
Asynchronous Execution and Communication LatencyAsynchronous Execution and Communication Latency
in Distributed Constraint Optimizationin Distributed Constraint Optimization

Stephen Fitzpatrick & Lambert Meertens
Kestrel Institute

3260 Hillview Avenue, Palo Alto, California, U.S.A.
fitzpatrick@kestrel.edu & meertens@kestrel.edu

http://ants.kestrel.edu/ & http://consona.kestrel.edu/

DCR-2002, 16 July, Bologna

Outline:
• Motivation: real-time coordination of sensors in a high-latency network
• Modeling coordination as graph colouring
• Soft graph colouring for real-time responsiveness
• A class of distributed anytime algorithms (synchronous)
• Convergence
• Tightness of constraints: conservative variant
• Scalability and robustness
• Asynchronous execution
• Very high communication latencies

This work is sponsored in part by DARPA through the `Autonomous Negotiating Teams' program under contract #F30602-00-C-0014 and
the `Networked Embedded Software Technology’ program under contract #F30602-01-C-0123, both monitored by the Air Force Research
Laboratory. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

2Motivation: Large Networks of ShortMotivation: Large Networks of Short--Range SensorsRange Sensors
• Short-range, directional radars

– each can scan 1 of its 3 sectors at a time
– each scan acquires range & radial velocity
– battery-operated – conservation important

• Collaboration needed for tracking
– 3 approximately-simultaneous scans

needed for trilateralization
• Low-power radio communication

– low bandwidth, high latency
– reveals positions of radars – minimize

conflict

• Coordination mechanism organizes collaboration
– optimizes simultaneous scanning, minimizes costs

• Must be:
– scalable (e.g., to 105 sensors)
– real-time adaptive (e.g., new targets are detected, existing targets disappear)
– robust (e.g., hardware may fail)

3InterInter--Sensor CollaborationSensor Collaboration
• Main requirement: scan each target simultaneously with 3 radars

– define virtual resources: trackers
– each tracker is comprised of 3 sectors on nearby radars

• Ti ≡ {Ri1:Si1, Ri2:Si2, Ri3:Si3}
– each tracker can track a single target over some contiguous region

• Main constraint: each radar can scan only 1 sector at a time
– if two trackers use different sectors on the same radar, they are mutually

exclusive
• mutually_exclusive(T1, T2) ⇔ ∃ j,k ∈ {1, 2, 3}: R1j=R2k ∧ S1j≠S2k

• Compute a cyclic schedule of tracker usage
– worst-case assumption: all trackers need to be used
– mutually exclusive trackers cannot be used in the same time slot
– number of time slots determined by target speed, scan time & revisit period

T1

T2
T4

T3

T6

T5

timeslot

scan start
time (seconds)

scan end
time (seconds) T1 T2 T3 T4 T5 T6

1 0.0 2.0 X X
2 2.0 4.0 X X
3 4.0 6.0 X
4 6.0 8.0 X

4Modeling Coordination as Graph ColouringModeling Coordination as Graph Colouring
• Each tracker can be mapped to a node in an undirected graph
• Each mutual exclusion constraint then maps to an edge

– nodes that are adjacent in the graph are mutually exclusive/cannot be used
simultaneously

– two nodes are said to be neighbors iff they are adjacent
• A proper k-colouring of the graph’s nodes maps to a feasible schedule

– time slot ⇔ integer in Zk ⇔ colour

T1

T2

T5

T4

T6

T3

timeslot

scan start
time (seconds)

scan end
time (seconds) T1 T2 T3 T4 T5 T6

1 0.0 2.0
2 2.0 4.0
3 4.0 6.0
4 6.0 8.0

5Soft Graph ColouringSoft Graph Colouring

• Normalize: Γ ≡ kγ
– random k-colouring has an expected Γ of 1

• Assessment of coordination mechanism is based on how quickly it
reduces Γ after random initialization

{ }
E

CCEvu vu =∈
≡

|},{
γ

0 = proper
colouring

γ
1 = single-colour
colouring

1/k = random
k-colouring

• An edge connecting nodes of the same colour represents a conflict
– some radar has been scheduled to scan two sectors simultaneously

• For real-time adaptation, the number of conflicts must be quickly reduced
– fast reduction to acceptable levels is more important than total elimination

• Define the degree of conflict as the fraction of edges that are conflicts
– let E be the set of edges and Cv the colour of node v

6A Class of Distributed Anytime AlgorithmsA Class of Distributed Anytime Algorithms
(synchronous)(synchronous)

• Main idea: each node repeatedly chooses its own colour
to minimize its conflicts with neighbouring nodes

• Fixed Probability algorithm FP(p) …
– Initialization:

• each node chooses a random colour and informs its neighbours
– Synchronized infinite loop:

• probabilistic activation
–a node activates if a randomly generated number falls below some fixed
activation level p

• if a node activates, it non-deterministically chooses its next colour
–it computes a histogram of colour usage among its neighbours, based on
what they last told it

–it then chooses any colour that is least used in the histogram
–if the chosen colour differs from its current colour, it tells its neighbours

• Convergence?
– under the right conditions, the total number of conflicts reduces over time

and may converge to 0 …

7Effect of Activation Level on Convergence of FPEffect of Activation Level on Convergence of FP
• Measure (normalized) degree of

conflict after each synchronous step
– experiment performed in simulator

• When activation level is too high,
thrashing occurs
– too many neighbours are

simultaneously updating colours
– because of out-of-date information,

they make mutually harmful decisions
• When activation level is too low,

adaptivity is hindered
– extreme case is sequential execution

• Need compromise between speed
and coherence
– an activation level of 0.3 seems to be

reasonable for sparse graphs
– this level was used for experiments

reported in following slides

• experimental results
shown for 2D grids

– number of colours
= chromatic number
= 4

– 500-5000 nodes
• experiments also

performed with random
graphs having higher,
known chromatic
numbers

8Animation: Activation ThresholdAnimation: Activation Threshold

9Effect of Tightness of ConstraintsEffect of Tightness of Constraints
• Performance of FP is good

on over-constrained problems
– where #colours<chromatic number
– for 2D & 3D grids, observed

convergence value of degree of
conflict is close to theoretical
minimum

• Performance of FP is poor
on loosely constrained problems
– where #colours>>chromatic number
– intuitively, these are easy problems

• When loosely constrained, each
colour choice is essentially random
– for each given node, most colours are

not used by any neighbour
– FP chooses randomly from among

the unused colours
– asymptotic value predicted as
α/(2-α) where α is the activation level

• experimental results
shown for 2D grids

• chromatic number = 4

this is not
a time axis

10Animation: Tightness of ConstraintsAnimation: Tightness of Constraints

11CFP: Conservative VariantCFP: Conservative Variant
• Colour choice is non-deterministic
• But activation is restricted

– in addition to passing the test for
random number<activation level,
a node may activate only if it has a
conflict with any neighbour

• Conservative variant has good
performance overall
– communication costs are also better

than FP’s for loosely constrained
problems

• under FP, node activity continues
unabated forever

• under CFP, node activity decreases
with the degree of conflict

• experimental results
shown for 2D grids

• chromatic number = 4

conflicts

communication rate

12Animation: FP vs. CFPAnimation: FP vs. CFP

13ScalabilityScalability
• The algorithm is scalable in cost

– per node, per step costs depend on
(mean) degree of the graph

– they do not depend on the number
of nodes

• to the extent that the mean degree is
independent of the number of nodes

• The algorithm is scalable in
performance
– for large graphs, the reduction in

normalized degree of conflict over
steps shows little variation for
graphs of different sizes

• results shown are for CFP(0.3)
• 6 graphs of different sizes (500-5000 nodes)

– each graph has chromatic number 4
– each was coloured using 2, 3, 4 & 5 colours

14Robust against Communication NoiseRobust against Communication Noise
• Each colour-change message

subjected to random process:
– probability r, colour randomized
– probability d, message lost
– otherwise, message unchanged

• For small amounts of noise,
incremental increases in degree of
conflict are observed
– no catastrophic failure

• results shown are for CFP(0.3) on 2D grids
with 4 colours subject to various amounts of
message randomization

• similar results were obtained for small
amounts of message loss

15Asynchronous ExecutionAsynchronous Execution

• The synchronous FP algorithm requires synchronization, which may:
– require overhead (e.g. communication cost)
– slow down the process (wait for the slowest message and node)
– slow down convergence — or not

• For asynchronous FP the essential idea is the same as for synchronous
version, except that execution is asynchronous:
– Non-synchronized infinite loop (but same rate for all nodes):

• probabilistic activation
–a node activates if a randomly generated number falls below some fixed
activation level p

• if a node activates, it non-deterministically chooses its next colour
–it computes a histogram of colour usage among its neighbours, based on
what it last heard from them

–it then chooses any colour that is least used in the histogram
–if the chosen colour differs from its current colour, it tells its neighbours

• Asynchrony may help in symmetry breaking, but communication latency
may cause ill-advised changes

16Effect of Communication LatencyEffect of Communication Latency

• Performance of
asynchronous FP is
reasonable for moderate
latencies
– short-term performance

degrades (as expected)
– long-term result quite good

• Performance is even better
than synchronous FP when
latency < 0.5 time units

• Performance sharply
becomes very poor for
higher latencies
– divergence
– latency = 7 not better than

random colouring

• experimental results averaged for
20 random graphs

• p = 0.3
• mean degree = 10
• chromatic number = 3

17Communication Latency and Activation ProbabilityCommunication Latency and Activation Probability

• Sharp performance drop
for higher latencies:
the threshold latency
decreases as activation
probability increases

• This is due to higher
probability of “collision” : a
colour-change message
still travelling along an
edge when decision is
taken

• degree of conflict averaged over
10,000 steps

• mean degree = 10
• chromatic number = 3

18Effect of Collision ProbabilityEffect of Collision Probability

• For activation probability p
and latency L,(an upper
bound on) the probability
of collision is about

1 – (1 – p)L

• Performance drop indeed
depends on collision
probability: fine up to about
0.8; bad at 0.9 and higher

• So given latency L, a safe
activation probability is:

p ≤ 1 – 0.21/L

L = 1 → p ≤ 0.80
L = 2 → p ≤ 0.55
L = 4 → p ≤ 0.42
L = 8 → p ≤ 0.18

• degree of conflict averaged over
10,000 steps

• mean degree = 10
• chromatic number = 3

19Very High LatenciesVery High Latencies

• Surprise: for very high
latencies, the normalized
degree of conflict Γ tends
to a mean value of
approximately 2

• For very high latencies, the
control mechanism gets
caught in an out-of-phase,
oscillating trajectory, with
period > 2L

• p = 0.3
• L = 15

• p = 0.3
• L = 10

20ConclusionConclusion
• The FP algorithm is simple but effective for distributed, real-time,

approximate colouring of sparse graphs
– scalable, low-cost, robust

• Basic framework of stochastic activation & local optimization seems
appropriate for other distributed constraint problems
– graph colouring serves as a clean, archetypal problem

• The algorithm has also been tested with dense, random graphs
– interesting, but different, results
– proper k-colourings quickly obtained for very dense k-colourable graphs

• local constraints guide colouring to a unique, proper colouring

• Asynchronous execution and communication latency are handled well
– provided that the activation probability does not exceed a critical level

• Further work on algorithm
– non-uniform activation levels, perhaps determined dynamically from local

metrics

21

