages 70–78, January 1999.

21. The OVM project Web site. http://ovmj.org.
22. Joachim Posegga and Harald Vogt. Java bytecode verification using model check-

ing. In Proc. OOPSLA’98 Workshop on Formal Underpinnings of Java, October
1998.

23. Zhenyu Qian. A formal specification of Java virtual machine instructions for ob-
jects, methods and subroutines. In Jim Alves-Foss, editor, Formal Syntax and
Semantics of Java, volume 1523 of Lecture Notes in Computer Science, pages 271–
312. Springer, 1999.

24. Robert Stärk, Joachim Schmid, and Egon Börger. Java and the Java Virtual
Machine: Definition, Verification, Validation. Springer, 2001.

25. Raymie Stata and Mart́ın Abadi. A type system for Java bytecode subroutines.
ACM Transactions on Programming Languages and Systems (TOPLAS), 21(1):90–
137, January 1999.

26. Sun Microsystems. Java 2 SDK Standard Edition version 1.3.1. Available at
http://java.sun.com/j2se.

27. Sun Microsystems. Java Card Development Kit version 2.1.2. Available at
http://java.sun.com/javacard.

28. Sun Microsystems. Connected, limited device configuration: Specification version
1.0a, May 2000. Available at http://java.sun.com/j2me.

29. Trusted Logic. TL Embedded Verifier. Information at http://www.trusted-
logic.fr/solution/TL Embedded Verifier.html.

30. Phillip Yelland. A compositional account of the Java virtual machine. In Proc.
26th ACM Symposium on Principles of Programming Languages (POPL’99), pages
57–69, January 1999.

31. Frank Yellin. Low level security in Java. In Proc. 4th International World Wide
Web Conference, pages 369–379. O’Reilly & Associates, December 1995. Also
available at http://java.sun.com/sfaq/verifier.html.

11

