
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c©2002 Society for Desing and Process Science

Scalable, Anytime Constraint Optimization through
Iterated, Peer-to-Peer Interaction in Sparsely-Connected Networks

Stephen Fitzpatrick and Lambert Meertens
Kestrel Institute

3260 Hillview Avenue, Palo Alto, CA 94304, USA
fitzpatrick@kestrel.edu & meertens@kestrel.edu

ABSTRACT:This paper reports on an algorithm for any-
time, stochastic, distributed constraint optimization that
uses iterated, peer-to-peer interaction to try to achieve
rapid, approximate solutions to large constraint problems
in which the constraint variables are naturally distributed.
Two examples are given — graph coloring and coordina-
tion of distributed sensors — together with experimental
results on performance.

I. I NTRODUCTION

Dynamic, distributed constraint optimizationproblems
arise naturally in high-latency networks of loosely-coupled
nodes that must collaborate to accomplish some time-
varying set of tasks. The objective is to determine a time-
dependent mapping from a set of variables (representing
some control states of the nodes) to allowable values, such
that the mapping optimizes some trade-off between the
quality of task accomplishment and the costs of the nodes’
actions (which result from setting the variables to the spec-
ified values). The allowable values are determined by con-
straints on an individual node’s variables and between vari-
ables on separate nodes.

The variables are naturally distributed because they are
tightly coupled to physical nodes that are themselves dis-
tributed, and the communication latency is too high to per-
mit effective remote control.

When the set of tasks to be accomplished is dynamic
(e.g., individual tasks change or the number of tasks
changes exogenously), a network may be required to re-
spond in soft real time.

For example, small, cheap, autonomous, battery-
powered sensors and actuators equipped with low-power
radio transmitters/receivers enable the deployment of large,
scalable sensor/effector networks, with the following typi-
cal characteristics:
• Each node in the network accomplishes some local, sim-
ple task, such as acquiring a single measurement of a

This work is sponsored in part by DARPA through the ‘Autonomous
Negotiating Teams’ program under contract #F30602-00-C-0014 and the
‘Networked Embedded Software Technology’ program under contract
#F30602-01-C-0123, both monitored by the Air Force Research Labo-
ratory. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

nearby, moving target.
• A single node’s actions may be rather constrained. For
example, a single sensor may be able to take measurements
in only one direction at a time.
• A single node may be unreliable, but it is likely that a
nearby node can substitute when a given node fails.
• Multiple, nearby nodes need to collaborate to accomplish
mission-level taskssuch as tracking a moving target over an
extended period.
• The number of nodes may be high. For example, net-
works containing105 sensors are currently envisioned [7].
• Communication is limited: bandwidth is low (compared
with wired networks), range is limited (compared with the
size of the network) and latency is high (in part because the
underlying communication mechanism has high latency,
but also because many nodes may contend for a limited
number of communication frequencies).
• Energy conservation is important. A sensor network may
be required to operate unattended for an extended period,
and the energy costs associated with actions such as active
sensing (e.g., emitting a radar beam) or transmitting mes-
sages are significant.
• Exogenous parameters can be predicted with reason-
able reliability, but soft-real-time responsiveness is required
when the parameters change in unexpected ways. For ex-
ample, a target’s trajectory may be projected, say, fifteen
seconds into the future with reasonable certainty, but oc-
casionally the target may sharply change velocity and then
the network may be required to adapt its actions to the new
trajectory in a few seconds.

Such networks are expected to be cheaper to deploy
and maintain than traditional sensor systems (comprised
of a few, high-performance nodes). However, the prob-
lem arises of how to achieve good, scalable, autonomous,
soft-real-time resource coordination: the value associated
with mission-level tasks (such as tracking a target) is high
so the quality of task accomplishment is important, but the
individual sensors are limited in their sensing capabilities
(requiring multi-sensor collaboration) and energy is limited
(implying that collaboration must be ‘intelligent’ — flood-
ing each target with sensor energy would be wasteful).

Centralized coordination is expected to be unscalable,
because resource management is typically combinatorially
hard (so solving a problem for105 nodes in soft-real-time

2

would require considerable computing prowess), a cen-
tralized coordinator would require communication with all
parts of the network (resulting in high latency due to the
range of a single transmission, even if the communication
bandwidth is sufficient), and a centralized controller would
represent a single point of failure (the controller’s failure
would disable the entire network).

Strict decomposition of the network into fully-independ-
ent regions, each small enough that communication latency
and combinatorial complexity are manageable, is typically
not possible because, for any particular decomposition, it
is typically possible to find mission-level tasks whose op-
timal accomplishment requires collaboration between sen-
sors in the supposedly independent regions. (For example,
if the size of the independent regions is determined by com-
munication latency, then target trajectories would rarely be
contained within a single region.)

Of course, decomposition may be approximate: for ex-
ample, collaboration may occur between regions as well as
within individual regions. The issue to be addressed then
would be how to coordinate the regions while maintaining
fault tolerance but without drastically increasing communi-
cation. For example, if each region has a designated leader
responsible for coordination with other regions, then sen-
sor coordination involves several levels of communication
(sensor-leader and leader-leader) and failure of the leader
results in failure of the whole region in naı̈ve implementa-
tions.

While region-based coordination cannot be dismissed as
readily as centralized coordination, it seems natural to pur-
sue a coordination topology that mirrors the communication
and collaboration topologies. Because a sensor’s measure-
ments and communication have limited range (extending
over meters rather than kilometers), a given sensor typi-
cally collaborates with other sensors that are geographically
close to it. This suggests that a sensor should coordinate
directly with nearby sensors, in a fully-distributed, peer-to-
peer fashion. While there are similarities with the regional
decomposition approach, the main difference is that there
are no artificially imposed boundaries.

Peer-to-peer coordination is expected to be fully scalable
(the communication and computational costs of a single
node are determined by the number of sensors within inter-
action range, not by the total number of sensors in the net-
work) and extremely fault tolerant (the failure of a single
node should result in little degradation in performance of
the overall network). Moreover, because long-range, high-
latency communication is avoided, itmay be possible to
achieve soft-real-time responsiveness.

The central problem, and the main topic of this paper,
is to ensure high-quality accomplishment of mission-level
tasks using peer-to-peer coordination.

II. A PEER-TO-PEER CONSTRAINT OPTIMIZATION

ALGORITHM

The primary characteristic of the distributed constraint
optimization algorithm described in this paper is thateach
node makes its own decisions: i.e., each node determines
the values of its own variables. For example, in a sensor
network, each sensor node determines what measurements
it will take.

Of course, in order to make good decisions, a node needs
to know what is occurring in the real world and what are the
near-term intentions of those nodes with which it interacts.
(‘Near-term’ means far enough into the future that commu-
nication latency is relatively insignificant.) For example:
• A sensor node may operate in different measure-
ment modes (target acquisition or tracking) depending on
whether or not a target is nearby; more precisely, the mea-
surement mode may be determined by the node’sknowl-
edgeof target trajectories.
• If a sensor node knows that only one other nearby sensor
intends to take a measurement of some specific target, it
may decide to also take a measurement of that target, and
to do so at the same time as the other node, to enhance the
quality of their combined measurements.
• Conversely, if a sensor node knows that two other nodes
will both be taking measurements of some target, then the
node may decide to turn off its sensors to conserve energy.

Thus, the design paradigm for peer-to-peer optimization
is to determine what information a node needs to make good
decisions by itself, and to determine how to provide that in-
formation to each node with sufficiently low latency and in
a cost-effective manner. (Of course, that will not be possi-
ble for some problems.)

For example, in a sensor network, each node may peri-
odically broadcast the measurements that it has acquired,
so that each node has sufficient information about the real
world in its vicinity to compute estimates of trajectories of
nearby targets. Each node may also periodically broadcast
its intentions regarding what measurements it will take in
the near future, so that each node can adjust its own actions
to best match/complement those of its neighbors.1

Having such information at hand, each node adjusts its
own variables to optimize a local version of the global prob-
lem quality metric. Since a single node may not be able to
ensure that all constraints involving its variables are satis-
fied, account must be taken of violated constraints. These
can be incorporated into the quality metric by assessing a
penalty for each violated constraint, which penalty may de-
pend upon the degree of violation. (In other words,soft
constraintsare used.)

For example, if the global metric is based on tracking
all targets well and reducing energy expenditure, then each

1Broadcasting is assumed to be restricted by the physical range of low-
power radio transmissions, so a broadcast message reaches only a small
number of nearby nodes. Broadcasting is thus scalable.

3

node adjusts its own variables so that the targets it knows
about are tracked well and its own energy expenditure is
minimized.

Decision making (i.e., variable assignment) and informa-
tion dissemination are ongoing tasks: if exogenous param-
eters remain relatively stable (e.g., targets move in straight
lines) then the quality of the global solution is expected to
improve over time as nodes repeatedly perform local opti-
mizations; if exogenous parameters change (e.g., a target
changes direction) then adaptation occurs first where the
change is directly measured and then ripples through the
network (as nodes disseminate new information about the
real world and new values for their variables).

Moreover, each node always has availablesomevalues
for its local variables, and so it is always able, when help-
ful, to participate in accomplishing mission-level tasks. In
other words, the physical actions of the network (e.g., tak-
ing measurements) arenot postponed for some indefinite
period, waiting for network coordination to determine an
ideal solution to a large combinatorial problem.

——————–

A. Issues

There are, of course, several potential drawbacks associ-
ated with the approach described above.

A.1 Problem does not fit

Peer-to-peer optimization will not be suitable for all net-
work problems. For example, a later section shows how
to use the algorithm for coloring sparse graphs, but the al-
gorithm would not be suitable for coloring dense graphs:
for example, if used to color a complete graph, each node
would acquire a local problem that is identical to the origi-
nal global problem.

A.2 Coherence/convergence

Each node is continually adjusting its own behavior
based on its beliefs regarding other nodes’ intended behav-
ior. Since those other nodes are also adjusting their behav-
ior, it is possible forincoherenceto result when the rate
of change approaches the rate at which information about
changes can be disseminated.

In extreme cases, the quality of the global solution may
be worse than, say, a random solution. Moreover, the nodes
may not converge to a stable solution, and may continu-
ally expend energy communicating new values without im-
proving the solution — this situation may be described as
thrashing.

In the algorithm reported here, a simple stochastic tech-
nique is used to reduce the number of nodes that may
change their values at any given time and thus help achieve
convergence. Of course, if the reduction were too severe,
the adaptivity of the network would suffer: coherence and
adaptivity must be balanced.

A.3 Global optimality not assured

Even if all of the nodes converge to a stable set of values
for their variables, in which each node’s values are optimal
given the other nodes’ values, the global solution may be
sub-optimal. This defect may be unavoidable if only lo-
cal interaction is allowed and real-time adaptivity required.
The practical questions are whether the solutions are good
enough in actual use, and whether another algorithm can
produce better solutions in the time available.

——————–

B. Algorithm Details

Both the sensor example and the graph coloring example
described below can be formulated abstractly as follows:
• In a network of nodesN ,
• each nodeu must determine a value for a local variable
xu (which may be a complex data structure such as a sched-
ule of measurements),
• such that xu optimizes a locally-computable metric
µ(xu, {xu

v}), wherexu
v representsu’s knowledge ofv’s

variable. The metric may include terms for task accom-
plishment, penalties for violated constraints, and costs of
operating the network.

The proposed algorithm,FP(p) wherep ∈ (0, 1] is the
fixedactivation probability, is an iterative, hill-climbing al-
gorithm that operates as follows:
• Each nodeu (quasi-)periodically determines if it should
activateby generating a random numberru ∈ [0, 1) and
comparing withp: the node activates iffru < p. (For
the graph coloring example, a ‘conservative’ constraint is
added: a node will not activate if it already has an optimal
solution. It is not yet clear for which other problems this
conservative constraint will be useful.)
• If the node activates, it determines a value for its local
variablexu that is optimal according to its metricµ, given
what it currently knows of the variables of nearby nodes.
For simple data structures, it may be possible to identify
all optimal values, in which case one is selected at random.
For complex data structures, optimality may be local in the
hill-climbing sense (the current value ofxu gives a higher
metric value that any of the values adjacent toxu, but there
may be values further away that would give better metric
values).
• If the node activates and changes its variable, it broad-
casts the new value to nearby nodes.

The initial values of the variables are determined simply,
by randomization for example.

The following sections show how to apply this algorithm
to two examples: distributed sensor coordination and dis-
tributed graph coloring.

III. D ISTRIBUTED SENSORCOORDINATION EXAMPLE

The distributed sensor coordination example shows how
the peer-to-peer optimization algorithm can be applied to

4

a more-or-less realistic application. The experiments that
have been performed to date for this example are proof-of-
concept experiments. In-depth experiments into the dynam-
ics of the algorithm are discussed below in the distributed
graph coloring example.

The objective of the resource manager (i.e., the dis-
tributed constraint optimization algorithm) in this sensor
network example is to optimally coordinate the actions of
sensors so as to obtain measurements that are input to a tar-
get tracker to produce aworld estimate— i.e., a probabil-
ity distribution/density function over the states of possibly
multiple targets (e.g., positions and velocities).

Conceptually, an appropriate metric for gauging the per-
formance of the resource manager would be some mea-
sure of how accurately the target states are known (e.g., the
‘width’ of the probability density function) compared with
the costs of taking the measurements.

However, determining how a particular measurement
will affect an estimate can be rather complex, so aproxi-
matemetric may be substituted which attempts to directly
characterize themeasurement quality. For example, typi-
cally the quality of a measurement is expected to drop as
the distance between a sensor and a target increases.

Thus, given a current world estimate and a proposed set
of measurements, the (global, conceptual) quality metric:
1. predicts where targets are expected to be when the mea-
surements are taken byevolvingthe world estimate accord-
ing to somemodel of evolution;
2. determines the quality of each measurement based on
the expected target positions;
3. combines the single-measurement qualities into an over-
all quality for each target;
4. combines the single-target metrics into a single, overall
metric for the entire proposed set of measurement.
The resource manager attempts to determine a set of mea-
surements that optimizes the trade-off between the mea-
surements’ quality and cost [6].

In practice, a world estimate may be considerably sim-
plified to reduce computational costs, and for simplicity of
this discourse, it is assumed that target states are precisely
known and their evolution is deterministic. Thus, a world
estimateWt at timet is represented as a pair of maps from
target indexi ∈ I to exact target positionsPt and velocities
Vt: Wt ≡ 〈Pt, Vt〉.

Under this formulation, the above steps become:
1. Given a proposed set of measurements and times for
performing the measurements,M ≡ {〈mj , tj〉}, the ex-
pected position of each target is computed at each time:
~p(i, tj) = ~Pt(i) + ~Vt(i).(tj − t).
2. The expected quality of each measurement is computed
based on the target positions. Since each measurement
can acquire information about any subset of the targets,
the quality metric for a single target is expressed as a
map from target to, say, real numbers:q(Wt,mj , tj) =
{i ∈ I → q0(~p(i, tj),mj)} whereq0 is some function cap-

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

combined quality

sum of quality from individual sensors

Fig. 1. Non-linear function for combining measurement qualities:y =
x4/(24 + x4)

turing the physical realities of sensor-target measurement
quality.
3. Individual measurement qualities are then combined
component-wise:

Q(Wt,M) = { i ∈ I →
Qc({q(Wt,mj , tj)(i)|〈mj , tj〉 ∈ M})} .

The combination functionQc can have arbitrary form, but
the intention is that it should reflect the value of sensors
collaborating on measuring a single target. For example, it
may award a low value if only two far-off sensors measure
a target, a high value if two or three near sensors measure
a target, but only a slightly higher value if more than three
sensors measure a target — see Figure 1. In this way, lack
of collaboration is penalized, as is swamping of a single
target by many sensors (since the increase in quality is low
compared with the increase in costs).
4. The overall metric represents some cumulative value,
e.g., the sum, of the single target metrics:µ(Wt,M) =∑

i∈I Q(Wt,M)(i).
In practice, the measurement quality metrics may ac-

count for multiple-target interference (e.g., one target ob-
scuring a sensor’s view of another target) and lack of si-
multaneity of measurements: both of these effects are eas-
ily accommodated in this formulation.

Terms should also be included to account for violated
constraints and energy expenditures: these are straightfor-
ward and are not discussed further.

——————–

A. Localizing the Metric

Having defined the global metric for resource manage-
ment, a local, single-node metric can be formulated to al-
low a node to optimize its own behavior. The local metric
is essentially the same as the global metric, but is restricted
to the information that a single node has at hand, namely:
• Each node has an estimate of the states ofnearbytargets.
In order for each node to be able to compute its estimate,

5

each node periodically broadcasts its measurements (which
are received by all nodes within transmission range). Each
node combines its own measurements with those it receives
from nearby nodes to maintain its world estimate.
• Each node knows, with some latency, what measure-
ments nearby nodes intend to take in the near future; i.e.,
it has nearby nodes’schedules. As with the measurements,
this is achieved by each node periodically broadcasting its
own schedule.

Thus, the objective of each node is to compute a schedule
of measurements that it will take in the near future, such that
the schedule’s combination with the schedules of nearby
nodes is optimal with respect to the node’s current world
estimate.

Let Wu
t be nodeu’s world estimate, andMu

v be whatu
believes isv’s measurement schedule. Then nodeu is to
compute its own scheduleMu of measurements such that
Q(Wu

t ,Mu) is optimal, whereMu ≡ Mu ∪
⋃

v Mu
v is the

combined schedule known tou. The details of how each
node optimizes its own schedule are not considered here,
but some variant of hill-climbing seems suitable.

——————–

B. Experiments with a Simulated Sensor Network

The experiments carried out for this example, to date, are
small-scale, proof-of-concept experiments, based on a sim-
ulator of a network of simple radar sensors and one or two
moving targets. Each sensor has three radar beams but only
one analogue-to-digital converter: the beams can be acti-
vated in any order, but only one of them can be sampled at
any given time. A beam uses energy while it is active (even
if it is not being sampled), and there is a significant latency
between a beam being activated it stabilizing sufficiently to
give reliable measurements. A resource manager such as
described above is used to determine which measurements
should be taken and when beams should be activated and
deactivated.

In these small-scale experiments, each node computes
nearly identical world estimates. The target positions esti-
mated by one of the nodes is compared with the true target
positions (as recorded by the simulator).

Figure 2 shows results for 8 sensors and 1 target; Figure 3
shows results for 8 sensors and 2 targets. The (simulated)
room size is40 × 40 meters2. The triangles represent the
positions and orientations of the sensors. The black circles
represent position estimates produced by the tracker. The
gray lines obscured by the black circles represent the true
target paths.

The error in a position estimate~p at timet can be com-
puted as the distance between~p and the true target position
~g at timet. The track quality can be measured as the root-
mean-square of the single-estimate errors. For a single tar-
get, r.m.s. errors of about 0.6 meters are obtained; for two
targets, about 0.9 meters. These values are close to the limit
(about 0.5 meters) of what the tracker is expected to be able

Fig. 2. Tracking a single target

Fig. 3. Tracking two targets

to achieve, given its approximation techniques, its model of
the targets, and (simulated) sensor noise.

The mean power usage is about 50% (meaning that, on
average, half the beams are on at any given time). This is
slightly higher than would be hoped for, especially for a
single target, for which it should be possible to reduce the
power usage to around 33% (meaning that only one beam
is active on each node, on average).

6

IV. A LGORITHM DYNAMICS : EXPERIMENTS WITH

DISTRIBUTED GRAPH COLORING

The sensor coordination example shows how a real-life
problem can be solved using peer-to-peer constraint opti-
mization. However, it is not straightforward to isolate the
performance of the constraint optimization algorithm from
the performance of the tracking algorithm. To better in-
vestigate the former, experiments can be performed with
distributed graph coloring.

Given an undirected graphG with node/vertex setN and
edge/arrow setE, ak-coloringCk is an assignment of one
of k ‘colors’ to each node:Ck ≡ {v ∈ N → cv ∈ Zk}.
The quality metric on an coloring is thedegree of con-
flict, defined as the fraction of edges that are conflicts
(i.e., that connect nodes of the same color):γ ≡
| {{u, v} ∈ E|cu = cv} |/|E|.

This metric has a range from 0 (no conflicts, correspond-
ing to aproper coloring) to 1 (all conflicts, corresponding
to a single-color coloring). A randomly generated coloring
has an expected metric of1/k: this provides a useful base-
line for non-random colorers, since a random coloring can
be computed without inter-node coordination.

The degree of conflict is a global metric. In the peer-
to-peer colorer described here, each node chooses its own
color so as to optimize a local metric. In order to define
a suitable local metric, the following two assumptions are
made:
• Each node knows who its neighbors are. That is, each
nodeu knowsEu ≡ {v ∈ N | {u, v} ∈ E}.
• Aside from its own color, each node also knows, with
some latency, the color chosen by each of its neighbors.
Let cu

v (v ∈ Eu) denote the color that nodeu believes node
v has.

Then the local degree of conflict is defined asγu ≡
| {{u, v} ∈ Eu|cu = cu

v} /|Eu|. The peer-to-peer colorer
is based on each node minimizingγu: i.e., when a node
chooses a color for itself, it chooses any color that it be-
lieves is least used among its neighbors.

Simple experiments can be performed to investigate the
dynamical properties of the distributed constraint optimiza-
tion algorithm — scalability, stability, short-term conflict
reduction and long-term convergence. In the experiments
reported below, the colorer is synchronous: each node
executes an activation/color-selection step simultaneously,
then executes a communication step (if needed) simultane-
ously.

Preliminary experiments have also been performed with
an asynchronous colorer — most of the results carry across,
but convergence is simpler to achieve in the asynchronous
case provided that the communication latency is signifi-
cantly lower than the mean period between the nodes’ ac-
tivation steps. (In effect, asynchronous execution results
in fewer nodes changing color simultaneously, resulting in
better coherence.)

——————–

A. Overview of the Experiments

The graph coloring example provides simple, clean met-
rics for investigating various aspects of the performance of
the FP algorithm, namely:
• Long-term convergence— the algorithm is allowed to
run for a relatively long time on a fixed graph and the de-
gree of conflict measured at the end of the run. This value
indicates how well the algorithm performs under stable con-
ditions; for example, it might be hoped that it would even-
tually achieve a proper coloring, if the number of colors is
at least the chromatic number.
• Short-term conflict reduction — the degree of conflict
is measured over a relatively short time as the algorithm
runs on a fixed graph. This experiment is probably the most
critical, since it reflects the real-time responsiveness of the
algorithm.
• Scalability — the degree of conflict is measured as the
algorithm runs on graphs of various sizes. This allows the
effect of graph size to be quantified.
• Robustness— as the algorithm runs, the degree of con-
flict is measured and the graph’s topology is varied in such
as way as to (likely) maintain the chromatic number. The
topology changes can be minor and continual (showing how
the algorithm responds to fluctuating unreliability in a sys-
tem) or major and intermittent (showing how the algorithm
responds to wide-scale failures).

These performance aspects were investigated in several
experiments, as described below.

——————–

B. Effect of Activation Probability

The performance of the FP(p) algorithm depends criti-
cally on the activation probabilityp. For example, Figure 4
shows the degree of conflict over time for various values
of p. The results shown are averages for 2-dimensional
Cartesian networks; i.e., graphs with nodes at(i, j) where
i, j = 0, 1, 2, . . ., and with edges between neighboring
nodes along either axis or diagonal.2 If edge effects are
ignored, such graphs have mean degree 8 and chromatic
number 4 — 4 colors were used for the experiment. Sim-
ilar results were obtained for other, regular graphs and for
random graphs of higher chromatic number.

Note that the degree of conflict has been normalized by
multiplying it by the number of colors; this produces a scale
on which a random coloring has an expected value of 1.

For highp, the algorithm converges slowly — for very
highp (on complex graphs) the algorithm may produce col-
orings that are worse than random, and may not converge.
For lowerp, the algorithm converges to a low value, but
does not reach zero in the time allowed, even though the

2Similar results have been obtained in experiments on sparse, random
graphs of higher chromatic number.

7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000 10000

no
rm

al
iz

ed
 d

eg
re

e
of

 c
on

fli
ct

step

(0.1)
(0.3)

(0.5)

(0.7)

(0.9)

p
0.1
0.3
0.5
0.7
0.9

Fig. 4. Effect of activation probability

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

no
rm

al
iz

ed
 d

eg
re

e
of

 c
on

fli
ct

step

number of colors
2
3
4
5
8

30

Fig. 5. Effect of number of colors

number of colors is equal to the chromatic number. This is
not surprising given the purely local nature of the algorithm.

Over shorter times, e.g., the first ten steps, the reduction
in conflicts is best for moderate values ofp, e.g., 0.3–0.5.
Note that even though highp eventually results in degrees
of conflict the same as, or even lower than, those for lower
p, the short-term results for highp show that highp is ill-
advised for real-time applications.

——————–

C. Effect of Number of Colors

The number of colors compared with the chromatic num-
ber gives one measure of how tightly constrained a problem
is: if the number of colors is less than the chromatic num-
ber, then the problem is over-constrained and it is impos-
sible to eliminate all conflicts; if the number of colors is
equal to the chromatic number, then the problem is criti-
cally constrained; if the number of colors is greater than the
chromatic number, then the problem is under-constrained.

The effect of constraint tightness is shown in Figure 5
for 2-dimensional Cartesian graphs with diagonals, as de-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 d

eg
re

e
of

 c
on

fli
ct

step

Fig. 6. Effect of graph size

scribed above. (Note that each line, corresponding to differ-
ent number of colors, is separately normalized.) In these re-
sults, when the problem is over-constrained, the algorithm
converges to a near-optimal coloring (γ = 0.509 on av-
erage for 2 colors, compared with a theoretical minimum
of 0.5, and0.382 for 3 colors compared with a theoretical
minimum of0.375).

When the problem is critically constrained, the algorithm
achieves a low, but non-zero, degree of conflict (γ = 0.03).
When the problem is under-constrained, the algorithm re-
duces the number of conflicts to zero.

——————–

D. Scalability

Figure 6 shows typical FP performance with 4 colors on
2-dimensional Cartesian graphs (with diagonals) of various
sizes, ranging from 400 to 4000 nodes (each line is an av-
erage over 20 graphs of the same size). The effect of graph
size (for large graphs) is small. There is likely no correla-
tion between the convergence value of the degree of conflict
and the graph size, but an appropriate statistical analysis has
not been performed.

Examination of the algorithm shows that FP’s per-node,
per-step storage, computational and communicationcosts
also do not depend on the graph size — these costs depend
on (mean) degree of the graph and for the classes of prob-
lems under consideration, the degree of the graph is inde-
pendent of the size of the graph. (For some well-known
classes of graph, such as complete graphs, the graph’s de-
gree does depend on its size, but such classes are not likely
to be important in the types of problem under considera-
tion.)

——————–

E. Robustness

In these experiments, a graph of sizeN is initially con-
structed and some fractionq of the nodes (together with all

8

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

no
rm

al
iz

ed
 d

eg
re

e
of

 c
on

fli
ct

step

change=10%/step
static topology

Fig. 7. Effect of continual, minor change

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

no
rm

al
iz

ed
 d

eg
re

e
of

 c
on

fli
ct

step

20% change/30 steps

Fig. 8. Effect of intermittent, major change

incident edges) is randomly removed and recorded. The
graph is then transformed everyP steps as the coloring al-
gorithm runs, as follows:
• A fraction q of the nodes (with all incident edges) is ran-
domly removed and recorded.
• From the2qN nodes that are currently removed,qN
are randomly selected and reinserted into the graph (along
with all removed edges for which both end nodes are now
present in the graph).

Figure 7 shows the effect of small-scale changes occur-
ring continually: the effect on the degree of conflict is
small. Figure 8 shows the effect of large-scale changes oc-
curring intermittently: the degree of conflict spikes imme-
diately after a change, but quickly reduces again (and, in
the long term, continues to reduce overall).

The most important result of these experiments is that
they demonstrate that the algorithm does not suffer catas-
trophic failure, even when subject to quite drastic changes.

The effect of communication noise can also be demon-
strated by subjecting each color-change message to a ran-
dom process that may cause the message to be discarded

or corrupted. The effect on the performance of the algo-
rithm is incremental — small amounts of noise cause small
increases in the degree of conflict, larger amounts of noise
cause larger increases — but again, catastrophic failure is
not observed.

V. RELATED WORK

Most work on distributed constraint satisfaction or op-
timization addresses algorithms in the classes of simu-
lated annealing or parallel branch-and-bound, in whichthe
search spaceis distributed over some network of nodes
and in which each node contains a complete solution to the
problem.

In contrast, in the algorithm considered here, a single so-
lution is distributed over the network of nodes, so that each
node contains only a small fragment of a complete solution.
This latter approach seems better suited to real-time control
problems, in which communication latency essentially pro-
hibits the gathering of information into a single node.

Other work on this latter form of distribution has been
carried out by Yokooet al. [8]. A deterministic version of
the FP algorithm considered here was published by Fabi-
unke [3] — its performance is compared with the FP al-
gorithm in [4]. However, these and other works seem to
emphasize the long-term convergence properties of algo-
rithms, whereas the property considered most important in
this paper is the short-term improvement, since that relates
directly to real-time responsiveness.

VI. CONCLUSION AND FUTURE WORK

This paper describes a simple, peer-to-peer constraint op-
timization algorithm designed for sparsely-connected net-
works. In-depth experiments on graph coloring show the
algorithm to be scalable and robust, and capable of long-
term stability and good short-term dynamics when used ap-
propriately. Proof-of-concept experiments on sensor coor-
dination show that algorithm can be applied to realistic ap-
plications.

Further investigations should include the following:
• Other neighborhoods: the algorithm described here con-
siders just the interaction of a node with its immediate
neighbors. Other algorithms might consider the mutual in-
teractions of those neighbors, or more distant nodes.
• Dynamic activation probabilities: the algorithm reported
here uses a fixed, uniform activation probability. It seems
plausible that dynamically adapting the activation proba-
bility, based on local information, would improve perfor-
mance. However, initial experiments along these lines have
yet to find significant improvements over the fixed proba-
bility algorithm.
• In-depth experiments on sensor networks: the perfor-
mance of an FP-based resource manager could be compared
with, say, the performance of a manager that selects mea-
surements at random or based on a simple, local rule (one
that does not allow for inter-sensor coordination). It should

9

also be possible to assess the performance of the manager
directly, rather than through tracking performance: good
tracking is of course the ultimate objective of the sensor net-
work, but it can be difficult to separate the performance of
the resource manager from the performance of the tracker.
• Experiments are currently underway on using the FP-
based resource manager on physical sensors (rather than
simulated sensors). Several tangential problems need to
be resolved (e.g., accounting for physical effects such as
multi-path interference, caused by reflections of the radar
beam) before the performance of the distributed constraint
optimization algorithm can be assessed.

REFERENCES

[1] The ANTs Challenge Problem,
http://ants.kestrel.edu/challenge-problem/index.html

[2] Iterated Greedy Graph Coloring and the Difficulty Landscape, Joseph
Culberson, Technical Report TR 92-07, Department of Computing
Science, The University of Alberta, Edmonton, Alberta, Canada, June
1992

[3] Parallel Distributed Constraint Satisfaction, Marko Fabiunke, Pro-
ceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99), pp. 1585-1591,
Las Vegas, June 1999

[4] An Experimental Assessment of a Stochastic, Anytime, Decentral-
ized, Soft Colourer for Sparse GraphsStephen Fitzpatrick & Lam-
bert Meertens,1st Symposium on Stochastic Algorithms: Founda-
tions and Applications, 13-14 December 2001 Berlin, Germany, Lec-
ture Notes in Computer Science 2264, Kathleen Steinhofel (Ed.),
Springer-Verlag ISBN 3-540-43025-3, pp. 49-64

[5] Experiments with Parallel Graph Coloring Heuristics, Gary
Lewandowski & Anne Condon, inCliques, Coloring and Satisfiabil-
ity, DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science , Volume 26, American Mathematical Society, 1996,
pages 309-334

[6] Peer-to-Peer Coordination of Autonomous Sensors in High-Latency
Networks using Distributed Scheduling and Data Fusion, Lambert
Meertens & Stephen Fitzpatrick, Technical Report KES.U.01.09, De-
cember 2001, Kestrel Institute, Palo Alto, California

[7] Workshops on Networked Embedded Systems Technology:
http://www.dsic-web.net/ito/meetings/nestmar2000/index.html

[8] The Distributed Constraint Satisfaction Problem: Formalization and
Algorithms, Makoto Yokoo, Edmund H. Durfee, Toru Ishida &
Kazuhiro Kuwabara, IEEE trans. on Knowledge and Data Engineer-
ing, vol. 10, no. 5, September/October 1998

