
Experiments on Dense Graphs with a Stochastic, Peer-to-Peer Colorer

Stephen Fitzpatrick and Lambert Meertens∗
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304, U.S.A.

fitzpatrick@kestrel.edu, meertens@kestrel.edu

Abstract

This paper reports on a simple, stochastic, scalable, peer-to-
peer algorithm for aproximately solving distributed constraint
problems in soft real time. The performance of the algorithm
is assessed using k-colorings of random graphs having known
chromatic number and edge probability ranging from moder-
ate to high.

Introduction
Previous papers (Fitzpatrick & Meertens 2001; Meertens &
Fitzpatrick 2001) have reported on a simple distributed al-
gorithm for approximately solving large, sparse, distributed
constraint problems. Such problems naturally arise in dis-
tributed resource management applications, with the con-
straint variables representing control states of physically
separated resources.

A prototypical application is a large network of simple,
localized, battery-powered sensors that communicate using
high-latency radio communication to coordinate their mea-
surements to achieve high-quality fusion of their data and to
conserve energy by avoiding redundant measurements.

In the reported algorithm, each constraint variable is asso-
ciated with a computational node that is solely responsible
for assigning values to the variable. When a node assigns
a value, it transmits the value to its neighbors: two nodes
are neighbors iff their variables are neighbors, i.e., are con-
nected by a constraint.

When determining what value to assign its variable, a
node chooses a value that maximizes the number of con-
straints that itbelievesare satisfied, given what the node
knows of the values of neighboring variables. The algorithm
is iterative: each node periodically updates and transmits its
value, receives new values from its neighbors, and updates
and transmits its own value, and so on. The algorithm is
scalable, in that a node’s per-step costs are proportional to

∗This work is sponsored in part by DARPA through the ‘Au-
tonomous Negotiating Teams’ program under contract #F30602-
00-C-0014, monitored by the Air Force Research Laboratory. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Re-
search Projects Agency or the U.S. Government.
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the number of neighbors rather than to the total number of
variables.

The hope is that over time the number of constraints that
are actually satisfied increases, and that perhaps eventually
all of the constraints are satisfied. However, the algorithm is
designed to quickly satisfy many constraints with low com-
munication costs, rather than to ensure ultimate perfection;
consequently, it is best thought of as ananytimealgorithm
that iteratively improves on a published solution.

Since communication is not instantaneous, it is possible
that two neighboring nodes update their variables simulta-
neously, in which case the value that one thought the other
had was incorrect. The use of such outdated information
can lead toincoherence: neighbors’ variable changes that
are intended to be mutually beneficial turn out to be mutu-
ally detrimental.

Incoherence could be avoided by imposing a total order
on the nodes, so that only one can update at any given time
(and have sufficient time to communicate its new value to
its neighbors). However, this is a sequential solution and is
not scalable. Alternatively, a partial order could be imposed,
so thatneighborsare prohibited from simultaneous updates.
This is equivalent to coloring the nodes, and so is likely just
as hard a problem as the original constraint problem. (It also
turns out that this is too strict a requirement: two neighbors
are notguaranteedto cause mutual harm if they update si-
multaneously.)

In the reported algorithm, a stochastic approach is used to
try to ensure sufficient coherence: in a particular time pe-
riod, a randomly selected fraction of the nodesactivate, and
only those nodes that activate are allowed to change value.
Each node determines its own activation status by compar-
ing a randomly generated number with a fixedactivation
probability: the node activates iff the random number is less
than the activation probability.

The activation probability thus provides a simple control
for balancing parallelism aginst coherence: a low activation
probability reduces the likelihood of neighbors simultane-
ously updating, but also reduces the degree of parallelism;
the converse also holds.

In previous papers, the convergence and dynamics of
this algorithm were investigated using k-colorings ofsparse
graphs; that is, graphs in which each node is connected to
only a small fraction of the other nodes. In this paper, the



investigation is extended to graphs having moderate to high
density; i.e., in which each node is connected to a significant
or large fraction of the other nodes.

The structure of the paper is as follows: a optimization
version of graph coloring is defined, in which the objective
is to minimize the number of edges that connect nodes of
the same color; the algorithm is defined in detail; experi-
mental results are presented for a range of graph densities
and algorithm parameters; conclusions and related work are
presented.

Soft Graph k-Coloring
Graph k-coloring is a prototypical constraint satisfaction
problem. Each vertex in an undirected graph is to be as-
signed one ofk colors (i.e., an integer inZk) such that neigh-
boring vertices (i.e., vertices connected by an edge) have dif-
ferent colors.

The quality of a given coloring can be measured by the
degree of conflictγ, defined as the fraction of edges that con-
nect vertices having the same color; such an edge is refered
to as aconflict. A degree of conflict of 1 corresponds to ev-
ery vertex (in each connected component) having the same
color; a degree of conflict of 0 corresponds to the classical
notion of aproper coloring. The objective insoftgraph col-
oring is to minimize the number of conflicts, or equivalently
to minimizeγ.

A random assignment ofk colors to vertices has an ex-
pected degree of conflict of1/k. Since a random coloring
can be computed in a distributed system with no communi-
cation, it provides a useful baseline for non-random colorers:
it is to be hoped that they can achieve a better-than-random
score. Consequently, it is useful to defined thenormalized
degree of conflictΓ by Γ ≡ kγ: a random coloring has an
expected value of 1 using the normalized metric.

In the experiments reported here, the graphs are random
graphs having bounded chromatic number, where the chro-
matic number is the smallest number of colors for which a
proper coloring can be achieved. The graphs are constructed
using the procedure shown in Figure 1, which ensures that
there is at least one properk-coloring for some givenk, so
that the graph’s chromatic number cannot be higher thank.
Moreover, if the mean degree is high, it is likely that the
graph’s chromatic number is equal tok.

Theedge probabilitype is the ratio of the number of actual
edges,Nd/2, to the number of possible edges,N(N−1)/2.
If pe is small, the graph is said to be sparse; ifpe is high (near
1), the graph is said to be dense.

The FP(α) Algorithm
The algorithm reported here is a distributed, synchronous
algorithm. After random initialization, the nodes execute a
synchronized cycle of stochastic activation (with probability
α), choosing a color that is best (given what are believed to
be the neighbors current colors), and transmitting any color
change to neighbors — see Figure 2.

As shown, the algorithm requires two synchronization
steps for every coloring step: this is mainly to emphasize

• The number of vertices,N , the mean degree,d, and the
desired chromatic number,k, are given.

• A random assignment of colors to nodes is computed.

• The required number of edges,E, is computed from the
given parameters:E ≡ Nd/2 (the factor of1/2 comes
about because the edges are undirected and are counted in
the degree of the nodes at both ends).

• Each of theE edges is constructed by randomly choos-
ing two different and currently unconnected nodes, and
connecting them with an edge if their colors are different.

• OnceE edges have been constructed, the coloring is dis-
carded.

Figure 1: Procedure for constructing random graphs

Each nodei repeatedly executes the following cycle, in
which ci denotesi’s color at the start of one iteration of the
cycle andc′

i denotes the color chosen byi during the itera-
tion:

1 Synchronize.

2 Compute a histogram,Hi, of the colors nodei believes its
neighbors currently have.

3 Generate a random numberri, where0 ≤ ri < 1.

4a If some neighbor is believed to have the current color (i.e.,
Hi(ci) > 0) andri < α, choose any colorc′

i that has a
minimal value inHi (i.e., that is believed to be least used
among the neighbors).

4b Otherwise, do not change color (c′
i = ci).

5 Synchronize.

6 If the color has been changed (c′
i 6= ci), transmit the new

color to the neighbors and adopt the new color as the cur-
rent color.

Figure 2: The FP(α) algorithm, where0 < α ≤ 1

that a node’s knowledge of its neighbors’ colors has an un-
avoidable latency. In practice, synchronization is not criti-
cal; indeed, experiments have suggested that asynchronous
operation can improve the convergence properties of the
algorithm provided that the mean communication latency
is less than half the mean period between color updates.
In other words, the communication latency limits how fre-
quently colors can be updated without introducing too much
incoherence.

Note that in step 4a, there may be more than one color
that is minimal in the histogram: one such color is chosen
at random. It may happen that the current color is minimal
in the histogram: it is treated the same as any other minimal
color.

One of the conditions on step 4a, that the current color is
believed to be in use by at least one neighbor, has been found
to improve the performance of the algorithm for undercon-
strained problems (when the number of colors being used
for the coloring is much higher than the chromatic number).



0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

no
rm

al
iz

e 
de

gr
ee

 o
f c

on
fli

ct

steps (log scale)

d=10

d=50

d=100

d=200

d=300

d=800

d=10
d=50

d=100
d=200
d=300
d=800

Figure 3:Γ over time, #colors=10, #nodes=900

For other classes of problems, it is not believed to have much
effect.

Experimental Results
Figure 3 shows experimental results for FP(0.2) on random
graphs of 900 nodes and of chromatic number 10, using 10
colors. Results are shown for graphs having mean degrees
d = 10, 50, 100, 200, 300 and 800, corresponding to edge
probabilities of approximately 0.01, 0.06, 0.11, 0.22, 0.33
and 0.89. In each case, the results shown are averages over
20 colorings on randomly generated graphs.

The results for the low-density graphs (d = 10 to 100) are
qualitatively in agreement with previous results on sparse
graphs having regular structure (e.g., Cartesian grids with
nodes at integer coordinates in a 2-dimensional plane and
with edges between immediate neighbors along the axes
and, in some cases, along the diagonals). The algorithm
typically quickly reduces the number of conflicts and may
produce a proper coloring, or may tend to a non-zero asymp-
tote.

The suprising results are those for higher-density graphs
(d ≥ 200): the algorithm’s initial reduction in conflicts
is slower than for sparse graphs, but it soon precipitates a
proper coloring. Note that initially the results ford = 800
are worse than what would be expected from a random col-
oring.

Qualitatively similar results are observed for larger graphs
and for higher chromatic numbers. For example, Figure 4
shows results for graphs having 2500 nodes. Note that the
results are not exactly the same: in particular, the initial per-
formance ford = 800 is not as bad as for the smaller graphs:
it may be speculated that the maximum activation probabil-
ity that can be used without causing worse-than-random ini-
tial results is determined by the edge density, but not enough
experimental data has been gathered yet to derive a precise
relationship.

Nevertheless, it is informative to examine how the acti-
vation probability affects the overall performance. Figure 5
shows thetotal normalized degree of conflict accumulated
over a run of 10000 steps; i.e., the sum of the per-step nor-
malized degree of conflicts. This corresponds to the area

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

no
rm

al
iz

e 
de

gr
ee

 o
f c

on
fli

ct

steps (log scale)

d=10

d=50

d=100

d=200

d=300

d=800

d=10
d=50

d=100
d=200
d=300
d=800

Figure 4:Γ over time, #colors=10, #nodes=2500

1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6

to
ta

l n
or

m
al

iz
ed

 d
eg

re
e 

of
 c

on
fli

ct
 (l

og
 s

ca
le

)

activation probability

d=10

d=50

d=100

d=200

d=800

Figure 5: TotalΓ over 10000 steps, #colors=10, #nodes=900

under the curves in the preceeding performance plots. (As
before, the shown results are averages over 20 runs.)

Ford = 10, high activation probabilities can profitably be
used: the number of conflicts is quickly reduced to zero. For
d = 50, the activation probability has little effect in these
experiments; however, it should be noted that the algorithm
does not achieve proper colorings ford = 50 in the time al-
lowed and it may be that longer runs would exhibit different
behaviors.

For d = 100, the lowest total conflicts is suprisingly
achieved by an activation probability of 0.6: it would be
expected that such a high activation probability would re-
sult in a high degree of incoherence. Indeed, Figure 6 shows
that the quality of the coloring produced by FP(0.6) varies
rapidly over time, suggesting that the behavior of FP(0.6) is
quasi-chaotic. It would seem that the high degree of incoher-
ence enables FP(0.6) to escape from local minima that trap
more sedate colorers. In the context of a practical applica-
tion, it may be possible to decide if the final result (a proper
coloring) outweighs the poor intermediate results.

For dense graphs (d ≥ 200), a moderate activation prob-
ablity, in the range 0.2-0.3, produces the fewest total con-
flicts. (Figure 5 shows results for only two degrees in this
range — the other results are similar.) These values also pro-
duce reasonable short-term reductions in the number of con-



0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

no
rm

al
iz

ed
 d

eg
re

e 
of

 c
on

fli
ct

steps (log scale)

p=0.2
p=0.5
p=0.6

Figure 6: Γ over time, #colors=10, #nodes=900, mean de-
gree=100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

no
rm

al
iz

e 
de

gr
ee

 o
f c

on
fli

ct

no
rm

al
iz

ed
 c

om
m

un
ic

at
io

n 
co

st
s

steps

conflicts
communication

Figure 7:Γ and communication costs over time, #colors=10,
#nodes=900, mean degree=200

flicts. These results are somewhat surprising — it might be
expected that with, say, 200 neighbors, a node should have
an activation probability of around 1/200 to avoid incoher-
ence. An activation probability of 0.2 implies that around 40
of each node’s neighbors are activating each step and man-
aging to appropriately choose one of only 10 colors.

However, a node need not change color every time it ac-
tivates. Figure 7 shows the conflicts and normalized com-
munication costs over time for FP(0.2) on graphs with mean
degree 200. The normalized communication cost (plotted
against the right vertical axis) of a single step is the fraction
of nodes that change color in that step — this is refered to
as a ‘communication’ cost because color changes must be
transmitted to neighbors.

The plot shows that initially a high number of nodes do
change color, so the fact that they manage to achieve coher-
ent results remains a surprise. It may be speculated that what
is important is not how many nodes in a neighborhood ac-
tivate simulataneously, but whether the two nodes at either
end of a given edge activate simultaneously, since then in-
coherence might cause the edge to become a conflict. If this
is the case, then it is therank of the edge that determines
the optimal activation probability (i.e., the number of nodes

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6to
ta

l n
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n 

co
st

 (l
og

 s
ca

le
)

activation probability

d=10

d=50

d=100

d=200

d=800

Figure 8: Total communication costs, #colors=10,
#nodes=900

connected by a single edge). In the reported experiments,
only binary edges were considered — ongoing experiments
are investigating hyper-edges of higher rank.

Figure 8 summarizes the communication costs for vari-
ous densities and activation probabilities. For sparse graphs,
the costs increase approximately linearly with the activation
probability. This seems reasonable: the more nodes activate,
the more change color. (Note the jump in costs ford = 100
andα = 0.6, corresponding to the quasi-chaotic behavior
discussed above.)

For denser graphs, the costs increase super-linearly with
the activation probability: the denser the graph, the more
exagerated the growth. It is likely that this is caused by in-
cipient quasi-chaotic behavior (as indicated by the worse-
than-random initial performance shown in Figure 3).

Conclusions
The FP algorithm was initially designed to achieve good-
enough approximate solutions to large, sparse, distributed
constraint problems in soft real time. The experiments re-
ported here indicate, quite surprisingly, that it may also be
useful for dense problems, although some care is required in
its use (e.g., if temporary quasi-chaotic behavior is undesir-
able).

Intermediate ranges of density may represent the most dif-
ficult problems for this algorithm: for intermediate densities,
the algorithm reduces the number of conflicts significantly
below random, but often fails to find a perfect solution; in-
stead, it seems to asymptotically approach a solution that has
a significant number of conflicts.

One surprising result of the reported experiments is that
the activation probability need only be slightly reduced as
the density increases dramatically: values in the range 0.2-
0.3 seem to be generally useful.

The results presented here are initial. Further experiments
should address the performance of the algorithm on higher-
rank constraints and on a wider range of graphs (having high
chromatic numbers). It would be useful to determine either
experimentally or analytically such relationships as how the
optimal activation probability depends on parameters of the
graph.



Related Work
The Fixed Probability algorithm is an extension of a deter-
ministic algorithm described in (Fabiunke 1999). Yokoo
(Yokoo et al. 1998) describes a distributed constraint sat-
isfaction algorithm called Distributed Breakout (DB) that is
based on localized manipulation of edge weights, intended
to avoid stagnation in local optima; experimental compar-
isons of the FP and DB algorithms is reported in (Zhang
2002).

References
Fabiunke, M. 1999. Parallel Distributed Constraint Satis-
faction. InProceedings of the International Conference on
Parallel and Distributed Processing Techniques and Appli-
cations (PDPTA’99), 1585–1591. Las Vegas.
Fitzpatrick, S., and Meertens, L. 2001. An Experimen-
tal Assessment of a Stochastic, Anytime, Decentralized,
Soft Colourer for Sparse Graphs. In Steinhofel, K., ed.,
1st Symposium on Stochastic Algorithms: Foundations and
Applications, number 2264 in Lecture Notes in Computer
Science, 49–64. Springer-Verlag. Berlin, Germany.
Meertens, L., and Fitzpatrick, S. 2001. Peer-to-Peer
Coordination of Autonomous Sensors in High-Latency
Networks using Distributed Scheduling and Data Fusion.
Technical Report KES.U.01.09, Kestrel Institute, 3260
Hillview Avenue, Palo Alto, California 94340, U.S.A.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The Distributed Constraint Satisfaction Problem:
Formalization and Algorithms.IEEE trans. on Knowledge
and Data Engineering10(5).
Zhang, W. 2002. TBD.


