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Abstract

We present a set of program transformations which are applied automatically
to convert abstract functional specifications of numerical algorithms into efficient
implementations tailored to the AMT DAP array processor. The transformations are
based upon a formal algebra of a functional array form, which provides a functional
model of the array operations supported by the DAP programming language. The
transformations are shown to be complete.

We present specifications and derivations of two example algorithms: an algo-
rithm for computing eigensystems and an algorithm for solving systems of linear
equations. For the former, we compare the execution performance of the implemen-
tation derived by transformation with the performance of an independent, manually
constructed implementation; the efficiency of the derived implementation matches
that of the manually constructed implementation.
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1 Introduction

The implementation of numerical mathematical algorithms on modern, high-
performance computers presents an interesting contrast: most algorithms in
this class have clear, easy-to-follow specifications, yet efficient implementations
for high-performance computers are neither clear nor easy-to-follow.

That numerical mathematical algorithms have transparent specifications is
not surprising–their mathematical foundation provides a coherent, logical and
systematic framework and a rich body of knowledge that may be used to
construct their specifications.

That acceptable implementations of numerical mathematical algorithms are
rarely clear or easy-to-follow (or even correct!) is also not surprising–a pro-
grammer must usually formulate an implementation which differs radically
from the specification in order to comply with the programming model sup-
ported by a particular implementation language and to exploit the specific
hardware architecture in use (and thus improve the execution performance
of the implementation). For example, a programmer may attempt to express
certain operations in whole array or vector forms or to split a time-consuming
task amongst a number of co-operating processes that execute concurrently
on a parallel machine. Each implementation technique exacts a price as far
as the clarity of the implemented program is concerned. When several imple-
mentation techniques are combined, the implementation becomes so complex
that its relationship to the original algorithm specification is not apparent.
Efficient implementations are thus often difficult to construct, to verify, to
maintain and to adapt for execution on other computer systems.

In this paper, we discuss a method for automatically deriving efficient imple-
mentations from abstract specifications through program transformation: the
transformational programmer constructs an abstract algorithm specification
in a clear, natural style, paying no heed to efficiency, and initiates the ap-
plication of a sequence of meaning-preserving program transformations which
implement the abstract constructs of the specification language in some cho-
sen target language (usually a Fortran or C dialect), eliminate inefficiencies
occasioned by the clear style of the specification and tailor the implementation
for the chosen computer system.

The programmer’s task is thus changed from manually constructing a sin-
gle implementation of a specification, to developing systematic implementa-
tion methods, and to encoding these methods as program transformations.
Most transformations are independent of the particular algorithm being im-
plemented, so a programmer’s efforts will be reused to produce implementa-
tions of other algorithms. In addition, many transformations are independent
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of the particular computer system for which an implementation is being de-
rived, and can be reused for many computer systems. A single specification
may serve as the source from which multiple implementations are derived,
each implementation being tailored to a particular computer system.

The automated derivation of implementations for sequential and vector com-
puter systems has been discussed previously [15]; in this paper, we extend this
work to the derivation of implementations for the AMT DAP array processor.
In Section 2 we discuss the specification language we use, a subset of the func-
tional programming language ML [69], and the (small) set of functions that
support array operations in ML and illustrate how these functions can be used
to define common matrix and vector operations. In Section 3 we specify two
significant algorithms that are used to solve problems frequently encountered
in scientific and engineering applications (the computation of eigensystems
and the solution of systems of linear equations). We outline the AMT DAP
architecture in Section 4 and then discuss the transformation system and the
transformations used to produce DAP implementations in Section 5. Example
applications of the transformations are given in Section 6 and an analysis of
the execution performance of the derived implementations is given in section
7. A discussion of related work and conclusions are presented in sections 8 and
9.

2 A Functional Specification Language for Numerical Mathemati-
cal Algorithms

We use a (small) subset of the language constructs of ML as an algorithm
specification language. We apply the term functional specification to an ML
definition to convey that the definition is intended as an abstract specification
of an algorithmic solution to a problem, not a concrete program to be executed
in order to compute a solution efficiently. By regarding an ML definition as
a specification, we liberate its style from all demands of efficient execution.
Specifications can then be written in a style and using those techniques that
produce the greatest degree of clarity, the strongest guarantee of correctness,
and the greatest degree of adaptability. The problem of creating an executable,
efficient, concrete implementation by automated program transformation is
addressed later.

2.1 Vector and Matrix Primitives

Algorithms in numerical linear algebra are conventionally expressed in terms
of operations on vectors and matrices, which we support through a library of
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standard operations, based upon an array data abstraction.

An array is defined as a mapping from a Shape to a set of values of a particular
type: array : Shape → α. A Shape defines a set of indices (where an index is
a list of integers specifying a position). We use the term Shape to emphasize
that, in array operations, the set is usually regular; i.e. it can be specified using
a small number of parameters.

In this paper, a Shape is defined by a number of dimensions with the details
of each dimension expressed as a triple of the form: [lower, upper, step] where
lower is the smallest value in the set, upper is the largest value in the set
and step is the offset between adjacent values. For example, a two dimen-
sional 4 × 4 Shape may be defined as [[1, 4, 1], [1, 4, 1]] and denotes the set
of indices {[i, j]|i ∈ 1..4 ∧ j ∈ 1..4}. For brevity, we use [n] to denote a di-
mension with unit lower bound and offset; for example: [n, n] is equivalent to
[[1, n, 1], [1, n, 1]].

The elements of a shape are indices, which are denoted as lists of values; for
example, [1, 2] and [4, 1] are indices in the above 4× 4 shape.

The library operations are defined in terms of three primitive functions for
array element selection, array creation and array reduction.

Element Selection element : α array × index → α
Element selection is denoted using the function element; for example,

element(A, i) is (the value of) the element of array A at the position speci-
fied by index i. For convenience, an operator notation A@i ≡ element(A, i)
is also used.

Array Creation generate : Shape× (index → α) → α array
An application of generate (called a generation) creates an array of the

specified shape having elements given by applying the second argument
(a function, called the generating function) to each index in the shape.
Formally, generate is defined by:

v ∈ S ⇒ element(generate(S, λx.E), v) ≡ λx.E(v) ≡ Ex
v

where λx.E denotes a function with formal argument x and with body E,
and where Ex

v denotes the result of substituting v for all free occurrences of
x in the expression E. For example,

element(generate(S, λ[i, j].i + j), [1, 2]) = (i + j)
[i,j]
[1,2] = 1 + 2 = 3 .

Array Reduction reduce : shape× (index → α)× (α× α → α)× α → α
A reduction combines a set of values into a cumulative value by means of

a binary reducing function (the third argument to reduce). The set of values
to be reduced is produced by applying a generating function (the second
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argument) to each index in a shape (the first argument). The final argument
is the initial value–it is used to instantiate the reduction by inclusion in the
set of values to be reduced (so that the application of a binary reducing
function to the set is a valid operation even when the set contains only a
single element). Formally, reduce can be defined by:

reduce({}, λx.E, op, a) = a

reduce(S ∪ {y}, λx.E, op, a) = reduce(S, λx.E, op, a op Ex
y ) .

No order for applying the generating or reducing functions is specified, so
the reducing function should be associative and commutative.

Common examples of reductions are summing of the elements of a matrix,
conjoining the elements in a boolean matrix, and determining the maximum
value in a matrix.

(The generate and reduce functions have equivalent forms in a number of other
programming languages and, in particular, the C* and CM Fortran languages
[22].)

The two functions size and shape are also used: size(A, n) returns the size of
A in the dimension specified by n; shape(A) returns the shape of A.

The primitive array functions have been designed to provide a convenient
means for defining common mathematical operations and to avoid biasing
functions in favour of any particular computer architecture. For example, an
application of generate or reduce can be evaluated either sequentially or in
parallel–no order is specified for applying the generating function to the in-
dices, or (in the case of reduce) for combining values.

Algebraic laws for the array operations are presented in Section 5.3.1.

2.2 Specifications for Numerical Mathematical Algorithms

A library of standard matrix and vector operations is defined in terms of the
primitive array operations. Most of the library operations are simple recastings
of the conventional mathematical definitions. For example:

Matrix Addition (A + B)[i, j] = A[i, j] + B[i, j]

plus(A, B) = generate(shape(A), λ [i, j].A@[i, j]+B@[i, j]) 3

3 In this paper, λ–expressions are used to denote function expressions; ML uses
the equivalent notation fn(args) => expression.
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Matrix Transpose AT [i, j] = A[j, i]

transpose(A) = generate(shape transpose(shape(A)), λ [i, j].A@[j, i])
where shape transpose([n, m]) = [m, n].

Vector Inner Product U.V = U [1] ∗ V [1] + . . . + U [n] ∗ V [n]

inner product(U, V) = reduce(shape(U), λ [i].U@[i]*V@[i], +, 0.0)

Matrix Multiplication (A ∗B)[i, j] = row(A, i).column(B, j)

multiply(A, B) = generate([size(A, 1), size(B, 2)],
λ [i, j].inner product(row(A, i), column(B, j)))

In each case the ML definition and the conventional mathematical form are
closely related.

The definitions of commonly used functions such as plus, transpose and mul-
tiply have been placed in a library of numerical mathematical functions which
are used in specifications. In most cases, the functions are invoked using stan-
dard operator notation–the specification language permits operators to be
overloaded, so that, for example, ‘+’ denotes matrix addition as well as inte-
ger addition and real addition.

The simplicity and clarity of functional programs make them particularly
satisfactory for specifying numerical computations, especially when the ba-
sic specification language is enhanced by the inclusion of data abstractions.
Data abstractions make it possible to introduce concepts and notations that
are suited to the problem domain of a specification, or even to the particular
problem under consideration.

3 Example Specifications

In this section, we present specifications for two useful numerical mathematical
algorithms as examples of more complex specifications.

3.1 An Algorithm for Computing Eigensystems–Parallel Orthogonal Trans-
formations (POT)

The eigensystem (Q, Λ) of a matrix A of order n satisfies the equation, AQ =
QΛ, where Λ is a diagonal matrix with the eigenvalues λ1, . . . , λn of A as its
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diagonal elements, and the columns of Q are the corresponding eigenvectors.
If A is symmetric, Q is guaranteed to be non-singular and is, in addition,
orthogonal.

POT [20] computes the eigensystem of a symmetric matrix by constructing a
sequence of orthonormal matrices of eigenvector approximations, {Uk}, and a
sequence of similar symmetric matrices, {Bk}, thus:

(i) U0 = I
(ii) B0 = A
(iii) Bk = UT

k AUk

(iv) Uk+1 = ortho(AUktransform(Bk), diagonal(Bk)), k ≥ 0

Then limk→∞{Bk} = Λ and limk→∞{Uk} = Q.

The function transform is defined below. The function ortho orthonormalizes
the columns of its non-singular matrix argument using the Modified Gram-
Schmidt method. The columns of the argument matrix are orthogonalized in
an order determined by the magnitude of the diagonal elements of Bk.

The eigenvectors and eigenvalues of a matrix A can be obtained by the ML
definition

(eigenvectors, eigenvalue matrix) = Pot(A, identity matrix(shape(A)))

where the POT algorithm is realized as the ML function

fun Pot(A:real Array, U:real Array): real Array*real Array =
let val B = transpose(U)*(A*U)
in

if (is satisfactory(B))
then (U, B)
else Pot(A, ortho(A*U*transform(B), diagonal(B))

end;

and where let . . . in . . . end defines a local expression: the identifier B is
bound to the specified value (transpose. . .) during evaluation of the conditional
expression; the value of the conditional expression is the value of the whole
local expression.

This definition follows directly from the description of POT given above: if
Bk = UT

k AUk is sufficiently close to being diagonal (as determined by the func-
tion is satisfactory) then Uk is the matrix of eigenvectors, Q, and the diagonal
elements of Bk are the required eigenvalues; otherwise a more accurate approx-
imation to Q is derived and Pot is re-applied with this new approximation as
its second argument.
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The operation transform produces from its matrix argument a matrix Tk

which, ignoring its diagonal, is anti-symmetric and each column of which is an
approximation to an eigenvector of Bk. The components of Tk are computed
as shown in Figure 1(a). The ML specification shown in Figure 1(b) defines a
function transform that realizes the transform operation (the ML operator
~ denotes negation). This specification uses generate to construct the trans-
formation matrix, Tk, which has the same shape as Bk. A function Calculate
computes the value of the (i, j)th element of the transformation matrix. The
generating function embodies the cases required by the specification. A similar
development yields a specification for the function ortho.

tij =



2bij

dij+sign(dij)
√

d2
ij+4b2ij

, i > j

1, i = j

−tji, i < j

where dij = bjj − bii, and where bij is a typical element of Bk

(a) Mathematical definition [71]

fun transform(B:real Array):real Array =
let

fun Calculate(i:int, j:int):real =
let val d = B@[j, j]-B@[i, i]
in 2*B@[i, j]/(d+sign(d)*sqrt(sqr(d)+4*sqr(B@[i, j])))

in
generate(shape(B), λ [i, j]. if (i>j) then Calculate(i, j)

else if (i=j) then 1.0
else ~Calculate(j, i))

end

(b) ML specification

Fig. 1. The transform operation

3.2 A Conjugate Gradient Algorithm

The Conjugate Gradient algorithm uses an iterative process to compute (an
approximation to) the vector x of order n satisfying the equation Ax = b
where A is a positive-definite, symmetric matrix of order n × n and b is a
vector of order n.

The name ‘Conjugate Gradient’ often refers to a class of algorithms which
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To solve Ax = b, where A is a positive-definite symmetric n× n matrix:
(i) Set an initial approximation vector x0,
(ii) calculate the initial residual r0 = b− Ax0,
(iii) set the initial search direction p0 = r0;
(iv) then, for i = 0, 1, . . .,

(a) calculate the coefficient αi = pT
i ri/p

T
i Api,

(b) set the new estimate xi+1 = xi + αipi,
(c) evaluate the new residual ri+1 = ri − αiApi,
(d) calculate the coefficient βi = −ri+1Api/p

T
i Api,

(e) determine the new direction pi+1 = ri+1 + βipi,
(v) continue until either ri or pi is zero.

Fig. 2. Mathematical definition of Conjugate Gradient [58, p152]

employ the basic method defined in Figure 2, rather than to a specific algo-
rithm. The particular version used here is known as a bi-conjugate gradient
algorithm; the functional specification is shown in Figure 3. 4

– The algorithm is based upon manipulation of a collection of vectors x, r, p
and q (x being the current approximation to the solution); the type cgstate
is defined to represent this collection of vectors, as a 4-tuple of real vectors.
Instances of the cgstate type are constructed using the function cgstate.

– The function cgiters takes A and b as arguments and returns a cgstate
whose first component is the solution.

– The specification uses the iterate library function to perform the repetition
required by the algorithm.
· The first argument to iterate is a function cgiter defining the computa-

tion that is to be repeated.
· The second argument is a value (an instance of cgstate) with which to

initialize the process.
· The third argument, has converged, is a function which determines

when the repetition is to cease (i.e. when the approximation to the so-
lution is sufficiently accurate).

– The function defining the repeated computation, cgiter, takes a single ar-
gument of type cgstate and returns a value of the same type. In the spec-
ification, pattern matching is used to bind the names x, r, p and q to the
four components of the cgstate argument.

– The body of cgiter computes the next collection of vectors as local values
x’, r’, p’ and q’ and returns these values as an instance of cgstate.

– For brevity, the computation of the initial values x0, r0, p0 and q0 is not
shown.

4 We emphasize that we are not interested in the merits and demerits of this
particular algorithm–it is merely one that a real user was interested in and an
example that was readily available to us.
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type cgstate = real vector*real vector*real vector*real vector;
fun cgiters(a:real matrix, b:real vector):cgstate =

let
(* Terminating condition.*)
fun has converged((x, r, p, q):cgstate):bool =

inner product(r, r)<epsilon;
(* One iteration.*)

fun cgiter((x, r, p, q):cgstate):cgstate =
let

val rr:real = innerproduct(r, r);
val alpha:real = rr/innerproduct(q, q);
val x’:real vector = x+p*alpha;
val atq:real vector = transpose(a)*q;
val r’:real vector = r-atq*alpha;
val beta:real = innerproduct(r’, r’)/rr;
val p’:real vector = r’+p*beta;
val q’:real vector = a*r’+q*beta

in
cgstate(x’, r’, p’, q’)

end
in

iterate(cgiter, cgstate(x0, r0, p0, q0), has converged)
end

Fig. 3. SML specification of conjugate gradient

The bulk of the computational costs are incurred by the two matrix-vector
products in the computation of atq and q’.

The functional specifications presented above are straightforward recastings of
the mathematical definitions into the chosen specification language. Although
some of the syntactic detail differs from the mathematical form, the basic
structures of the specifications mirror those of the mathematical definitions.
The specifications should be readily understood by a reader with a knowledge
of basic mathematics.

4 The Target Architecture: The AMT DAP 510

The AMT DAP 510 [59] is a Single Instruction Multiple Datastream (SIMD)
parallel computer system, consisting of a 32 by 32 grid of processing elements
(see Figure 5) controlled by a separate master processor.

The master processor–essentially a conventional 32 bit processor with some ad-
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ditional components for controlling the operations of the processing elements–
performs most scalar calculations. The processing elements, which are single
bit processors, perform the parallel processing operations. The master pro-
cessor issues instructions to the processing elements, all of which obey the
instruction simultaneously. The master processor may also issue data to the
processing elements.

Processing element (i,j)

Memory element (i,j)
in memory plane k

Fig. 4. DAP memory planes

N

S

EW

Fig. 5. DAP processor grid

Each processing element has its own local memory to which it has direct access;
no processing element has direct access to the memory of any other processing
element. In general, in a given operation, all processing elements access the
same component of their respective memories. Thus, the memory of all the
processing elements may be thought of as consisting of a sequence of planes,
the kth plane being the aggregate of the kth component of each processor’s
memory; the processor grid may be thought of as performing operations on
these memory planes (see Figure 4).

When a processing element requires a value which is stored in the memory of
another element, it must obtain the value by a communication mechanism.
Each processing element is connected to its four nearest neighbours in the grid,
an element on an edge being connected to the corresponding element on the
opposite edge (directions on the grid are designated as north, south, east and
west–see Figure 5); all of the processing elements can simultaneously obtain a
value from one neighbour, though the direction in which each neighbour lies
is the same across the entire grid.

In addition to the nearest neighbour connections, the DAP hardware supports
three broadcast mechanisms which can be used to duplicate values across the
grid: a single scalar value can be broadcast to each processing element, or a
set of 32 scalar values (called a vector) can be broadcast to each row or to
each column of the grid.

Associated with each processing element is an activity register which controls
whether or not the element participates in certain operations. The activity
mask (that is, the grid of 32 by 32 activity registers) can be set under program
control and can thus be used to implement conditional operations.

The DAP hardware also supports reduction operations (such as summation
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and conjunction) over the entire processor grid, and along only the rows or
columns (to produce a vector of values).

4.1 The Target Language: Fortran Plus Enhanced

Fortran Plus Enhanced (FPE [1]) is an extension of standard Fortran allowing
the processor grid of the AMT DAP to be used efficiently. It supports two non-
conventional types, scalar vector and scalar matrix, which are similar to one
dimensional and two dimensional arrays, but which have associated functions
that make use of the processor grid.

The size of vectors or matrices which may be used is limited only by the the
amount of memory available, not by the size of the processor grid. Fortran
Plus Enhanced subdivides a vector or matrix whose dimensions are larger
than those of the processor grid into segments each of which is the size of the
processor grid (if necessary, it pads the edges of the vector or matrix to make
the size a multiple of the processor grid size).

The features of Fortran Plus Enhanced that are important in the context of
this paper are:

Componental functions –scalar functions applied either to each element
of a vector or matrix or to corresponding elements of a pair of vectors or
matrices. The componental functions include common arithmetic and logical
operations.
e.g. A + B, for vectors and matrices A and B.

Aggregate functions –certain elementwise reductions on a vector or matrix.
e.g. sum(A), for a vector or matrix A.

Vector or matrix assignment –simultaneous assignment of all elements of
a vector or matrix.
e.g. A = B, for vectors or matrices A and B.

Masked assignment –vector or matrix assignment controlled by a mask (a
boolean vector or matrix).

Masked assignment affects only those elements of the left side vector or
matrix for which the corresponding element of the mask is true.
e.g. A(mask) = 1, which assigns 1 to matrix A where the mask mask is
true.

Masked vector or matrix assignment is the primary mechanism supporting
conditional execution on the DAP processor array.

Pattern functions –construction of vector or matrix masks having true
elements arranged in certain commonly used patterns.
For example: patunitdiag(N) is an N×N matrix with true along its leading
diagonal and false everywhere else; patlowertri(N) is an N×N matrix with
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true in its lower triangle (the area on and below the leading diagonal) and
false everywhere else.

Geometric functions –functions to re-arrange the order of elements in a
vector or matrix.
e.g. transpose(A), for matrix A.

Extractions –a vector with elements equal to the elements of a given row or
column of a matrix.
e.g. A(1, ) is row 1 of matrix A.

Complex extraction functions –extractions performed using a mask as an
index.

For example, if M is a boolean matrix with one and only one element
true in each row, then the positions of the true elements can be used to
extract a vector from a matrix A, where A has same size as a column of
M . For example, patunitdiag(n) is a boolean matrix with true values along
the main diagonal; A(patunitdiag(n), ) is a vector comprising the diagonal
elements of A.

Expansion functions –a vector or matrix having each element equal to a
given scalar value, or a matrix having each row or each column equal to a
given vector.
e.g. mat(1.0, m, n) is an m × n matrix with each element having the value
1.0, and
matr(V, m) is a matrix having m rows each of which is a copy of the vector
V .

Shifts –vectors or matrices with all elements translated in the same direction.
For example, a north shift moves all the elements of a matrix to the north,
introducing null values along the south edge.

To run efficiently on the DAP, a program must be expressed almost entirely
in terms of the operations described; operations which cannot be expressed as
combinations of these operations are executed on the scalar processor, result-
ing in much slower execution than is achievable on the processor array.

5 Transforming Functional Specifications to Efficient Programs

The TAMPR program transformation system [10,14] can be employed to apply
program transformations to derive efficient Fortran or C programs from higher-
order functional specifications. Each TAMPR transformation rule is a rewrite
rule, having a pattern and a replacement, both of which are specified in terms
of the grammar of the programming language.

Most of the transformations that carry out such a derivation are indepen-
dent of the problem being solved and of the target hardware, and so can be
employed in derivations for any problem domain and for any target hard-
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ware architecture. As we discuss, however, one can easily add a few problem-
domain-specific or hardware-specific transformations to the derivation to pro-
duce highly efficient code.

Typically, a derivation is structured into a sequence of major stages, each of
which consists of a short sequence of transformation sets. TAMPR applies each
transformation set once in turn, but exhaustively applies all transformations
comprising that set. The total number of transformation applications may be
large: for the POT specification, for example, the entire derivation from ML
to Fortran Plus Enhanced requires about 150000 rewrites. Clearly, it is vital
that TAMPR supports the automatic application of the rules. It would be
unrealistic to attempt to apply thousands of transformations by hand, or even
to guide their application.

5.1 Sketch of the Basic Transformational Derivation

The stages in the basic transformational derivation are depicted in Figure 6,
in which the boxes represent particular transformation sequences and the arcs
represent the order in which particular stages may be combined. The starting
point for the derivation is a pure, functional specification (expressed in Lisp or
ML); the result of the derivation is an imperative implementation expressed
either in Fortran 77 or ANSI C.

The specification is transformed by:

(i) converting the specification into the abstract functional language used
by the transformation system (essentially, the λ-calculus extended with
named functions and type information);

(ii) standardizing the abstract functional language to facilitate later process-
ing;

(iii) simplifying the structure of the functional specification by unfolding func-
tion definitions and evaluating certain resulting expressions;

(iv) converting the abstract functional form to an equivalent abstract imper-
ative form; and

(v) converting the abstract imperative language to the required implementa-
tion language.

By removing the ‘syntactic sugar’ of the initial specification (written in ML
or in another functional language) the derivation is freed from the syntactic
details of the functional language used for specification and thus permits other
specification languages to be used with little additional effort.

Unfolding function definitions ensures that the only (non-recursive) functions
persisting in a specification belong to a small set of designated ‘primitive’
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Lisp
Specification

ML
Specifciation

Functional
form
to
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Fortran 77 ANSI C

1 1

Functional
Language
Canonicalization

2
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and
Simplification

3

Functional form
Preparation

Tail
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elimination

Functional to
Imperative
Mapping

Stack
implementation

4

5
Fortran
Standardization

5
C
Standardization

ML
Conversion

Lisp
Conversion

Fig. 6. Basic Transformation Deriva-
tion

Lisp
Specification

ML
Specifciation

Lisp
Conversion

ML
Conversion

Fortran Plus Enhanced

Functional
Language
Canonicalization

Unfolding
and
Simplification

Array
Operation
Generation

Common
Subexpression
Elimination

Functional form
to
Imperative form

Fortran
Standardization

Array Operations
to
DAP Operations

Array Algebra
Optimizations

Fig. 7. AMT DAP Transformation
Derivation

functions, such as generate and reduce. When defining the semantics of spec-
ifications or when transforming specifications, only the primitive functions
need be considered after unfolding has been performed. The Unfolding and
Simplification stage (stage 3) may be omitted.

The conversion of an abstract functional specification into an equivalent ab-
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stract imperative form (step 4) is achieved by:

(4.1) manipulating the functional specification into a form that renders the
conversion to imperative form a straightforward task;

(4.2) performing tail recursion elimination on the abstract functional form;
(4.3) mapping the language constructs of the abstract functional language onto

equivalent constructs in the abstract imperative language (for example,
conditional expressions are mapped onto conditional statements); and

(4.4) implementing recursive functions by introducing a stack to store func-
tion arguments, return values and return addresses (thus removing the
requirement on the implementation language to support recursive func-
tions).

The tail recursion elimination and stack implementation phases may be omit-
ted.

The transformations in the basic derivation provide the framework upon which
other specialized derivations may be constructed. A more detailed discussion
of the basic transformation steps, including some example code fragments
generated at various stages, is given in [12,15].

5.2 Transformational Derivation for the AMT DAP

For efficient execution on the AMT DAP, a specification is recast into Fortran
Plus Enhanced in order to exploit the parallel array operations provided on
the processor grid. Rather than convert directly into FPE, the conversion is
performed in two stages (see Figure 7):

– In the first stage, array operations expressed in single-element terms are con-
verted into whole-array operations. These whole-array operations are similar
to those supported by Fortran Plus Enhanced, but they are all denoted as
pure functions, whereas some of the FPE operations, such as masked array
assignment, are destructive operations. The output form generated by this
stage is called the Array Form.

– In the second stage, which augments the standard functional-to-imperative
stage, the Array Form operations are converted into FPE operations.

Although it is based on operations supported by FPE, the Array Form is
not intended to be DAP specific–the operations it supports are generic array-
processor operations. The Array Form could thus be used as an intermediate
form for other array processors, or for other implementation languages that
are based on whole-array operations (such as Fortran90 or High Performance
Fortran). Moreover, because the Array Form is a pure, functional form, it is
retains a simpler semantics than FPE, facilitating further manipulation such
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as common sub-expression elimination.

In addition to the two stages described above, a stage that uses algebraic prop-
erties of vectors and matrices to optimize specifications is included. For exam-
ple, in the specification of POT, the expressions UT AU and AUtransform(B)
are evaluated. The matrix algebra stage ensures that the matrix product
AU is computed only once, by rewriting these expressions as UT (AU) and
(AU)transform(B). This optimization is obvious, and may seem trivial, but
it has considerable effect on the execution performance (since the matrix prod-
uct operation is so computationally expensive).

The array processor derivation outlined above may seem somewhat strange.
The input to the derivation is an algorithmic specification that expresses the
required operations in a form that permits data parallel implementation. This
specification is reduced (we might say simplified) by unfolding to a form that
consists only of generate and reduce functions. Thus, for example, an expres-
sion which may state array addition as A + B is transformed by function
unfolding to

generate(shape(A), λ [i,j].A[i,j]+B[i,j])

where A and B are of the same array shape. We might be accused of convert-
ing a natural data parallel operation that is easily implementable on an array
processor to one that must again be abstracted to A + B in our implementa-
tion.

Why is this appropriate? Firstly, not all data parallel operations in a specifi-
cation will have natural implementations on an array processor; for example,
consider the transform function above and its DAP Fortran Plus Enhanced
implementation outlined later. More importantly, however, the specification
may contain combinations of operations which when implemented directly do
not give the best possible performance for a particular array processor. A sim-
plified specification, consisting only of generate and reduce functions, permits
the transformations to identify possible optimizations in a specification in a
systematic manner without having to consider the many permutations of the
possible data parallel operations.

5.3 Converting to Array Form

In this section we emphasize, in the main, the conversion from single-element
to whole-array form; the conversion of the whole-array form operations into
FPE operations is discussed briefly in a subsequent section.

The Array Form is based upon the λ-calculus augmented with a set of func-
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tions that perform generic array-processor operations. The additional func-
tions correspond to the FPE operations discussed in Section 4.1. For example,
the following operations are available:

– an operator +array for the elementwise addition of two arrays (the ‘array’
subscript may be dropped in the discussion);

– a function row for extracting a specified row of a matrix;
– a function sum for summing the elements of a numeric array.

In addition, a data-parallel conditional expression, defined below, is used:

Ifarray M then T else F = generate(S, λi.if M@i then T@i else F@i)

where M , T and F are arrays of shape S. The data-parallel conditional con-
structs an array by merging the elements of two arrays (T and F ): a particular
element of the result is drawn from T if the corresponding element of M (the
‘mask’) is true; otherwise the element is drawn from F .

The purpose of the Array Form stage of the derivation is to convert array
operations expressed using generate and reduce into Array Form operations.
For example,

generate([n, m], λ[i, j].A@[i, j] + B@[1, j])

→ A +array expand rows(n, row(B, 1))

where expand rows(n, V ) denotes a matrix having n rows, each of which is
equal to the vector V . The advantage of the second, whole-array form is that
it is easy to implement directly on an array processor. To implement directly
and efficiently the first, single-element form on an array processor would be
difficult.

The strategy that is used in the conversion to Array Form is to simplify the
internal structure of applications of generate by propagating generate inwards
through arithmetic and other operations contained in generating functions . For
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example,

generate([n, m], λ[i, j].A@[i, j] + B@[1, j])

→ generate([n, m], λ[i, j].A@[i, j])+array

generate([n, m], λ[i, j].B@[1, j])

→ A+array

expand rows(n, generate([m], λ[j].B@[1, j]))

→ A +array expand rows(n, row(B, 1))

– Each step of the transformation is based upon algebraic properties of gen-
erate and reduce, which are discussed below.

– Propagation through operators converts single-element operations into array
operations.

– Propagation results in expressions such as

generate([n, m], λ[i, j].A@[i, j]) and generate([m], λ[j].B@[1, j])

for which further propagation is impossible. The generating functions are
assessed to determine whether or not they correspond to particular forms
(such as ‘identity generate’ or ‘row extraction’), which can be implemented
efficiently on an array processor. Establishing such correspondences is facil-
itated by the simplified structure of the transformed generating functions
(as compared with the structure of the original generating function). 5

Below, the transformations that convert functional specifications into Ar-
ray Form are discussed. The strategy used in applying these transformations
(‘propagation of generate’) is described. Formal proofs that application of
the transformations terminates under this strategy, and that application is
complete, are given.

5.3.1 Algebraic Identities for generate and reduce

The transformations that convert single-element form into Array Form are
based upon algebraic identities for generate and reduce. These identities are
listed here in three categories:

Propagation rules –which propagate applications of generate into expres-
sions (thereby, for example, converting operators into whole-array form).

5 Of course, not every residual generating function produced by propagation will
correspond to an array processor operation. In such circumstances, efficient imple-
mentation on an array processor may not be possible.
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Special forms –which convert particular forms of generate into array oper-
ations (thereby, for example, extracting a row of a matrix).

Optimizations –which enhance the degree of parallelism in expressions. For
example, converting multiple vector operations into a single matrix opera-
tion.

Propagation Rules

(i) Infix Element Operator to Infix Array Operator

generate(S, λx.E1bopE2)

≡ generate(S, λx.E1) boparray generate(S, λx.E2)

where bop is a binary infix operator.
A generation constructed from the expression E1 bop E2 is equivalent

to the array version of bop applied to arrays constructed from E1 and
E2. For example,

generate(S, λx.E1 + E2)

≡ generate(S, λx.E1) +array generate(S, λx.E2)

(ii) Unary Element Operator to Unary Array Operator

generate(S, λx.uopE) ≡ uoparray generate(S, λx.E)

where uop is a unary operator.
An array constructed from uopE is equivalent to the elementwise

application of uop to the array constructed from expression E. For ex-
ample,

generate(S, λx.absE) ≡ absarraygenerate(S, λx.E) .

(iii) λ Promotion from generate

generate(S, λx.((λy.E1)E2))

≡ ((λZ.generate(S, λx.E1y
Z[x]))generate(S, λx.E2))

Consider the left side of this identity: an array is constructed in which
each element requires the evaluation of expression E2 and the binding of
the result to identifier y. There is no mechanism in FPE for constructing
such an array in parallel; the construction would have to be implemented
in FPE as a sequential loop.

However, the binding of E2 to y can, potentially, be performed for all
elements in parallel by constructing a separate array, Z, as shown on
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the right of the identity–the value of E2 for each index x is stored as
an element of Z. The original array is constructed as before except that
the binding for y is replaced with an access to the appropriate element
of Z. It may then be possible to construct each array using whole-array
operations. For example,

generate(S, λx.(λy.(y + sqrt(y))(2 ∗ A[x])))

≡ (λZ.generate(S, λx.(y + sqrt(y))y
Z[x]))

(generate(S, λx.2 ∗ A[x]))

≡ (λZ.generate(S, λx.Z[x] + sqrt(Z[x])))

(generate(S, λx.2 ∗ A[x]))

≡ (λZ.Z +array sqrtarray(Z))(2 ∗array A)

(iv) Conditional Expressions

generate(S, λx.if Eb then E1 else E2)

≡ ifarray generate(S, λx.Eb) then generate(S, λx.E1)

else generate(S, λx.E2)

This identity is essentially the definition of the data-parallel conditional.
Special Forms

Array processor programming languages generally include a predefined set
of optimized methods for performing certain operations–primarily commu-
nication operations–commonly required for numerical mathematical algo-
rithms. To produce an efficient program, these standard optimizations must
be exploited. Thus, it is necessary to identify, from the array expressions
within a specification, those expressions that are instances of supported op-
erations. Identifying such expressions is facilitated by the simplification of
generating functions that results from the propagation of generate carried
out by the preceding set of transformations.
(v) Array Identity

generate(S, λx.A[x]) ≡ A where Shape(A) = S.

(vi) Array Constants

generate(S, λx.e) ≡ expand(S, e)

where e is independent of the generating index x and expand(S, e) is
an array of shape S with each of its element having the value e. For
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example,

generate([n], λx.1.0) ≡ expand([n], 1.0)

is a vector of length n with each element having the value 1.0.
(vii) Column or Row Expansion

generate([n, m], λ[i, j].E)

≡ expand cols([m], generate([n], λ[i].E))

where E is independent of j, and

generate([n, m], λ[i, j].E)

≡ expand rows([n], generate([m], λ[j].E))

where E is independent of i.
Constructing a matrix by applying a generating function that is inde-

pendent of one of the indices is equivalent to constructing a vector and
duplicating the vector row- or column-wise, as appropriate.

(viii) Array Patterns

generate([n, n], λ[i, j].i = j)

≡ generate([n, n], λ[i, j].i) =array generate([n, n], λ[i, j].j)

≡ diagonal pattern(n)

where diagonal pattern(n) is an n× n boolean matrix with each of its
diagonal elements having the value true, and all of its other elements
having the value false. Identities exist for other patterns, corresponding
to other comparison operators such as ‘less than’.

(ix) Permutations

generate([n, m], λ[i, j].A[j, i]) ≡ transpose(A) shape(A) = [m,n]

Transpose is the most common permutation.
(x) Extractions

generate([n], λ[i].A[i, i]) ≡ diagonal(A), shape(A) = [n, n]

generate([n], λ[i].A[i, k]) ≡ column(A, k), shape(A) = [n, m]

generate([m], λ[i].A[k, i]) ≡ row(A, k), shape(A) = [n, m]

where, in each case, k is independent of i.
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(xi) Shifts

generate([n,m], λ[i, j].if i = 1 then 0 else A[i− 1, j])

≡ Ifarray generate([n, m], λ[i, j].i = 1)

then generate([n, m], λ[i, j].0)

else generate([n, m], λ[i, j].A[i− 1, j])

≡ ShiftSouth(A)

where shape(A) = [n, m].
An expression of the first form is converted into an expression of

the second form by the propagation rules and is then converted into
an application of ShiftSouth. Similar rules apply for shifts in other
directions, for combinations of shifts (such as a north-east shift) and for
unidirectional shifts of magnitude greater than 1.

Optimizations

To obtain optimum performance from a DAP implementation, it is nec-
essary to augment the preceding rules with others that are designed to take
advantage of the particular capabilities of an array processor architecture
and, in particular, those of the AMT DAP.

For an array processor architecture, it is preferable that a single large
data-parallel operation be performed rather than a sequence of smaller data-
parallel operations–this means that it is worthwhile to seek to combine or
reorder sequences of generate and reduce operations to give a data-parallel
operation that applies to the largest possible number of array elements.

(xii) reduce-reduce Combination

reduce(S, λ[x].reduce(S ′, λ[y].E,�, 0�),�, 0�)

≡ reduce(S × S ′, λ[x, y].E,�, 0�)

where S ′ is independent of x, × denotes the cartesian product of shapes,
and 0� is an identity element of operator �.

This identity asserts that a reduction, using an operator �, of a set
of values each of which is itself the result of a reduction using �, is
equivalent to a single reduction. For example,

reduce([n], λ[x].reduce([m], λ[y].A[x, y], +, 0), +, 0)

≡ reduce([n, m], λ[x, y].A[x, y], +, 0)

This optimization establishes a larger parallel reduction from a num-
ber of smaller reductions–by converting, in this example, n + 1 vector
reductions into a single matrix reduction.
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This rule can be generalized to reductions in which the initial value
is not the identity element of the reducing function.

(xiii) generate-reduce Swap

generate(S1, λ[x, y].reduce(S2, λ[z].E,�, v))

≡ reduce(S2, λ[z].generate(S1, λ[x, y].E),�array, varray))

where S2, v are independent of x, and where �array and varray on the
right side are an array operator and an array of initial values, respec-
tively (varray ≡ expand(S1, v)).

This identity asserts that the evaluation of multiple reductions, each
of which produces a single element of a matrix, is equivalent to a single
reduction which constructs the complete matrix, using the array version
of the reducing function. This optimization is important in the context
of the matrix product operation:

generate([n, m], λ[x, y].reduce([l], λ[z].A@[x, z] ∗B@[z, y], +, 0))

≡ reduce([l], λ[z].generate([n,m], λ[x, y].A@[x, z] ∗B@[z, y]), +, 0)

The left side corresponds to the ijk order of evaluation (with k paral-
lelised); the right side corresponds to the kij order of evaluation (with
ij parallelised). As discussed in [16], the latter order of evaluation can
be understood as computing the matrix product by a sequence of n
rank-one updates to the zero matrix.

The motivation for this optimization is as follows: the reduce–generate
combination can be considered as exhibiting three-dimensional paral-
lelism (the expression E must be evaluated for each combination of x,
y and z, in the appropriate ranges). However, the DAP can utilize at
most two-dimensional parallelism, so that at least one dimension must
be processed sequentially. Because reductions tend to exploit parallelism
less than other operations (such as elementwise operations) 6 , it is an
optimization to use this identity to arrange for the reduction to be the
operation that is performed sequentially.

(xiv) generate-reduce Combination

generate([m], λ[x].reduce([n], λ[y].E,�, v))

≡ reduce rows(generate([m,n], λ[x, y].E),�, v)

where n and v are independent of x and reduce rows reduces its matrix
argument along its rows to form a vector of values.

6 The parallel reduction of an vector of length n by an array processor typically
requires log2(n) steps, whereas the parallel addition of two vectors of length n can
be performed in one step.
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This identity asserts that the evaluation of multiple reductions, each
of which creates a single element of a vector, is equivalent to the con-
struction of a matrix followed by a reduction along its rows. 7 This opti-
mization improves performance by increasing the degree of parallelism–
if the generate and reduce were not combined, the generate would be
evaluated sequentially. For example, matrix-vector product is optimized
as:

generate([m], λ[x].reduce([n], λ[y].A@[x, y] ∗ U@[y], +, 0))

≡ reduce rows(generate([m,n], λ[x, y].A@[x, y] ∗ U@[y]), +, 0)

(xv) generate-generate Combination

generate(S, λx.generate(S ′, λy.E)) ≡ generate(S × S ′, λx× y.E)

This identity asserts that an array of arrays is considered equivalent to
a single, ‘flattened’ array. This equivalence is included for completeness;
it is not used in practice since it requires a more complex interpretation
of basic operations. For example, array indexing must be ‘curried’ so
that, say, a two-dimensional index applied to a four-dimensional array
returns a two-dimensional array.

5.3.2 Transformation Application Strategy

The equivalences in Section 5.3.1, when used left-to-right, constitute the trans-
formations required when converting an abstract functional specification into
an efficient form suitable for execution on an array processor architecture and,
in particular, on the AMT DAP. The rules involve patterns that are disjoint;
thus, no transformation interferes with any other transformation (i.e., for a
given program section, at most one transformation is applicable). In addition,
the rules cannot result in an infinite sequence of transformations (see next sec-
tion). Thus, the rules can be applied automatically to transform an element-
based functional specification to an array-based specification optimized for an
array processor architecture.

5.3.3 Completeness Proof and Normal Form

The DAP transformation strategy propagates generate functions into expres-
sions as far as is possible. This strategy may be viewed as a way of deriving a
normal form for generate and reduce, since these functions cannot be driven

7 A column-wise combination is more efficient than a row-wise combination for
some expressions. The transformations used in practice include heuristics to decide
which to use.

25



indefinitely far into expressions. The existence of a normal form enables the
transformations to be applied automatically in the TAMPR system, without
the need for human guidance.

The basic idea is illustrated by demonstrating how a generate term may be
transformed into Array Form. The individual rewrites used in the transforma-
tion process are equivalences in the algebra of generate–see Section 5.3.1–just
as the rewrites used in earlier transformation stages are equivalences in the
λ-calculus.

For simplicity, the discussion concentrates on the propagation rules, and it
is assumed that the elements of arrays are scalar values (integers, reals or
booleans) and assumed to have the form generate(S, λx.E), where E is defined
(using Extended Backus Naur Form) as

E :: C|V |N(E)|uop E|E1bopE2|if Eb then E1 else E2 |((λy.E1)E2)

where y denotes a tuple of names; C denotes a constant; V denotes a λ variable;
E and Ei denote expressions; and N(E) denotes a function application. The
details of the classes C, V and N are irrelevant in the derivation of the DAP
normal form.

The application of the transformations can be represented by a recursive tactic
T , defined by:

T (generate(S, λx.E))
def
=

case E of
C → generate(S, λx.C)
V → generate(S, λx.V )
N(E ′) → generate(S, λx.N(E ′))

(Rule i) E1 bop E2 → T (generate(S, λx.E1)) bop
T (generate(S, λx.E2))

(Rule ii) uop E ′ → uop T (generate(S, λx.E ′))
(Rule iii) ((λy.E1)E2) → (λZ.T (generate(S, λx.E1y

Z(x))))

T (generate(S, λx.E2))
(Rule iv) if Eb

then E1

else E2 → if ( T (generate(S, λx.Eb)))
then T (generate(S, λx.E1))
else T (generate(S, λx.E2))

It is important to note that unary and binary operators (syntactic classes
uop and bop) are overloaded: on the left of the rewrites they are applied to
individual elements while on the right they are applied to structures.
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Proposition 1 After transformation, all remaining generate terms have the
form tg defined by:

tg :: generate(S, λx.C)|generate(S, λx.V ) |generate(S, λx.N(E))

Proof. Define a measure µ on generating functions; this measure induces an
ordering which is used to establish proposition 1 by structural induction. The
measure also facilitates a proof of termination of the transformation.

The definition of µ is:

µ(generate(S, E))
def
= case E of

C = 1

V = 1

N(E) = 1

uop E = 1 + µ(E)

E1 bop E2 = 1 + µ(E1) + µ(E2)

if Eb then E1 else E2 = 1 + µ(Eb) + µ(E1) + µ(E2)

((λy.E1)E2) = 1 + µ(E1) + µ(E2)

The relation <µ on generating functions is defined as E <µ E ′ ≡ µ(E) <
µ(E ′), where < is the usual ‘less than’ relation on natural numbers. The
salient point of the ordering on generating functions is that ‘compound’ ex-
pressions (unary and binary operator expressions, conditional expressions and
λ-applications) are ‘larger’ than their constituent sub-expressions.

Let ν(E) denote the property that all generations occurring in E have the
form tg. It is shown that:

– ν(T (generate(S, λx.e))) holds for base cases of E (viz. C, V and N(E)),
and that

– if ν(T (generate(S, λx.e′))) holds for all e′ <µ e, then
ν(T (generate(S, λx.e))) also holds.

Then, by structural induction, ν(T (generate(S, λx.e))) holds for all e.

Base Steps: Consider case C of E.
A generation with generating function of this form is left unchanged by T .
It is already in the form tg, so ν(T (generate(S, λx.C))) holds. Similarly for
the cases V and N(E).
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Inductive Steps: Consider the case E = if Eb then E1 else E2.

ν(T (generate(S, λx.if Eb then E1 else E2)))

= ν(if T (generate(S, λx.Eb))

then T (generate(S, λx.E1)) else T (generate(S, λx.E2)))

= ν(T (generate(S, λx.Eb))) ∧ ν(T (generate(S, λx.E1)))

∧ ν(T (generate(S, λx.E2)))

= true ∧ true ∧ true by hypothesis, since Eb, E1, E2 <µ E

= true

The cases for unary and binary operators follow similarly. The case

E = ((λx.E1)E2)

requires a little more attention:

ν(T (generate(S, λx.((λy.E1)E2))))

= ν(((λZ.T (generate(S, λx.(E1)
y
Z[x]))) T (generate(S, λx.E2))))

= ν(T (generate(S, λx.(E1)
y
Z[x]))) ∧ ν(T (generate(S, λx.E2)))

Now the second term in the above, ν(T (generate(S, λx.E2))), holds by the
induction hypothesis, since E2 <µ E. Since µ(y) = µ(Z[x]), the substi-
tution of the latter for the former in an expression leaves the measure of
the expression exchanged: that is, µ((E1)

y
Z[x]) = µ(E1). Now E1 <µ E, so

(E1)
y
Z[x] <µ E and ν(T (generate(S, λx.(E1)

y
Z[x]))) follows by the induction

hypothesis.

Thus, by structural induction, Proposition 1 holds.

Corollary: It is possible to detect, in the normal form, generate (and reduce)
terms which have data-parallel implementations using rules v–xi.

5.4 Converting Array Form Operations into FPE

Many of the Array Form functions have direct equivalents in Fortran Plus
Enhanced. For example, whole array operators such as +array map onto whole
array versions of standard operators (+); row and column extraction map onto
special indexing forms (e.g. row(A, i) → A(i, )); scalar and vector expansions
map onto FPE functions (e.g. expand([n,m], e) → mat(e, n, m)).
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Data parallel conditional expressions are realized as masked assignments. For
example, the expression ifarray Eb then E1 else E2 maps onto the sequence
of array assignments:

mask = Eb

A(mask) = E1

A(.not.mask) = E2

(There are also various optimized implementations for certains forms of data
parallel conditionals; for example, updating a single element of a matrix can be
implemented as a standard, single-element assignment without using a mask.)

Reductions that have not been converted into Array Form primitives (such as
sum) are implemented in FPE as loops. For example, reduce([n], λ[k].E, +, 0)
is converted into

result = 0
DO k=1, n, 1

result = result+E
ENDDO

6 DAP Implementations

To illustrate the use of the transformations discussed above, we consider in
detail the transformation of part of the function Pot, whose specification is
discussed in Section 3.1. The derived implementation of CG is also discussed
briefly.

6.1 POT

(i) Functional Language Standardization
fun Pot:real Array =

λ A:real Array.
λ U:real Array.

λ B:real Array.
if (is satisfactory(B))
then (U, B)
else Pot(A, ortho(mmmult(A, mmmult(U, transform(B))),

diagonal(B)))
end (mmmult(transpose(U), mmmult(A, U)) )

end
end
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end

Infix operators have been converted to applications of functional equiva-
lents and λ–bindings have been introduced for ML let bindings.

(ii) Matrix Algebra Optimizations
The repeated calculation of matrix A×U is recognized and bound to the
name AU to ensure it is evaluated only once.
fun Pot:real Array =

λ A:real Array.
λ U:real Array.

λ AU:real Array.
λ B:real Array.

if (is satisfactory(B))
then (U, B)
else Pot(A, ortho(mmmult(AU, transform(B)), diagonal(B)))

end (mmmult(transpose(U), AU))
end (mmmult(A, U))

end
end

end

(iii) Unfolding and Simplification
fun Pot:real Array = . . .
λ AU:real Array.
λ B:real Array. . . .
end (generate([n, n], λ [i, j].reduce([n], λ [k].U[k, i]*AU[k, j], plus, 0.0)))

end (generate([n, n], λ [i, j].reduce([n], λ [k].A[i, k]*U[k, j], plus, 0.0)))
. . .

Applications of functions such as mmmult and transpose have been
replaced by their definitions expressed as generate and reduce operations
(see Section 2.2).

(iv) Array Form
by generate− reduce rule xiii →
fun Pot:real Array = . . .
λ AU:real Array.
λ B:real Array.. . .
end (reduce([n], λ [k].generate([n, n], λ [i, j]. U[k, i]*AU[k, j]), plus, 0.0))

end (reduce([n], λ [k].generate([n, n], λ [i, j].A[i, k]*U[k, j]), plus, 0.0))
. . .

by Element Operator to Array Operator rule i →
fun Pot:real Array = . . .
λ AU:real Array.
λ B:real Array.. . .
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end (reduce([n], λ [k].generate([n, n], λ [i, j].U[k, i])
*generate([n, n], λ [i, j].AU[k, j]),

plus, 0.0))
end (reduce([n], λ [k].generate([n, n], λ [i, j].A[i, k])

*generate([n, n], λ [i, j].U[k, j]),
plus, 0.0))

. . .

by Expand Special Case rule vii →
fun Pot:real Array = . . .
λ AU:real Array.
λ B:real Array.. . .
end (reduce([n], λ [k].expand cols([n], generate([n], λ [i].U[k, i]))

* expand rows([n], generate([n], λ [j].AU[k, j]),
plus, 0.0)))

end (reduce([n],λ [k].expand cols([n], generate([n], λ [i].A[i, k]))
* expand rows([n], generate([n], λ [j].U[k, j]),

plus, 0.0)))
. . .

by extraction rule viii →
fun Pot:real Array = . . .
λ AU:real Array.
λ B:real Array.. . .
end (reduce([n], λ [k]. expand cols([n], row(U, k))

* expand rows([n], row(AU, k),
plus, 0.0)))

end (reduce([n], λ [k]. expand cols([n], column(A, k))
* expand rows([n], row(U, k),

plus, 0.0)))
. . .

(v) Common Sub-expression Elimination
Common Sub-expression Elimination (CSE) has no effect on the exam-

ple fragment from POT. Although there is a common element, row(U,
k), in the two matrix products it is not efficient to make this a com-
mon computation in this context. In fact, this operation is implemented
using a particular form of DAP addressing so no computation need be
performed to create a column of the array U .

(vi) Functional form to Imperative form
subroutine Pot
. . .

block
real AU(n, n)
do k=1, n, 1
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AU = AU+expand cols([n], column(A, k)) *
expand rows([n], row(U, k))

enddo
block
real B(n, n)
do k=1, n, 1

B = B+expand cols([n], row(U, k)) *
expand rows([n], row(AU, k))

enddo
...
end

end
end

The reduce operations are translated into loops over the index range.
(vii) Array Operations to DAP Operations

The abstract array operations are converted to the particular (and
somewhat arcane) syntax required by Fortran Plus Enhanced.
subroutine Pot
. . .

block
real AU(*n, *n)
do k=1, n, 1

AU = AU+matc(A( , k), n)*matr(U(k, ), n)
enddo
block
real B(*n, *n)
do k=1, n, 1

B = B+matc(U(k, ), n)*matr(AU(k, ), n)
enddo
...
end

end
end

(viii) Fortran Standardization
The main section of the Fortran Plus Enhanced implementation of

POT is shown in Figure 8.
– The * in the declaration of the matrices indicates that their elements

are to be processed in parallel.
– The iteration of POTiters has been realized by a GOTO loop begin-

ning at line 100 and ending at line 200.
– The loop which terminates at line 110 computes the product of matrices

A and U . This product is stored since it is used twice: in the computa-
tion of B (UT ∗A∗U) and in the new eigenvector matrix approximation
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parameter(tol=1e-15, n=??)
real A(*n, *n), U(*n, *n), AU(*n, *n)
integer step, signD(*n, *n)
real B(*n, *n), diagB(*n), D(*n, *n), g598(*n)
logical mask(*n, *n), g650(*n, *n), g595(*n, *n)
....

100 continue
AU=0
do 110 step=1, n
AU=AU+matc(A(, step), n)*matr(U(step, ), n)

110 continue
B=0
do 120 step=1, n
B=B+matc(U(step, ), n)*matr(AU(step, ), n)

120 continue
diagB=B(patunitdiag(n), )
g598=abs(diagB)
if ((sum(abs(B))-sum(g598))/(n*(n-1)).lt.tol) goto 200
g595=patlowertri(n).and. .not. patunitdiag(n)
mask=patlowertri(n)
g650=patunitdiag(n)
U(mask.and.g650)=1
mask(g650)=.false.
g650=g595
D=matr(diagB, n)-matc(diagB, n)
signD=1
signD(D.lt.0)=-1
U(mask.and.g650)=(-2*B)/(D+signD*sqrt(D*D+4*(B*B)))

126 U(.not.patlowertri(n))=-tran(S)
D=0
do 130 step=1, n
D=D+matc(AU(step, ), n)*matr(S(, step), n)

130 continue
S=R
....
goto 100

200 continue
....

Fig. 8. Fortran Plus Enhanced implementation of POT

U (A ∗ U ∗ transform(B)).
– The computation of B (the diagonal of which gives the current approx-

imation to the eigenvalues) is completed at line 120.
– If B is sufficiently close to being diagonal (the mean of the absolute

values of the off-diagonal elements is sufficiently close to zero) the loop
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is exited via the GOTO 200 statement.
– The following lines, up to line 126, construct the transformation ma-

trix. The definition of transform explicitly distinguishes elements in
the lower triangle of the transformation matrix from elements in its up-
per triangle; its implementation on a SIMD architecture thus requires
the computation of two matrices (one for lower triangle, one for upper
triangle) which are then ‘merged’. However, because the transforma-
tion matrix is (ignoring its diagonal) anti-symmetric, only one of these
matrices need be computed (say, the matrix for the lower triangle); the
other matrix can be formed by transposition and negation (as in line
126).

Some of the mask manipulation in this part of the computation is
unnecessary: no effort has been made to optimize mask expressions
since they are very cheap on the DAP. (The grid of single-bit processing
elements can manipulate the single-bit representation used for booleans
very efficiently.)

– The eigenvector approximation matrix U is updated by the loop termi-
nating at line 130. The orthonormalization of the columns of U is not
shown.
The FPE implementation of POT is considerably different from its

ML specification: the details of the computation of the matrix products
and of the transformation matrix would be inaccessible to one unfamiliar
with the DAP. The program is efficient but it is not easy to read. Of
course, it is not intended that the FPE implementation should be read–it
is nothing more than a source for processing by the FPE compiler to
produce efficient machine code for the AMT DAP.

6.2 Conjugate Gradient

The Fortran Plus Enhanced implementation of CG is shown in Figure 9.

– The collection of vectors manipulated by the algorithm is realized by four
arrays x(*n), etc. The computation of the vectors from which the next
approximation is constructed is performed using destructive updates on
these arrays; thus there are no separate variables corresponding to x’, etc.

– The repetition required by the algorithm (expressed using iterate) is im-
plemented using a loop realized by a GOTO occurring at line 13; the loop
ends at line 15.

– Line 2 computes the inner product of r with itself. This value is the measure
of the accuracy of the approximation to the solution.

– If the approximation is sufficiently accurate, the loop is exited via the
GOTO statement on line 4.

– Otherwise, the next set of values (x’, r’, p’ and q’) is computed by lines 6
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real*8 A(*n, *n), x(*n), r(*n), p(*n)

real*8 q(*n), b(*n), r1(*n), beta, rr

integer cnt

....

1 continue

2 rr = sum(r*r)

3 if (sqrt(rr).lt. 1.0E-14) then

4 goto 15

5 else

6 alpha = rr/sum(q*q)

7 r1 = r-sumr(A*matc(q, n))*alpha

8 beta = sum(r1*r1)/rr

9 q = sumc(A*matr(r1, n))+q*beta

10 x = x+p*b

11 r = r1

12 p = r1+p*beta

13 goto 1

14 endif

15 continue

....

Fig. 9. Fortran Plus Enhanced implementation of conjugate gradient

to 12
– Note, in particular, that lines 7 and 9 compute the two matrix-vector prod-

ucts:
transpose(A)*q → sumr(A*matc(q, n))

A*r’ → sumc(A*matr(r1, n))
In the first product, the matrix A is transposed, but no explicit transpose

operation occurs in the implementation; rather, row and column operations
in the implementation of normal matrix-vector multiplication (i.e. without
transposition) are interchanged. This accounts for the slight difference in
form between the implementations of the two products.

Again, the DAP implementation may appear rather ugly since it is not in-
tended for a human reader. The program is, however, an extremely efficient
implementation that exploits the strengths (and indeed quirks) of the DAP
architecture. The implementation makes effective use of the DAP hardware,
with all of the vector and matrix operations being performed in fully data-
parallel manner. The only unsatisfactory aspect of the implementation is the
unnecessary use of the variable r1: the assignment to r1 in line 11 could be
replaced with an assignment to r, obviating the need to assign to r later.
Efficiency could be improved by eliminating two vector assignments and one
vector variable.
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7 Execution Performance of Derived Implementations

From the point of view of a user of an implementation, its most important
feature (after correctness) is its execution speed. Clear, extensible functional
specifications are useful only if it is possible to derive fast and efficient imple-
mentations from them.

Examination of the derived implementations reveals that they are highly
efficient–they make excellent use of the parallel processing capabilities of the
DAP. A more rigorous assessment of the execution performance of the derived
POT implementation can be made by comparing it with that of a hand-crafted
implementation developed independently by a programmer who was very fa-
miliar with the target architecture.

In Figure 10 the time required to compute one approximation to the eigensys-
tem 8 by a hand-crafted implementation of POT is compared with the time
required by the automatically derived implementation; the hand-crafted ver-
sion has been analyzed in [21,70].

Matrix Size Time per iteration (sec)

Hand Crafted Automatically Derived

Fortran Plus Enhanced Fortran Plus Enhanced

64 1.35 1.35

128 9.30 9.31

256 69.86 70.30

Fig. 10. Execution times of derived and manually-constructed DAP implementations
of POT

The execution times for the hand-crafted and automatically derived versions
are almost identical. For the larger matrix examples the derived implementa-
tion is marginally slower than the hand crafted version (by between 0.1% and
0.6%). This discrepancy arises from a minor optimization made possible by the
particular way in which the hand-crafted version implements the transform
operation.

8 The same amount of time is required to generate each successive approximation.

36



8 Related Work

The work presented in this paper addresses many different themes in comput-
ing science. Thus it is impossible to provide an exhaustive survey of related
work. However, the work described here treats the broad themes of language
selection for algorithm specification, functional language compilation and pro-
gram transformation.

8.1 Algorithm Specification

The primitive array functions, generate and reduce (see section 2) used in
describing computations should be familiar to those with experience of func-
tional programming languages. The definitions presented are, for the most
part, natural extensions of the usual definitions over lists to definitions over
arrays. (Those unfamiliar with functional programming languages may con-
sult [44,7,30,63,67,26] for an introduction to functional programming and the
use of higher-order functions.) No claim is made in respect to the originality
of the array functions; they are presented as objects that have proved to be
particularly useful in the specification of numerical mathematical algorithms
and in the formal manipulation of such specifications.

Maaßen [50] proposes data structures and higher order functions over them
for the parallel execution of functional programs. The functions employed in
the functional specifications in this paper are related to these definitions.

Darlington et al. [29] use skeletons [28,23,61] in high-level specifications of
algorithms. Skeletons are higher-order functions that describe a repertoire
of parallel operations and are used as the building blocks of an algorithm’s
specification. Skeletons are intended to separate the meaning of the computa-
tion from any tailored parallel architecture form which may be derived from
such definitions. The primitive functional forms used here may be regarded as
simple skeletons in that they may be interpreted as indicating data-parallel
execution.

In [28,29] skeletons that are oriented to particular computational models are
outlined; for example, processor-pipeline and processor-farm skeletons are de-
fined. This type of skeleton may be viewed as defining an execution model
which is suitable for carrying out a particular computation. This approach to
algorithm specification is different from the one adopted here; in this paper,
it is proposed that a specification should be as free from execution detail as
possible–the algorithm specification defines only the functions to be imple-
mented and relegates the decisions as to implementation to the transforma-
tion phase. It is clear that automatic tools (such as the transformation system
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suggested here) could not supersede the rôle of the expert programmer; nev-
ertheless, it is interesting to explore how much can be achieved automatically.
With TAMPR it is possible to apply particular algorithm transformations to
achieve the effect of model-oriented skeletons.

The Bird Meertens Formalism (BMF) [65,5,6,56,3,52] provides a simple, con-
sistent functional language in which algorithms may be expressed. BMF pro-
vides an elegant framework for the study of algorithms, but its utility as a nu-
merical mathematical algorithm specification language is problematical given
its list-based approach. The array is fundamental to the natural expression of
a large body of numerical mathematical algorithms and to their efficient im-
plementation. We contend that, for most numerical mathematical algorithms
a functional specification that uses lists to represent arrays is unnatural–for
example, consider expressing a basic operation such as matrix transpose using
a list representation. Moreover, such list-based specifications are unlikely to be
amenable to the utilization of the optimization techniques and implementation
strategies developed by implementers of numerical mathematical algorithms.
This corpus of implementation experience is essential for efficient implemen-
tation of functional, numerical mathematical specifications and thus for the
acceptance of functional programming languages for this purpose. Numerical
mathematicians readily accept array-based functions as a natural extension to
the conventional mathematical notations used in their community.

Hains and Mullin [36] define ML functions that operate on arrays. The di-
mensionality of the array is expressed by defining the structure of the array.
However, as with BMF, arrays are represented by lists of elements thereby
reducing the readability of specifications and impairing its usability for those
to whom the work reported here is particularly addressed.

8.2 Functional language Compilers

Many functional language compilers generate machine code which is compa-
rable in efficiency to that produced from hand-crafted imperative programs;
among these are the Orbit Compiler [49] for the language T, the ALFL lan-
guage compiler [8], the compiler for the SISAL language [26] and the Lazy ML
compiler [2]. This body of experience has been drawn upon in the compiler-
oriented transformations of the transformational derivations presented here.

Many computer systems have been developed specifically to support the paral-
lel execution of functional programming languages [24,40,45,64,48,38,53]. Spe-
cial hardware that supports combinatoric graph reduction offers the possibility
of a radical change in the relative performances of functional and imperative
languages, thereby reducing the need for the construction of an imperative im-
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plementation of a functional specification. Simon Peyton-Jones [63] gives an
excellent survey and description of combinatoric graph reduction. Although at-
tractive in principle, very few special-purpose graph reduction machines have
been constructed and none is widely available. Even if a successful graph-
reduction machine were built and could yield execution performance com-
parable to that achieved by procedural programs executed on conventional
von Neumann architectures, such a machine is unlikely to be a cost-effective
alternative to mass-produced conventional machines.

A number of functional languages have been extended to include parallel eval-
uation primitives. Typically, when using such languages, a programmer spec-
ifies that a process be created to evaluate some expression and evaluation
then proceeds until the value generated by the created process is required
[33,55,37,49,34]. Such language forms might serve as a target for transfor-
mation derivation or as a standard form to be used in the transformational
process. As before, however, our goal is to have specifications that are free of
execution detail.

8.3 Program Transformation

A large volume of literature on program transformations and derivations is
available. Although it is not the main subject of this paper the interested
reader is referred to Partsch [60] for an overview of various transformations
systems and to [25,27,72,66,42,47] for discussions of particular transformation
systems.

A major issue still to be addressed in transformation systems is the control of
the derivation process; i.e. the specification of strategies to achieve some goal.
The approach advocated here is to define a sequence of normal forms that
achieves a goal (the conversion from some initial form to some final form):
consideration of strategy is then reduced to ensuring that the transformations
convert one normal form into the next. The use of normal forms has been
discussed at least as early as 1970 by Boyle [10] and has been addressed more
recently by Hoare [43]. In a recent paper, Boyle [17] shows how a sequence
of normal forms can be used to control transformations that perform partial
evaluation of programs.

Program transformation has traditionally been used to recast a program into
an equivalent but more efficient form. The initial and final forms are generally
expressed in the same language. An early example is Burstall’s and Darling-
ton’s unfold-fold transformations [18] which improve the execution efficiency
of systems of recursive equations. This topic is pursued further in [9,39,46,62].
Again, the work reported in these papers has been employed in the optimiza-
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tion techniques used in the unfolding phase of the transformational method
discussed here.

8.4 Traditional Imperative Parallel Programming

The majority of programs that are executed by parallel computers are ex-
pressed in Fortran, a language which is inherently sequential. Fortran compil-
ers which generate code for parallel systems usually perform extensive program
analysis in order to exploit parallel execution. This is achieved primarily by
executing multiple iterations of DO loops simultaneously [73]. This area of
study is not directly related to the work in this paper, insofar as the results
of research is this area are not employed in the derivations presented here.
However, the research is important because Fortran is currently the only fea-
sible language for programming many vector and parallel computer systems
(and that has consequences for derivations). The intractability of many of the
problems that arise in vectorization or parallelization is a major factor moti-
vating research into alternative approaches to programming high-performance
computer systems; the work reported here may be viewed as one alternative.

Configuration languages such as those advocated in [31,51] permit composition
of black-box processes by specification of the communication between these.
Typically, the processes are expressed in a sequential language, such as Fortran
or C, and the communication is by reading and writing to communication
ports. Configuration languages normally require too low a level of detail to
be suitable for specifying algorithms, but they might be suitable as target
languages for derivations.

Imperative languages have been extended to include parallel programming
constructs. The extensions range from subroutine libraries, that are little more
than interfaces to operating system routines, to entirely new languages such
as ADA, which are designed with parallel execution in mind. Of particular
relevance in the context of this paper are the array extensions to Fortran pro-
vided by languages such as Fortran90 [57], Connection Machine Fortran [22],
Fortran Plus Enhanced [1], Fortran-D [32] and Vienna Fortran [4]. These ex-
tensions provide, to some degree, a data abstraction for arrays: many common
operations such as the elementwise addition of two arrays are provided as pure
functions (denoted by the usual ‘+’ operator). Vienna Fortran is distinguished
from the others by its advanced support for data templates, which permit the
programmer to define the distribution of data on distributed memory systems.
Recently, many of the features of these array-based Fortran dialects have been
coalesced into a single language called High Performance Fortran [41]. The lan-
guage definition is still under review and there are, as yet, no widely available
HPF compilers.
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In some ways, the array extensions to Fortran may be viewed as an attempt to
introduce into Fortran some of the features of functional languages: expressions
permit array operations to be denoted in a high-level, machine-independent
manner that allows operations to be succinctly combined and that facilitates
analysis.

It is thus natural to enquire whether the wide-spread use of array-based For-
tran would render irrelevant the work reported in this paper, since program-
mers would have available array operations that are almost the same as those
provided by the array data abstraction used here. We offer the following rea-
sons for replying in the negative:

– The array-based Fortran dialects fall short of providing complete data ab-
stractions for matrices and vectors; for example, they do not support com-
mon linear algebraic operations such as matrix product.

– Some of the Fortran dialects do provide module mechanisms for hiding im-
plementation details, but, in general, efficiency considerations will probably
force programmers to continue using subroutines as their main (if any) de-
composition mechanism. What the derivational approach offers over Fortran
in any form is a clear separation of the tasks of specifying an algorithm and
implementing it.

– The expression-based array operations are likely to impose just as high
overheads on Fortran implementations as on functional implementations.
The developers of compilers for the Fortran dialects will have to address
issues such as destructively updating arrays, but they will have to address
the issue in the context of an already complex compilation system. The
derivational approach allows implementation issues to be separated and
addressed more methodically.

Thus, the chief relevance of the array-based dialects of Fortran for the deriva-
tional approach proposed here will probably result from their use as program-
ming models to replace the ill-defined model provided by Fortran77. (It should
be easier to derive implementations designed for parallel execution using HPF
as the implementation language rather than Fortran77.)

9 Conclusion

In this paper we demonstrated that it is possible to transform mechanically
high-level functional specifications into highly efficient implementations tai-
lored for execution on the AMT DAP array processor. The functional specifi-
cations are not biased in ways that guarantee efficiency of their implementa-
tions on a particular machine architecture; rather, they are expressed in ways
that provide clear statements of algorithms. Indeed, the example specifications
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may be used as starting points for deriving similarly efficient implementations
tailored for execution on other machines.

The transformations used to produce the implementations presented in this
paper are problem independent and may be applied to ML specifications of
other algorithms. The method may be further refined by tailoring the gener-
ated code for a particular compiler (for example, producing sectioned Fortran
Plus array operations that are tailored for the size of the processor array) and
defining specialized data transformations (for example, specific transforma-
tions for sparse matrices).
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