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ABSTRACT
Previous papers have reported on a simple, distributed, syn-

chronous algorithm for approximatelyk-colouring large graphs in
soft real time. In this paper, the effects of asynchronous execution
and communication latency are investigated. The main conclusions
are that strict synchrony isnot required and that considerable com-
munication latency can be tolerated. These results are important
for practical applications of the algorithm involving large networks
of low-performance hardware equipped with wireless communica-
tion.

1. INTRODUCTION

Large, distributedconstraint networksarise naturally in
many control problems [5]: typically, the variables represent
control states of distributedresourcesand the constraints
represent physical limitations of the resources (individually
or collectively) or requirements imposed by thetasksthat the
resources are expected to accomplish. It is the responsibil-
ity of thecontrol mechanismto assign values to the variables
that (approximately) solve the constraints.

For example, the following application is discussed in de-
tail in [4]:

• In a distributed, wireless sensor network, control vari-
ables associated with a single sensor might represent
parameters of the sensor’s scans such as direction, fre-
quency and intensity.

• Constraints associated with a single sensor might repre-
sent limitations on how many directions the sensor can
scan simultaneously, or how long is needed to reorient
the sensor.

• Constraints associated with multiple sensors might rep-
resent problem-specific requirements such as the need
for several sensors to scan a given region simultane-
ously to enhance the overall quality of the data they
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collect (e.g., when the data is given to a data fusion
process).

The lifespans of the tasks impose soft-real-time require-
ments on the control mechanism. Specifically, a single sen-
sor may have a short scanning range (compared with the size
of the network) so that only a small subset of the sensors
may be capable of scanning a given target at any particular
instant. As the target moves, the subset of sensors within
range changes and the control mechanism must adapt the
variable assignments to compensate. Adaptation must be
quick enough to keep pace with the target; in particular, if
the target behaves unexpectedly (e.g., sharply changes ve-
locity) the control mechanism must respond quickly enough
to avoid losing the target completely.

A centralized control mechanism is considered to be un-
realistic because inter-resource communication has high la-
tency and the number of variables/constraints is too high for
the expected computational prowess of the resources. More-
over, a centralized control mechanism would be a single
point of failure. Consequently, distributed control mecha-
nisms are of interest.

1.1. ALGORITHM OVERVIEW
Previous papers [2, 3] reported on a simple distributed

synchronousalgorithm forconstraint optimization. The al-
gorithm has the following characteristics:

• The algorithm is an iterative, anytime process that typ-
ically produces approximate solutions: the algorithm
immediately generates and publishes a random solution
that it iteratively refines, publishing the solution after
each iteration. In this way, the control mechanism can
quickly initiate an initial response to changing tasks,
while optimizing its response as time allows.

• The algorithm may produce a perfect solution (in
which every constraint is satisfied) but its primary de-
sign objective is to increase the number of satisfied
constraints quickly (while they still matter) rather than
to satisfy all constraints eventually (by which time the
tasks have all changed and the solution is irrelevant).

• The algorithm is fully distributed: each resource de-
termines values for its own variables and communi-
cates them to its neighbours (i.e., nearby resources with



which it can interact). The algorithm is thus extremely
robust against resource failure.

• The algorithm is scalable: the per-resource, per-
iteration costs are proportional to the (mean) degree of
the constraint network, not to the size of the network.
In typical applications, the mean degree is expected to
be bounded because the range over which resources can
interact is limited.

1.2. PROBLEM FORMULATION AS GRAPH
COLOURING

In [2], the control problem for a distributed sensor net-
work was formulated as ak-colouring problem of a graph’s
vertices, in which:

• The vertices represent virtual sensors (collections of
physical sensors) that are each capable of tracking a
target.

• The edges represent mutual exclusion constraints be-
tween virtual sensors, that arise from the limitation that
a single physical sensor can scan in only one direction
at a time.

• The colours represent time slots in a cyclic schedule.
Thus, a proper colouring would represent a schedule
for the virtual resources in which no two mutually-
exclusive sensors were active simultaneously, which
translates into a schedule for the physical resources in
which no single sensor is expected to scan in two dif-
ferent directions simultaneously.

• The number of coloursk corresponds to the length of
the cyclic schedule. This is bounded by physical con-
siderations, as follows. A given target must be scanned
repeatedly and successive scans cannot be separated by
more than a certain amount of time (the maximumre-
visit period) if tracking is to be sustained; thus, the
maximum period of a schedule is bounded. But each
scan takes a non-zero amount of time (the minimum
dwell time) so the minimum length of a time slot in a
schedule is also bounded. Thus, the number of time
slots, and hence the number of colours, is limited.

More generally, acolour conflictis an edge that connects
two vertices that have the same colour. A conflict repre-
sents a glitch in a schedule, since it implies that two virtual
resources that are supposed to be mutually exclusive are ac-
tually scheduled to be active simultaneously. At the level
of the physical resources, a colour conflict represents a sin-
gle sensor that has been scheduled to scan in two different
directions simultaneously. Since the sensor cannot accom-
plish this, the quality of task accomplishment (target track-
ing) will be degraded. Thus, the objective of the colouring
algorithm/control mechanism may be stated as minimizing
the fraction of edges that are conflicts.

This paper carries on the graph colouring formulation of
the control problem. However, it should be noted that the al-

gorithm is easily adapted to other types of constraints (sim-
ply by redefining what constitutes a conflict) and, in prin-
ciple, to the optimization of an arbitrary metric over a dis-
tributed set of variables; see [4]. Work is ongoing on estab-
lishing the algorithm’s characteristics for these more general
settings.

1.3. ASYNCHRONOUS EXTENSION
In previous papers, execution of the algorithm was strictly

synchronous (essentially, it was a systolic algorithm): ev-
ery resource simultaneously executed a synchronized step
in which it updated its own colour; then they all transmitted
colour changes to their neighbours. Thus, the communica-
tion latency was exactly one.

Given the nature of the hardware anticipated for deploy-
ment of the algorithm, requiring strict synchrony is unre-
alistic (or too costly in communication terms). In this pa-
per, the effect of asynchronous execution is investigated —
the concept of a single ‘step’ of the algorithm is retained
in that the mean period between a given vertex’s colour up-
dates is fixed. However, the updates are now assumed to be
uniformly distributed throughout one period (so the vertices
have different offsets or phases determined, e.g., by when
their hardware clocks were initialized).

Because the vertices have different phases, the commu-
nication latency can have a significant impact on the algo-
rithm’s performance. If the latency is short compared with
the resources’ update period, then the probability of a re-
source’s information about its neighbours’ colours being out
of date is small — in this case, asynchronous execution may
be superior to synchronous execution. However, if the la-
tency is large compared with the update period, then the
probability of out-of-date information is high and the algo-
rithm’s performance may degrade.

2. SOFT GRAPH COLOURING

Given a set of verticesV , ak-colouring is an assignment
of one ofk colours (i.e., an integer inZk) to each vertex.
Let cv denote the colour of vertexv, wherev ∈ V .

Given a setE of undirected edges between pairs of dif-
ferent vertices, a (colour) conflict is an edge{u, v} ∈ E
such thatcu = cv. The degree of conflictof a colour-
ing is defined as the fraction of edges that are conflicts:
γ ≡ | {{u, v} ∈ E : cu = cv} |/|E|. A proper colouring
has no conflicts, soγ = 0; conversely,γ = 1 corresponds to
a colouring in which every vertex has the same colour.

A randomk-colouring has an expected degree of conflict
of 1/k. This provides a useful benchmark, particularly for
distributed algorithms, since a random colouring can be gen-
erated with no communication: it is to be hoped that a non-
random colourer can producek-colourings withγ << 1/k.

Define thenormalizeddegree of conflict byΓ ≡ kγ. Us-
ing this metric, a random colouring has an expected value of
1 and a non-random colourer may be gauged to be perform-
ing (very) poorly ifΓ approaches or exceeds 1.

The experiments reported below are based on
k−colourable random graphs having specified mean



1. Given a vertex setV , generate a random assignment
of thek colours to the vertices.

2. Start with an empty vertex set.

3. Choose at random a pair of vertices that are not
yet connected by an edge and that have difference
colours; connect these vertices with an edge.

4. Repeat step 3 until the required number of edges
have been constructed (where the required number
of edges is|V |d/2).

5. Erase the colour assignment.

Figure 1: Method for constructingk-colourable random graphs
having mean degreed

Each vertexv asynchronously and periodically executes
the following process, in whichp ∈ [0, 1] is fixed and is
the same for all vertices:

1. Generate a random numberrv ∈ [0, 1).

2. If and only if rv < p, activate and execute the fol-
lowing:

(a) Compute a histogramH of colour usage by
neighbours.

(b) Choose any colourc′ such thatH(c′) is mini-
mal.

(c) If and only ifc′ is not the current colour, adopt
it as the current colour and transmit a mes-
sage to all neighbours informing them of the
change.

Figure 2: The FP algorithm

degreed. These graphs can be constructed using the method
shown in Figure 1.

3. THE FP ALGORITHM
The algorithm reported in this paper is theFixed Proba-

bility (FP) algorithm, in which each vertex repeatedly picks
a colour for itself by periodically executing an simple opti-
mization step. In each step, the vertex first randomly deter-
mines if it shouldactivate. If and only if it activates, the ver-
tex then picks any optimal colour, i.e., one that minimizes its
conflicts with the colours it believes its neighbours currently
have (based on the messages it has received from them be-
fore the start of this iteration). When such a colour choice
results in a change of colour (the vertex’s current colour may
be retained if it is an optimal colour), the vertex commu-
nicates the change to its neighbours. Details are shown in
Figure 2.

The parameterp is called theactivation probability. It
plays a critical r̂ole in ensuring that the algorithm converges

to a stable colouring (assuming that exogenous character-
istics such as the topology remain fixed). Ifp is high and
the communication latency is significant compared with the
mean period between steps, then it is likely that a given ver-
tex will activate after a neighbour has changed colour but
before the colour change can be communicated. Thus, the
vertex will base its own colour choice on partially out-dated
information. If this happens frequently enough, the perfor-
mance of the algorithm degrades. In extreme cases thrashing
may result, whereby vertices continually change colour but
the quality of the colouring does not improve.

On the other hand, if the activation probability is too low,
then the rate at which the colouring can improve is artifi-
cially limited (since few vertices change colour in any given
step). Thus, it is necessary to balance coherence against par-
allelism. Previous papers have investigated this balance for
synchronous execution of FP. In this paper, the investigation
is extended to asynchronous execution including the effect
of communication latency.

The FP algorithm is very simple: it may be speculated
that more sophisticated versions could, for example, advan-
tageously vary the activation probability over time or from
point to point on the network (depending on local charac-
teristics such as the local degree). However, FP has been
found to perform surprisingly well over a range of classes
of graphs that are important for practical applications. Con-
sequently, it seems worthwhile to investigate its properties
before increasing its complexity.

4. THE EXPERIMENTS

In order to simply the experiments, the following assump-
tions are made:

• Every vertex performs a step of the FP algorithm
(which involves stochastic activation, colour choice
and initiation of communication) instantaneously and
exactly periodically.

• This period does not vary over time and is exactly the
same for every vertex. Without loss of generality, this
period is taken to be the unit of time.

• Communication latency is precisely determined (by a
parameter given to each experimental run): it does not
vary over time and is the same for all senders and re-
cipients. The communication latency is measured in
units of the FP step period, but it does not have to be an
integral multiple of the period.

In applications such as described in the introduction, the
step period is expected to vary from vertex to vertex and over
time because the anticipated hardware does not provide ac-
curate clocks and, while software can help to improve clock
accuracy, the resources are expected to periodically deacti-
vate to conserve energy: this can slightly skew the hardware
clocks. However, small amounts ofjitter are not expected to
cause qualitative differences from the results reported here.



On many platforms used for general-purpose computing
and control, the communication latency is expected to have
considerable variance, caused mainly by variance in the time
required for messages to traverse protocol stacks (which
variance in turn is caused mainly by multi-tasking in the
kernel). However, the hardware anticipated here for deploy-
ment of the FP algorithm is so simple that it cannot support
a full, multi-tasking operating system. Thus, variance in the
latency may well be less than for more complex systems. In
any case, a small variance in the latency is not expected to
cause qualitative differences from the results reported here.

The experimental methodology is straightforward:

1. Values for the following parameters are chosen: the
communication latency (l), the activation probability
(p), the number of colours (k), and the mean degree
(d).

2. The number of vertices,N , is randomly selected from
a range of 900 to 4900. A randomk-colourable graph,
havingN vertices and mean degreed, is constructed.

3. The graph’s colouring is randomly initialized. The
colouring’s normalized degree of conflict is mea-
sured/computed. (N.B.: measurement ofΓ is per-
formed by the experimental apparatus — it would not
be feasible to measureΓ in a practical deployment of
the algorithm because it requires gathering information
from across the whole network.)

4. The FP algorithm colours the graph for 10000 steps,
where a single step involves each vertex being given
a chance to activate (and change colour). After each
step, the colouring’s normalized degree of conflict is
measured.

5. Parts 2 to 4 are repeated 20 times for randomly se-
lected graph sizes but for the same latency, activa-
tion probability, number of colours and mean de-
gree. The reported results are averages over the 20
graphs/colourings.

The process is repeated for various, deliberately chosen
values ofl, p, k andd.

4.1. RESULTS
Experiments with synchronous execution of the FP algo-

rithm show that an activation probability of around 0.3 is
typically a good value for a wide range of graphs: it achieves
a quick reduction in the number of conflicts and is stable in
the long term. Consequently, the presentation of the exper-
imental results for asynchronous execution begins with the
results forp = 0.3,

Figure 3 shows the normalized degree of conflict against
the number of steps taken (averaged over 20 colourings) for
p = 0.3, d = 10 andk = 3 and for various latencies. Re-
sults for synchronous execution are included for compari-
son. Several observations may be made:
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Figure 3: Γ vs. steps ford = 10, k = 3, p = 0.3
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Figure 4: Γ̄ vs. l for d = 10, k = 3

• As the latency increases from zero, the short-term per-
formance degrades (i.e., the degree of conflict is higher
for the first few dozen steps). This is expected: in-
creasing the communication latency should slow down
the algorithm.

• However, the long term performance is hardly affected
by communication latencies up to 5 (where the latency
is measured in units of the period of the FP algorithm).

• For higher latencies, the long term performance sharply
becomes very poor; for a latency of 7, the performance
is about the same as for random colouring.

In order to assess the effect of latency further, the mean of
the normalized degree of conflict can be computed over the
steps of the FP algorithm:̄Γ ≡

∑S
i=1 Γi/S, where the num-

ber of stepsS is always 10000 in the experiments reported
here, andΓi is the normalized degree of conflict after stepi.

Figure 4 shows the mean normalized degree of conflict
against latency for various activation probabilities. Clearly,
for each activation probability, there is a threshold latency
above which the performance dramatically degrades. More-
over, this threshold varies inversely with the activation prob-
ability. This is not surprising since the average number
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Figure 5: Γ̄ vs. lp for d = 10, k = 3
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Figure 6: Γ̄ vs. pcollide for d = 10, k = 3

of times a vertex is expected to activate during some time
period is proportional to the activation probability — the
higher the probability, the more frequently a vertex activates
during a period equal in length to the communication la-
tency, and the more likely a vertex is to have out-of-date
information when updating its colour.

This reasoning suggests scaling the horizontal axis by the
activation probability, as shown in Figure 5. This figure
shows that at the point where the mean normalized degree of
conflict becomes 1,lp is approximately constant (i.e., the la-
tency and activation probability are approximately inversely
proportional). This reinforces the hypothesis that the main
factor in the degradation of the performance is how many
times a vertex activates on average during a period of length
one communication latency.

However, the figure also shows a trend favouring lower
activation probabilities: whenp is low, the algorithm can
tolerate latencies higher than would be expected from the
above considerations. A simple probabilistic argument gives
the probabilitypcollide that when a vertex changes colour, at
least one of its neighbours has changed colour within the
precedingl time units aspcollide ≈ 1− (1− p)l.

Figure 6 shows the mean degree of conflict plotted against
pcollide for various latencies and activation probabilities.
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d k p l Γ̄
10 3 0.3 15 2.01
10 3 0.3 30 2.17
10 3 0.3 50 2.18
20 7 0.1 40 1.85
30 12 0.2 80 1.96

Figure 8: Γ̄ for high-latency

The plots are clearly approximately consistent, but insuffi-
cient data has been collected to assess the consistency quan-
titatively. Moreover, while qualitatively similar results are
found for other classes of graph (e.g., having higherd and
k), the threshold at which the mean normalized degree of
conflict sharply increases is not the same for each class of
graph. Further experiments would need to be performed to
determine: (1) the relationship, if any, between the threshold
and, say,d andk; (2) whether the threshold corresponds to a
sharp phase transition or a smooth, albeit steep, increase in
conflicts.

4.2. VERY HIGH LATENCIES
When the latency is very high (lp >> 1), the FP al-

gorithm behaves rather surprisingly: in particular, the nor-
malized degree of conflict tends to a mean value of ap-
proximately 2 (although with strong fluctuations), regard-
less of the number of colours, mean degree and activation
probability. For example, Figure 7 shows the normalized
degree of conflict against steps for a latency of 50 (with
d = 10, k = 3, p = 0.3) and Figure 8 shows values of the
mean normalized degree of conflict for various parameters
(all averaged over 20 colourings).

Figure 9 shows even more surprising results. It shows
what fraction of vertices have each colour after every step of
the algorithm: the usage of each colour rises and falls cycli-
cally over time, with each becoming dominant in turn (note
that at the peaks of the cycles, almost every vertex has the
same colour). Similar results are obtained for higher num-
bers of colours, although the peaks can be less regular/well
formed.

Analysis of these results suggests that the time lag corre-
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sponding to the communication latency causes the control
mechanism to be caught in an out-of-phase, oscillating tra-
jectory. The period of oscillation appears to be at least twice
the latency, corresponding to a phase lag of less thatπ.

These results are interesting and warrant further inves-
tigation, but their immediate practical ramification is that
good performance under high-latency communication re-
quires low activation probability; i.e., the probability of col-
lision needs to be kept below a critical threshold, as dis-
cussed above.

5. CONCLUSIONS
Two qualitative results are strongly supported by the ex-

periments reported here: (1) the FP algorithm can be ef-
fectively executed asynchronously, and (2) it can be readily
adjusted to accommodate communication latency through a
combination of increasing its period and reducing its activa-
tion probability.

The most important quantitative result relates to the
threshold in the dependence of the mean normalized degree
of conflict on the probability of collision — it is anticipated
that plots such as Figure 6 can be compiled for combinations
of problem-specific characteristics such as the mean degree
of the constraint network and the number of colours, and
the plots used to relate the communication latency to how
frequently vertices should change colour.

For example, in a practical application the communica-
tion latency may be fixed by the choice of hardware and the
step period of the FP algorithm may be fixed by other pe-
riodic tasks that must be serviced. Plots such as Figure 6
can then be used to determine optimal values for the activa-
tion probability. The precise definition of optimality may be
problem-specific, but two typical cases are:

• If short-term reduction in the number of conflicts is of
overwhelming importance, then the activation proba-
bility should be set so that the probability of collision
falls just below the threshold. This will guarantee re-
sponsiveness in the control mechanism.

• If low communication cost is more important than

short-term reduction in the number of conflicts, then
the activation probability should be set to a moderate
value such that the probability of collision is well be-
low the threshold.

Many more experiments will need to be performed before
such determinations are feasible in general. Nevertheless,
the qualitative results are important because they greatly
simplify the deployment of the FP algorithm on cheap, low-
performance hardware; if the reported results did not hold, a
method for tightly synchronizing the hardware units would
need to be implemented.

6. RELATED WORK
The Fixed Probability algorithm is an extension of a de-

terministic algorithm described in [1]. Yokoo [5] describes
a distributed constraint satisfaction algorithm called Dis-
tributed Breakout (DB) that is based on localized manipu-
lation of edge weights, intended to avoid stagnation in local
optima; experimental comparison of the FP and DB algo-
rithms is reported in [6].
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