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(Preliminary version, just some thoughts jotted down ...

The tasks identified below are not necessarily sequential, but may be ongoing
tasks performed concurrently.)

1 I/O trial

Express about the simplest possible interactive program in Slang and generate
working code. For example, The Oracle is a program that consists of an infinite
loop where each cycle reads one line of text from the input stream and then
prints “Yes” or “No” — depending on whether the input contained an even or
an odd number of occurrences of the character “n” — to the output stream.

The purpose of this subtask is to clarify what is involved in writing interac-
tive Specware-generated applications (without the burden of the complexity of
graphical interfaces and multi-modal input).

2 GUI I/O library

Design a library at an appropriately high level for creating graphical presentations
and obtaining input events.

In a first version, composite presentations can be built from other presentations
using a boxes-&-glue model as in Latex or tcl/tk, as well as in the form of graphs
with (labelled) boxes for the nodes and a few kinds of (also labelled) arrows for
the arcs. In later versions we will expand the composition mechanisms and use
approximate-constraint solving for easier positioning control.

Depending on the GUI toolbox chosen there may be a need for buffering and
incremental repainting, not only for speed of screen updates but also to avoid
unnecessary discontinuity (such as screen areas going temporarily grey). In a first
version, we can just ignore this and do a full repaint always.

A full library should accommodate about all conceivable GUI bells and whistles.
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Provided there is a reasonable initial design, new features may however be added
in the course of time as the need for them arises.

The library should have a Lisp API (or any other reasonable Specware target
language). This can just consist of invocations of RPC/RMI stubs; the real code
could be Java, C or whatever.

The selection of an appropriate GUI toolbox to build upon is a subtask. Factors
to be considered are not only the functionality offered and ease of use, but also
the long-term viability (in as far as foreseeable), including continued maintenance
and support, as well as platform-independence. However, as long as the library
is appropriately high-level, switching to a different toolbox later should be a job
of moderate size.

On the input side, the GUI I/O library should already map “raw” screen events
(e.g. mouse clicks) to events that relate to the higher-level entities presented on
the screen.

3 GUI I/O trials

Create a few simple interactive programs in Slang with graphical I/O. For exam-
ple, a bar-chart editor in which the user can adjust the heights of the bars by
dragging, but also by editing a textual presentation of these heights, and a finite-
state automaton simulation displaying state changes (e.g. as a token travelling
between nodes) in response to user actions.

These trial programs should use ad hoc methods for coupling the (almost trivial)
application core functionality with the user interaction.

4 Separation of responsibilities

Modify the I/O trial programs to separate the specification of the application
core functionality from the specification of the “user-interaction mediator”, a
component that can differ from program to program and is still specified in an
ad hoc way.
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5 Experience building

Create more challenging interactive programs, where possible meeting existing
needs within other projects in Kestrel, while keeping the specifications of the
application core functionality and the user-interaction mediators strictly separate.

6 Presentation and constraint-maintenance

Design a formalism to make the task of specifying the visual presentation of
entities more easy and uniform. Use this in the course of the experience-building
process. Expand the constraint-maintenance mechanisms.

7 Towards UserInteractionWare

Examine the collection of user-interaction mediators built up, and extract the
commonalities (generalization–abstraction–parametrization). Design an appro-
priate UIM formalism for expressing user-interaction mediators tersely, separat-
ing the coupling aspect per se from more superficial presentation aspects. Use
existing interactive programs to test this UIM formalism out.

8 And then ...

Taxonomies of user-interaction models and paradigms. Taxonomies of interactor
subtheories. Interactively designer-adjustable UI’s. ...




