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0 Introduction

Constraints for user interfaces.. Constraints are used in the construc-
tion of user interfaces in two rather different ways. Both ways have in com-
mon that they afford a certain amount of Direct Manipulation, but to differ-
ent classes of users.

One use of constraints is in the graphical aspects of user-interface manage-
ment systems, comprising toolboxes for specifying the appearance of the vi-
sual manifestation of the user interface on the screen, including such things
as the position of various widgets in a window [2, 7]. The DM capability here
is provided to the interface designers.

Another use of constraints is to specify the relationship between views (vi-
sually presented objects) and the object values they represent. The simplest
case of this is known as the Model-View-Controller paradigm [5]. More gen-
erally, there is a network of “documents”, comprising views as well as other
objects linked together by constraints. This formed the basis of Higgens [3, 4],
in which the user interface was generated “off-line”, and was the pervading
architecture of the Views system [6, 8]. Here, it is the end-user who uses
“Direct Manipulation” (in an extended sense) to control the applications(s).
For example, a “folder” or “workspace”, that is, a collection of documents,
might have a view consisting of (possibly embellished) presentations of the
names of these documents. The constraint linking these two is: names-of-
documents-in-folder = names-in-view. If a document in the folder is renamed
by any means, its new name then appears in the view. Conversely, if a name
is edited and changed in the view, the corresponding document is renamed.
The constraints are like physical laws which— if designed in a reasonable
way— impart predictable behaviour to the system (compare ThingLab [1]).
Such predictability is essential for usability.

The evolution of user-interface design has been going for quite some time
now in the direction of direct user control, coupling the visual manifestation
to the system functionality in a way that is readily expressed in terms of
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constraints. Preferably, the “constraint architecture” of a system is reflected
in its software architecture. The alternative is that the constraint mainte-
nance is programmed-out ad hoc, which—although cumbersome and error
prone— is feasible in systems of modest and fixed functionality. In either
case, the quality and consistency of the functional design of software may
benefit from using a constraint-based formulation for its specification.

Constraint maintenance. We focus on networks that have no cycles and
in which each constraint is a two-way constraint, linking two objects at a
time. The simplest non-trivial case is a network of two objects and one
constraint, as depicted in Figure 1. By some external process (for example,

A

x

B

yR✒✑✓✏

Figure 1: A simple network of two objects A and B linked by the
constraint that their respective contents x and y be such that xRy

holds.

the action of a user editing an object) the contents of an object may be
changed. If (referring to the situation in Figure 1) the value of A gets changed
to x′, and thereby the constraint is violated, that is, x′Ry does not hold,
constraint maintenance intercedes and replaces the contents of B by some
value y′ such that x′Ry′ holds. Conversely, if B is changed, the continual
process of constraint maintenance may need to change A in order to repair
the constraint. Suppose now, for concreteness, that A and B are numeric
objects, and that R is the relation “≤” (“is at most”). Assume that x = 2.5
and y = 3.25. If the user would change x to x′ = 1, the constraint is not
violated and B does not have to be updated. If, on the other hand, the user
changes x to x′ = 4.0, y has to be replaced by some value y ′ such that 4.0 ≤ y′.
Now there are many such values, for example 5, 15.154 and 100000. Which
to choose? The claim is that although there are many formal solutions to
the constraint, some are more intuitively natural in terms of user expectation
than others. In particular, in this example, the intuitively natural choice is
y′ = 4.0. A simple physical system embodying this constraint is shown in
Figure 2. Generalizing the example leads to the Principle of Least Change :
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The action taken by the maintainer of a constraint after a violation should

change no more than is needed to restore the constraint.

❆❆
B1 2 3 4 5 6

❆❆

A1 2 3 4 5 6

Figure 2: A physical embodiment of the constraint “≤”. If slider A
is moved from position 2.5 to position 4.0, it will engage with slider
B and force it to also move to position 4.0.

Constraint maintainers. A constraint maintainer is a pair of functions
that can be used to compute the necessary updates for constraint mainte-
nance. These functions have two arguments: the new value at one end of
the link, and the old value at the other end of the link. They will usually
be denoted by the infix binary operators ⊳ and ⊲. If the relationship xRy
holds at some time, and there is a change y ❀ y ′, then x⊳y′ is computed,
and the update x ❀ x⊳y′ is effected. Conversely, if relationship xRy holds
at some time, and there is a change x ❀ x′, then x′⊲y is computed, and
the update y ❀ x′⊲y is effected. This paper is concerned with the question:
How to design, given a constraint R, constraint maintainers of it that are
“intuitively natural”.

1 Basic definitions and notation

Quantifications. Quantifications are written as in ∃(n : n ∈ N : 3n+4n =
5n). The quantifier, in this case existential, is all in front. Preceding the
first colon we find the dummy variables, between the two colons their range,
and following the second colon a proposition, typically depending on the
dummy variables. The range is often omitted, meaning that the range of
each dummy is restricted by the typings given in the context for the functions
applied to it. So if f : N→A, the statement ∀(n :: f(n + 1) > f(n)) means:
∀(n : n ∈ N : f(n+ 1) > f(n)).
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Function comprehensions are also written in quantifier notation, but without
the quantifier. The notation (n : n ∈ N : 2n) means: the function mapping
a natural number n to 2n. A more traditional notation for this function is
λn ∈ N • 2n. We occasionally use a dummy “hole” (a small square ✷) to
get a shorthand for a one-argument function comprehension. For example,
“✷ + 1” stands for “(x :: x+ 1)”.

A proposition between square brackets is an abbreviation for universal quan-
tification; it means: that proposition universally quantified over all free vari-
ables of the proposition that are not bound in its context. For example,

“If x is positive, then [y ≥ x⇒ y > 0]”

means

“If x is positive, then ∀(y :: y ≥ x⇒ y > 0)”.

The same convention is used in definitions, as in this definition of function√
on the non-negative real numbers: [y =

√
x ≡ y ≥ 0 ∧ y2 = x].

Pairs. If x ∈ A and y ∈ B, the pair 〈x, y〉 denotes the corresponding
element of A×B. The projections are denoted by πL and πR, with

πL: A×B→A πR: A×B→B

[ πL〈x, y〉 = x ] [ πL〈x, y〉 = y ]

(Normally, we denote function application with parentheses around the ar-
gument, as in “f(x)”. If, however, the argument is a pair, as above, or a set
comprehension, as in “f{x, y, x}”, the parentheses are omitted.)

Converse and sections. Given a function ⊕: A×B→C , its converse

⊕̆: B × A→C is defined by (using infix notation) : [y ⊕̆x = x⊕y]. Converse

is an involution: ˘̆⊕ = ⊕.

Furthermore, for fixed x ∈ A, the left-section of ⊕ for x, denoted by x⊕, is
the function x⊕ ✷: B→C . Likewise, for fixed y ∈ B, the right-section of ⊕
for y, denoted by ⊕y, is the function ✷⊕ y: A→C . So x⊕ = (y :: x ⊕ y)
and ⊕y = (x :: x⊕ y). Note that x⊕ = ⊕̆x.
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Predicates and sets. A predicate is a truth-valued function defined on
some domain.

We identify predicates and sets. In particular, a predicate p is identified with
the set of all values satisfying p. So [x ∈ p ≡ p(x)]. Thus, the predicate
(n : n ∈ N : 2n = n2) also denotes the set {2, 4}. The size of a finite set s is
denoted by #s.

The set of all subsets of some set s will be denoted by Ps: [t ∈ Ps ≡ t ⊆ s],
while the set of all non-empty subsets of s is denoted by P+s. So
[ t ∈ P+s ≡ t ∈ Ps ∧ t 6= ∅ ].

Relations. A (binary) relation is a predicate whose domain is some
cartesian-product set A × B. To indicate the typing of a relation R with
that domain we write R: A∼B. We use infix notation: for x ∈ A and
y ∈ B, rather than writing R〈x, y〉 or 〈x, y〉 ∈ R, we normally write xRy.

A relation R is called ditotal whenever both [∃(x :: xRy) ] and [∃(y :: xRy) ].

Given a relation R: A∼B, we have for its converse R̆: B∼A and
[yR̆x ≡ xRy]. If R is ditotal, then so is R̆.

Given two relations R: A∼B and S: B∼C , we can form their composition

(R ;S): A∼C , defined by: [x(R ;S)z ≡ ∃(y : y ∈ B : xRy ∧ ySz) ]. If R and
S are ditotal, then so is (R ;S).

Given a function f : A→B, its relational embedding is the relation
〈〈f〉〉: A∼B defined by: [x〈〈f〉〉y ≡ f(x) = y]. The relation 〈〈f〉〉 is
ditotal whenever f is surjective. Embedding is an injective operation:
[〈〈f〉〉 = 〈〈g〉〉 ≡ f = g]. A relation that is the relational embedding of some
function is called functional. Note the inversion in [ (〈〈f〉〉 ; 〈〈g〉〉) = 〈〈g◦f〉〉 ].
Warning. Do not confuse 〈〈⊕̆〉〉 with 〈〈⊕〉〉̆ (that, is, R̆ where R = 〈〈⊕〉〉). If
⊕: A×B→C , then 〈〈⊕̆〉〉: B × A ∼ C , whereas 〈〈⊕〉〉̆ : C ∼ A× B.
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2 Properties of maintainers

Given a constraint specified as a relation R: A∼B, a maintainer of R is a
pair of functions ⊳ : A×B→A and ⊲ : A×B→B that can be used to restore
the validity of xRy after a change to x or y. The primary requirement on
⊳ is that the assignment x:=x⊳y establishes xRy, which is expressed by
[ wp(x:=x⊳y, xRy) ]. By wp-calculus this is equivalent to

[ (x⊳y)Ry ]

Dually, for ⊲ the primary requirement is

[ xR(x⊲y) ]

These requirements are all that is strictly necessary to guarantee that consis-
tency can be restored after any autonomous change to an object in an acyclic
network all of whose constraints are ditotal relations. However, we shall im-
pose further requirements on maintainers, requirements that are justified
from an ergonomic point of view. Later, we shall consider the requirement
that restoring changes be as ‘small’ as possible. The notion of ‘small’ here
is hard to formalize in a general way. In this section we consider only the
weaker version of this requirement that no unnecessary changes be made.
More precisely, if, after an assignment to y, the validity of xRy is not de-
stroyed, then the effect of x:=x⊳y should be nil, the same as that of the skip
x:=x. This amounts to

[ xRy ⇒ x⊳y = x ]

Dually, we require

[ xRy ⇒ x⊲y = y ]

Summing this up, we have

Definition (maintainer): A maintainer of a constraint

R: A∼B
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is a pair of functions

⊳ : A×B→A

⊲ : A×B→B

satisfying the following four requirements:

⊳-est : [ (x⊳y)Ry ]

⊲-est : [ xR(x⊲y) ]

⊳-skip : [ xRy ⇒ x⊳y = x ]

⊲-skip : [ xRy ⇒ x⊲y = y ]

We also say that 〈⊳, ⊲〉 maintains R.

Given a constraint R as above, functions ⊳ and ⊲ will be called suitably

typed for R if the typing is as in this definition.

The requirements for ⊳ and for ⊲ are independent, giving rise to the notion of
a semi-maintainer, being just one unidirectional half of a full (bidirectional)
maintainer. In general a constraint can have several maintainers, and if both
〈⊳0 , ⊲0〉 and 〈⊳1 , ⊲1〉 maintain R, then so do 〈⊳0 , ⊲1〉 and 〈⊳1 , ⊲0〉.

Duality Principle: If the pair 〈⊳, ⊲〉 maintains a constraint R, the pair
〈 ⊲̆, ⊳̆〉 maintains R̆.

Proof. Immediate by the definitions. End of proof.

Duality can be used for economy of proofs. Each proposition about main-
tainers has a dual, which is obtained from it by performing the substitution
suggested by the Duality Principle. For example, the dual of ⊳-est is ⊲-est.

In general a constraint can have several maintainers, but for the impor-
tant case of a functional relation one of the update functions is uniquely
determined:

Theorem 1: If 〈⊳, ⊲〉 maintains 〈〈f〉〉, [ x⊲y = f(x) ].
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Proof.

x⊲y = f(x)

≡ { definition of 〈〈f〉〉 }

x〈〈f〉〉(x⊲y)

≡ { ⊲-est }

true

End of proof.

In general there is no easy way to obtain the other semi-maintainer. For ex-
ample, f might be an encryption function in public-key cryptography. Find-
ing ⊳ would amount to breaking that cryptosystem.

Theorem 2: Let A 6= ∅ and B 6= ∅. If constraint R: A∼B has a maintainer,
it is ditotal.

Proof. Assume R has a maintainer. To show that R is ditotal, we must be
able to find, given x ∈ A, a y ∈ B such that xRy. So assume x ∈ A. Let η
be any element of B, and take y = x⊲η. Then,

xRy

≡ { definition of y }

xR(x⊲η)

≡ { ⊲-est }

true

Dually, we can find likewise, for any y ∈ B, a related x ∈ A. End of proof.

Later, in Theorem 9, we shall see that the converse holds as well: any ditotal
relation has a maintainer.
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Theorem 3: For a maintainer 〈⊳, ⊲〉 of a constraint R each of the following
holds.

⊳-char : [ x⊳y = x ≡ xRy ]

⊲-char : [ x⊲y = y ≡ xRy ]

⊳-adj : [ x⊲y = y ⇒ x⊳y = x ]

⊲-adj : [ x⊳y = x⇒ x⊲y = y ]

adj : [ x⊳y = x ≡ x⊲y = y ]

⊳⊳-skip : [ (x⊳y)⊳y = x⊳y ]

⊳⊲-skip : [ (x⊳y)⊲y = y ]

⊲⊲-skip : [ x⊲(x⊲y) = x⊲y ]

⊲⊳-skip : [ x⊳(x⊲y) = x ]

Proof. Let x and y be fixed throughout. For ⊳-char the proof of the
equivalence proceeds by cyclic implication:

x⊳y = x

⇐ { ⊳-skip }
xRy

≡ { ⊳-est }
(x⊳y)Ry ≡ xRy

⇐ { Leibniz }
x⊳y = x

By duality this also establishes ⊲-char. Together these two give an easy
proof for adj:

x⊳y = x

≡ { ⊳-char }
xRy

≡ { ⊲-char }
x⊲y = y

10



The statements ⊳-adj and ⊲-adj are weaker versions that follow immedi-
ately. For ⊳⊳-skip we calculate as follows:

(x⊳y)⊳y = x⊳y

≡ { ⊳-char, with x⊳y for x }
(x⊳y)Ry

≡ { ⊳-est }
true

Similarly, for ⊳⊲-skip:

(x⊳y)⊲y = y

≡ { ⊲-char, with x⊳y for x }
(x⊳y)Ry

≡ { ⊳-est }
true

The remaining two properties follow by duality. End of proof.

Conversely, any pair of functions having all these properties maintains R.
To establish maintainership it suffices in fact to prove only a few of these
properties, since not all are independent. In practice this may be an easier
way than directly verifying the definition. Before going into this, we list a
few properties that hold for any suitably typed pair of functions ⊳ and ⊲ ,
whether a maintainer of R or not. They are useful in later proofs.

Lemma 4:

(a) ⊲⊳-skip ⇒ ⊳-adj
(b) ⊳⊲-skip ⇒ ⊲-adj
(c) (⊳-adj ∧ ⊲-adj) ≡ adj

(d) ⊳-char ⇒ ⊳-skip
(e) ⊲-char ⇒ ⊲-skip
(f) adj ⇒ (⊳-char ≡ ⊲-char)
(g) ⊳-char ⇒ (⊳⊳-skip ≡ ⊳-est)
(h) ⊲-char ⇒ (⊲⊲-skip ≡ ⊲-est)
( i ) ⊲-char ⇒ (⊳⊲-skip ≡ ⊳-est)
(j) ⊳-char ⇒ (⊲⊳-skip ≡ ⊲-est)
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Proof. For (a):

⊳-adj

≡ { definition of ⊳-adj }
[ x⊲y = y ⇒ x⊳y = x ]

⇐ { taking y for z }
[ x⊲y = z ⇒ x⊳z = x ]

≡ { one-point rule }
[ x⊳(x⊲y) = x ]

≡ { definition of ⊲⊳-skip }
⊲⊳-skip

For (c):

⊳-adj∧ ⊲-adj

≡ { definitions of ⊳-adj and ⊲-adj }
[ x⊲y = y ⇒ x⊳y = x ] ∧ [ x⊳y = x ⇒ x⊲y = y ]

≡ { [ P ∧ Q ] ≡ [ P ] ∧ [Q ] }
[ (x⊲y = y ⇒ x⊳y = x) ∧ (x⊳y = x ⇒ x⊲y = y) ]

≡ { propositional calculus }
[ x⊳y = x ≡ x⊲y = y ]

≡ { definition of adj }
adj

For (d):

⊳-skip

≡ { definition of ⊳-skip }
[ xRy ⇒ x⊳y = x ]
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⇐ { weakening of ≡ to ‘one direction’ }
[ x⊳y = x ≡ xRy ]

≡ { definition of ⊳-char }
⊳-char

For (f):

⊳-char ≡ ⊲-char

≡ { definitions of ⊳-char and ⊲-char }
[ x⊳y = x ≡ xRy ] ≡ [ x⊲y = y ≡ xRy ]

⇐ { [ P ≡ Q ] ⇒ ([ P ] ≡ [Q ]) }
[ x⊳y = x ≡ xRy ≡ x⊲y = y ≡ xRy ]

≡ { properties of ≡ }
[ x⊳y = x ≡ x⊲y = y ]

≡ { definition of adj }
adj

For (g):

⊳⊳-skip ≡ ⊳-est

≡ { definitions of ⊳⊳-skip and ⊳-est }
[ (x⊳y)⊳y = x⊳y ] ≡ [ (x⊳y)Ry ]

⇐ { [ P ≡ Q ] ⇒ ([ P ] ≡ [Q ]) }
[ (x⊳y)⊳y = x⊳y ≡ (x⊳y)Ry ]

⇐ { taking x⊳y for x }
[ x⊳y = x ≡ xRy ]

≡ { definition of ⊳-char }
⊳-char
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For (i ):

⊳⊲-skip ≡ ⊳-est

≡ { definitions of ⊳⊲-skip and ⊳-est }
[ (x⊳y)⊲y = y ] ≡ [ (x⊳y)Ry ]

⇐ { [ P ≡ Q ] ⇒ ([ P ] ≡ [Q ]) }
[ (x⊳y)⊲y = y ≡ (x⊳y)Ry ]

⇐ { taking x⊳y for x }
[ x⊲y = y ≡ xRy ]

≡ { definition of ⊲-char }
⊲-char

The remaining properties (b), (e), (h) and (j) are each dual to one shown
above. End of proof.

Using this, we give a sufficient condition for maintainership that will be
used in the proof of Theorem 6 below. To state this condition and that of
Theorem 6, we need a few auxiliary abbreviations:

⊳⊲-char ≡ (⊳-char ∨ ⊲-char)

⊳⊳⊲-skip ≡ (⊳⊳-skip ∨ ⊳⊲-skip)

⊲⊳⊲-skip ≡ (⊲⊲-skip ∨ ⊲⊳-skip)

Lemma 5: Given a constraint R and suitably typed ⊳ and ⊲, if

⊳⊲-char ∧ adj ∧ ⊳⊳⊲-skip ∧ ⊲⊳⊲-skip

then 〈⊳, ⊲〉 maintains R.

Proof. The proof will establish, from the assumptions, each of the four
properties of the definition of maintainership: ⊳-est, ⊲-est, ⊳-skip and
⊲-skip. First, however, we show that the assumptions imply both ⊳-char
and ⊲-char:

⊳-char ∧ ⊲-char
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≡ { propositional calculus }

(⊳-char ∨ ⊲-char) ∧ (⊳-char ≡ ⊲-char)

⇐ { Lemma 4(f) }

(⊳-char ∨ ⊲-char) ∧ adj

≡ { definition of ⊳⊲-char }

⊳⊲-char ∧ adj

For ⊳-est we now have the following proof:

⊳-est

⇐ { propositional calculus }

(⊳⊳-skip ≡ ⊳-est) ∧ (⊳⊲-skip ≡ ⊳-est) ∧ (⊳⊳-skip ∨ ⊳⊲-skip)

≡ { definition of ⊳⊳⊲-skip }

(⊳⊳-skip ≡ ⊳-est) ∧ (⊳⊲-skip ≡ ⊳-est) ∧ ⊳⊳⊲-skip

⇐ { Lemma 4(g) and (i) }

⊳-char ∧ ⊲-char ∧ ⊳⊳⊲-skip

By duality, also ⊲-est is a consequence of the assumptions. Finally, ⊳-skip
and ⊲-skip are, by Lemma 4(d) and (e), immediate consequences of ⊳-char
and ⊲-char. End of proof.

Theorem 6: Given a constraint R, for suitably typed ⊳ and ⊲ the following
statements are all equivalent:

mnt0 : 〈⊳, ⊲〉 maintains R

mnt1 : ⊳⊲-char ∧ ⊳⊲-skip ∧ ⊲⊳-skip

mnt2 : ⊳⊲-char ∧ adj ∧ ⊳⊳-skip ∧ ⊲⊲-skip

mnt3 : ⊳⊲-char ∧ ⊳-adj∧ ⊳⊲-skip ∧ ⊲⊲-skip

mnt4 : ⊳⊲-char ∧ ⊲-adj∧ ⊲⊳-skip ∧ ⊳⊳-skip
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Proof. By Theorem 3 the implications mnt0 ⇒ mnti are all immediate,
so it suffices to show the implications in the reverse direction. This will be
done by showing that each of the assumptions mnti implies the condition of
Lemma 5. For mnt2 this is immediate. For the others, the only assumption
of Lemma 5 that is not immediately implied is adj. For mnt1 it is shown
by:

adj

≡ { Lemma 4(c) }
⊳-adj∧ ⊲-adj

⇐ { Lemma 4(a) and (b) }
⊳⊲-skip ∧ ⊲⊳-skip

For mnt3:

adj

≡ { Lemma 4(c) }
⊳-adj∧ ⊲-adj

⇐ { Lemma 4(b) }
⊳-adj∧ ⊳⊲-skip

Finally, mnt4 follows by duality. End of proof.

Example. As an example, we show that 〈↓, ↑〉 maintains the constraint ≤.
First,

⊳-char

≡ { definition of ⊳-char, instantiated for the example }
[ x ↓ y = x ≡ x ≤ y ]

≡ { property of ↓ }
true

16



Next,

⊳⊲-skip

≡ { definition of ⊳⊲-skip, instantiated for the example }
[ (x ↓ y) ↑ y = y ]

≡ { property of ↑ }
[ x ↓ y ≤ y ]

≡ { property of ↓ }
true

By duality, also ⊲⊳-skip holds. This establishes mnt1 of Theorem 6, and
thereby the maintainership. End of example.

3 Well-orders and selectors

In the construction of maintainers we need ways to select the “best” among
various possible choices, the assumption being that some choices are better
(intuitively more natural) than others, in particular according to the Princi-
ple of Least Change. It is not hard to construct cases where there are several
equally good candidates, and any choice involves some degree of arbitrari-
ness. Still, we want the selection to be as predictable as possible, at the very
least deterministic (repeatable), and therefore we assume that there is some
systematic and consistent way of breaking ties. In this chapter we examine
some notions for modelling this, in particular well-orders and selectors. We
also suggest specific tie-breaking rules by using a “small is beautiful” bias
and a “leftmost first” bias.

Example. Let ⊕ denote addition modulo 2 on the domain Z2 = {0, 1} (⊕ is
also known as “exclusive or”), and consider the constraint 〈〈⊕〉〉. If x = 〈0, 0〉
and y = 0, relationship x〈〈⊕〉〉y holds. Now assume that y gets changed to
y′ = 1. There are two choices possible for x′ such that x′〈〈⊕〉〉y′, namely
x′ = 〈0, 1〉 and x′ = 〈1, 0〉. In view of the symmetry of the situation, the
choice must need be rather arbitrary. Actually, the methods described below
give preference to the first choice: the leftmost field of 〈0, 1〉 is smaller than
that of 〈1, 0〉. End of example.
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3.1 Well-orders

The usual definition of a relation �: A∼A being a well-order is that it is a
total order, and that there exists no infinite strictly descending sequence

x0 ≻ x1 ≻ x2 ≻ · · ·

(For example, any totally ordered finite set is well-ordered.) A consequence is
then that each non-empty subset s of A contains a least element with respect
to �. Here, we take the latter property as the definition, and show that the
former is a consequence.

Definition (well-ordered set): A pair 〈A,�〉, where A is a set and
�: A∼A, is a well-ordered set whenever there exists a function f : P+A→A
satisfying the following characterization:

[ f(s) = m ≡ m ∈ s ∧ [ x ∈ s ⇒ m � x ] ]

Such a relation � is called a well-order on A. We will usually denote the
function selecting the least element with respect to a well-order � by min�.
As usual, x 6� y stands for ¬(x � y). We write x ≺ y for x � y ∧ y 6� x.
Furthermore, �= �̆ and ≻= ≺̆.

Lemma 7: Let 〈A,�〉 be a well-ordered set. Then:

(a) � is reflexive

(b) � is transitive

(c) � is antisymmetric

(d) � is total, that is, [ x � y ∨ y � x ]

(e) [ x � y ≡ min�{x, y} = x ]

( f) [min�(s) ∈ s ]

(g) [ x ∈ s ⇒ min�(s) � x ]

(h) [min�{x} = x ]

( i ) each infinite sequence of elements of A is not strictly descending

Properties (a)–(d) together assert that � is a total order.
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Proof. We prove these properties in this order: ( f); (g); (h); (a); (e); (c);
(b); (d).

Properties (f) and (g) follow immediately from min�-characterization by in-
stantiating m:=min�(s), while (h) follows from (f) by instantiating s:={x}.

As for (a):

[ x � x ]

≡ { (h) }
[min�{x} � x ]

⇐ { (g) }
[ x ∈ {x} ]

≡ { membership of singleton set }
true

As for (e), which shows that min� determines �:

x � y

≡ { x ∈ {x, y}, (a): � is reflexive }
x ∈ {x, y} ∧ x � x ∧ x � y

≡ { universal quantification over {x, y} }
x ∈ {x, y} ∧ [ u ∈ {x, y} ⇒ x � u ]

≡ { min�-characterization }
min�{x, y} = x

As for (c), we have to show that [ x = y ⇐ x � y ∧ y � x ].

x = y

⇐ { = is symmetric and transitive }
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min�{x, y} = x ∧ min�{x, y} = x

≡ { (e) }
x � y ∧ y � x

As for (b), we have to show that [ x � z ⇐ x � y ∧ y � z ]. Abbreviate
min�{x, y, z} to m, and note that, by (g), we havem � x, m � y and m � z.
Further, since m ∈ {x, y, z} by (f), we have

m = x ∨ m = y ∨ m = z

We proceed by distinguishing these three cases.

Case m = x:

x � z

≡ { m = x, m � z }
true

⇐ { propositional calculus }
x � y ∧ y � z

Case m = y:

x � z

⇐ { Leibniz }
x = y ∧ y � z

⇐ { (c): � is antisymmetric }
x � y ∧ y � x ∧ y � z

≡ { m = y, m � x }
x � y ∧ y � z

Case m = z :

x � z
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⇐ { Leibniz }
x � y ∧ y = z

⇐ { (c): � is antisymmetric }
x � y ∧ y � z ∧ z � y

≡ { m = z, m � y }
x � y ∧ y � z

As for (d), we have to show that [ x � y ∨ y � x ].

[ x � y ∨ y � x ]

≡ { (e) }
[min�{x, y} = x ∨ min�{x, y} = y ]

≡ { membership of set comprehension }
[min�{x, y} ∈ {x, y} ]

≡ { (f) }
true

As for ( i ), let x0, x1, x2, . . . be an infinite sequence of elements of A. Define
s = (x :: ∃(i :: x = xi)). Then

¬∀(i :: xi ≻ xi+1)

⇐ { predicate calculus }
∃(i :: xi � xi+1)

⇐ { xi+1 ∈ s, instantiation }
∃(i :: [ x ∈ s⇒ xi � x ])

⇐ { (g) }
∃(i :: min�(s) = xi)

≡ { definition of s }
min�(s) ∈ s

≡ { (f) }
true

End of proof.

We now discuss how to obtain well-orders on various domains.

21



Tuples. Given two ordered (not necessarily well-ordered) sets 〈A,�A〉 and
〈B,�B〉, an order � on the product set A × B is called product-consistent

with �A and �B if

[ x �A x′ ∧ y �B y′ ⇒ 〈x, y〉 � 〈x′, y′〉 ]

A product-consistent order is obtained by the lexical product order (�A⌊�B),
defined by:

[ 〈x, y〉 (�A⌊�B) 〈x′, y′〉 ≡ x �A x′ ∧ (x=x′ ⇒ y �B y′) ]

This can be extended to n-ary products by bracketing, as in A × (B × C).
The result does not depend on the way of bracketing. If �A and �B are
well-orders, then so is (�A⌊�B).

The least element according to the lexical product order is selected by:

[min(�A⌊�B)x = 〈m,n〉
where m = min�A

(πL(x))

n = min�B
(π!m

R (x))

[ b ∈ π!a
R (x) ≡ 〈a, b〉 ∈ x ]

]

In particular,

[min(�A⌊�B)(s× t) = (min�A
(s),min�B

(t)) ]

Sequences. Given an ordered (not necessarily well-ordered) set 〈A,�〉, the
lexical sequence order �∗ on the set A∗ of finite sequences of A-elements is
defined inductively as follows. Let x range over A and y over A∗. Denote the
empty sequence by [ ], and the result of prepending x to y by x:y. Then:

[ [ ] �∗ y ]

[ x:y 6�∗ [ ] ]

[ x:y �∗ x′:y′ ≡ 〈x, y〉 (�⌊�∗) 〈x′, y′〉 ]
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Even if � is a well-order, in general the lexical sequence order thus defined
is not. For take A to be the two-letter alphabet {a, b} with a ≺ b. Then

b ≻∗ ab ≻∗ aab ≻∗ · · ·

However, when restricted to sequences of equal length n, the lexical order
is a well-order, namely the same as the lexical order on the corresponding
n-tuples. Therefore, a well-order on A∗ is obtained from a well-order � on
A by taking:

[ x�seq y ≡ 〈length(x), x〉 (≤⌊�∗) 〈length(y), y〉 ]

So, for the words over the alphabet {a, b}, writing ≺ for ≺seq , we get:

[ ] ≺ a ≺ b ≺ aa ≺ ab ≺ ba ≺ bb ≺ aaa ≺ · · ·

Sets. Given a well-ordered set 〈A,�〉, a well-order on the finite sets of
A-elements is obtained by taking:

[ x�set y ≡ sort(x)�seq sort(y) ]

in which sort produces a sequence from its argument sorted according to �.
Writing ≺ for ≺set , we get, for A = {a, b, c} with a � b � c:

∅ ≺ {a} ≺ {b} ≺ {a, b} ≺ {a, c} ≺ {b, c} ≺ {a, b, c}

The same method can be applied for bags (multisets).

Maps. A B-map over A, where A and B are sets, is a B-valued function
whose domain is a subset of A. Recall that the relational embedding 〈〈f〉〉
of a function f is a binary relation, and therefore a set of pairs (also called
the graph of f). So if �A and �B are well-orders on A and B, we obtain a
well-order on finite B-maps over A by defining:

[ x�map y ≡ 〈〈x〉〉 (�A⌊�B)
set 〈〈y〉〉 ]

For example,

∅ ≺ {a 7→ a} ≺ {a 7→ b} ≺ {b 7→ a} ≺ {b 7→ b} ≺
{a 7→ a, b 7→ a} ≺ {a 7→ a, b 7→ b} ≺ {a 7→ b, b 7→ a} ≺ {a 7→ b, b 7→ b}
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Numbers. The set of natural numbers N is well-ordered under the usual
order ≤. The set of integers Z can be well-ordered by defining:

[m�numn ≡ 〈|m|, m〉 (≤⌊≥) 〈|n|, n〉 ]

The use of ‘≥’ here is not a mistake, but intentional. The idea is that the
least element is the smaller in absolute size if such an element exists, and
otherwise the non-negative one:

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ · · ·

The set of real numbers can not be well-ordered constructively, but for the
purpose of this paper we assume that the set of representable numbers, de-
noted byR (for example, floating-point numbers) is nowhere dense, and then
the same definition as for Z above gives a well-order on R. (Later we shall
use the fact that this also implies that for any b ∈ R, if there exists any
a ∈ R with a < b, then there is a largest value x ∈ R such that x < b.)

3.2 Selectors

Suppose someone claims that some function f : P+A→A, when given a non-
empty subset of a well-ordered set 〈A,�〉, returns its least element, so the
claim is that f(s) = min�(s). However, we are not given any direct in-
formation about relation �. If the claim is correct, that relation can be
reconstructed from f by using Lemma 7(e). But does the reconstruction in-
deed give a well-order? And does f indeed select the least element according
to that well-order? We define the concept of selector , and show that it is
necessary and sufficient that f is a selector.

Definition (selector): A function f : P+A→A is a selector for A whenever
it satisfies the following two properties:

(a) [ f(s) ∈ s ]

(b) [ f(s ∪ t) = f{f(s), f(t)} ]

We first derive two further properties of selectors.
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Claim: If f is a selector, then

(c) [ f{x} = x ]

(d) [ s ⊆ t ∧ f(t) ∈ s ⇒ f(s) = f(t) ]

Proof. For (c):

[ f{x} = x ]

≡ { membership of singleton set }
[ f{x} ∈ {x} ]

⇐ { by instantiating s:={x} }
[ f(s) ∈ s ]

≡ { selector property (a) }
true

As to (d), assume that s ⊆ t and f(t) ∈ s. Then:

f(s)

= { assumption: f(t) ∈ s }
f(s ∪ {f(t)})

= { selector property (b) }
f{f(s), f{f(t)}}

= { selector property (c) }
f{f(s), f(t)}

= { selector property (b) }
f(s ∪ t)

= { assumption: s ⊆ t }
f(t)

End of proof.
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Now we prove that being a selector is both necessary and sufficient for f to
be equal to min� for some well-order �. We use the following definition. For
selector f : P+A→A the relation �f : A∼A is defined by:

x �f y ≡ f{x, y} = x

Theorem 8: Function f : P+A→A is a selector for A if and only if there
exists a well-order � on A such that [f(s) = min�(s) ], and then (�) = (�f).

Proof. (If part) For brevity we write min for min� below. Assume that
〈A,�〉 is a well-ordered set, and that f = min. We establish the two selector
properties for f . As to (a):

[ f(s) ∈ s ]

≡ { assumption: f = min }
[min(s) ∈ s ]

≡ { Lemma 7(f) }
true

For property (b):

[ f(s ∪ t) = f{f(s), f(t)} ]
≡ { assumption: f = min }

[min(s ∪ t) = min{min(s),min(t)} ]
≡ { min-characterization }

[ min{min(s),min(t)} ∈ s ∪ t
∧ [ x ∈ s ∪ t ⇒ min{min(s),min(t)} � x ]]

We prove the two conjuncts of the last formula separately. First,

[min{min(s),min(t)} ∈ s ∪ t ]

⇐ { Lemma 7(f): min{min(s),min(t)}∈ {min(s),min(t)} }
[ {min(s),min(t)} ⊆ s ∪ t ]
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≡ { Lemma 7(f): min(s) ∈ s,min(t) ∈ t }

true

Next,

min{min(s),min(t)} � x

⇐ { Lemma 7(g): min{min(s),min(t)} � min(s),
min{min(s),min(t)} � min(t),

Lemma 7(b): � is transitive }
min(s) � x ∨ min(t) � x

⇐ { Lemma 7(g) }

x ∈ s ∨ x ∈ t

≡ { membership of set union }

x ∈ s ∪ t

The fact that (�) = (�f) is an immediate consequence of Lemma 7(e).

(Only-if part) Assume that f is a selector. To show that �f is a well-order
we prove that f meets the characterization

[ f(s) = m ≡ m ∈ s ∧ [ x ∈ s ⇒ m �f x ] ]

We prove the equivalence by mutual implication. For the ⇐-direction:

f(s) = m

⇐ { = is transitive }
f(s) = f{m, f(s)} ∧ f{m, f(s)} = m

≡ { definition of �f }

f(s) = f{m, f(s)} ∧ m �f f(s)

⇐ { by instantiating 〈s, t〉:=〈{m, f(s)}, s〉 in selector property (d) }
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{m, f(s)} ⊆ s ∧ f(s) ∈ {m, f(s)} ∧ m �f f(s)

≡ { selector property (a), propositional calculus }
m ∈ s ∧ (f(s) ∈ s ⇒ m �f f(s))

⇐ { by instantiating x:=f(s) }
m ∈ s ∧ [ x ∈ s ⇒ m �f x ]

For the ⇒-direction, assume that f(s) = m. Then:

m ∈ s ∧ [ x ∈ s ⇒ m �f x ]

≡ { assumption: f(s) = m }
f(s) ∈ s ∧ [ x ∈ s ⇒ f(s) �f x ]

≡ { selector property (a), definition of �f }
[ x ∈ s ⇒ f{f(s), x} = f(s) ]

≡ { expand left-hand side using f(s) ∈ s }
[ {f(s), x} ⊆ s ∧ f(s) ∈ {f(s), x} ⇒ f{f(s), x} = f(s) ]

⇐ { by instantiating 〈s, t〉:=〈{f(s), x}, s〉 }
[ s ⊆ t ∧ f(t) ∈ s ⇒ f(s) = f(t) ]

≡ { selector property (d) }
true

End of proof.

The relevance of selectors is that they give a way of defining well-orders
implicitly, and define precisely that which we are interested in: a function
selecting an element in a systematic and consistent way.

Given sets A and B with respective selectors fA and fB , we call a selector f
for A×B product-consistent with fA and fB whenever:

[ f(s× t) = 〈fA(s), fB(t)〉 ]
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Claim: If f is product-consistent with fA and fB , then �f is product-
consistent with �fA and �fB .

Proof. Assume that f is product-consistent with fA and fB. Then:

〈x, y〉 �f 〈x′, y′〉
≡ { definition of �f }

f{〈x, y〉, 〈x′, y′〉} = 〈x, y〉
≡ { selector property (d), using

{〈x, y〉, 〈x′, y′〉} ⊆ {x, x′} × {y, y′}
and 〈x, y〉 ∈ {〈x, y〉, 〈x′, y′〉},

= is symmetric and transitive }
f({x, x′} × {y, y′}) = 〈x, y〉

≡ { assumption: f is product-consistent with fA and fB }
〈fA{x, x′}, fB{y, y′}〉 = 〈x, y〉

≡ { equality of pairs }
fA{x, x′} = x ∧ fB{y, y′} = y

≡ { definition of �f }
x �fA x′ ∧ y �fB y′

End of proof.

A fact that we shall not use is that the converse holds as well: if � is product-
consistent with �A and �B, then min� is product-consistent with min�A

and
min�B

.

Initial element. The design rules given below for constraint maintainers
assume that each linked object has a value. Therefore, when a constraint-
linked network is created or extended with new objects, for constraint main-
tenance to be possible, each newly created object must be made to possess a
value. The recommendedmethod is to initialize it to some domain-dependent
initial value, after which it should be “updated” (if it is linked by a constraint
to other objects) so as to establish the constraint.
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So we assume that for each non-empty set A there is a designated element
of A, the initial element of A, denoted by init(A), so

(a) [ init(A) ∈ A ]

Although we do not give precise rules for determining initial elements, in
general it should be the “nullest” element in some intuitively natural sense.
For the domain of real numbers R, the intuitively natural choice is init(R) =
0. For the set of all subsets PA of a (possibly empty) set A, the intuitively
natural choice is the empty set ∅. The choice init(A) = min�(A), using
the relevant well-order on A as defined in Section 3.1, satisfies this criterium
whenever the well-orders it is constructed from do. We get then, for example,
init(P+A) = {init(A)}, since

init(P+A)
= { init = min� }

min�(P+A)
= { #x < #x′ ⇒ x ≺ x′ }

min�(a : a ∈ A : {a})
= { {a} � {a′} ≡ a � a′ }

{min�(A)}
= { init = min� }

{init(A)}

We further assume the following two properties:

(b) [ A ⊆ B ∧ init(B) ∈ A ⇒ init(A) = init(B) ]

(c) [ init(A×B) = 〈init(A), init(B)〉 ]

Since N ⊆ R and 0 ∈ N, it follows that init(N) = 0.

These assumptions are fulfilled if init is a “global” selector function that is
product-consistent with respect to itself and itself. Again, the choice init =
min� satisfies these properties.
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3.3 Biased selectors

We try to reduce the construction of maintainers according to the Principle
of Least Change to the following problem: Approximate a given target x ∈ A
as closely as possible when the choice is constrained to a given ‘choice space’
(a non-empty set) s ⊆ A. The best approximation will be denoted as x§s.

Definition (biased selector): A function §: A×P+A→A is a biased

selector for A whenever it satisfies the following properties:

(a) [ x§: P+A→A is a selector ]

(b) [ x ∈ s ⇒ x§s = x ]

The second biased-selector property introduces the bias: if x is selectable at
all, it is the preferred choice.

Biased selectors always exist — the following definition will do:

x§s = x if x ∈ s,

= init(s) otherwise

Biased selectors obtained by this construction are in general not satisfactory,
but the existence result only serves for use in the Corollary to the following
Theorem. Below we discuss the construction of good biased selectors.

Theorem 9: Given a ditotal relation R: A∼B, function ⊳ : A×B→A
defined by

[ x⊳y = x§(Ry) ]

where § is some biased selector for A, is a semi-maintainer of R.

Corollary: Any ditotal relation has a maintainer.

Proof. We establish ⊳-est and ⊳-skip. For ⊳-est:

(x⊳y)Ry

≡ { section }
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x⊳y ∈ Ry

≡ { definition of ⊳ }
x§(Ry) ∈ Ry

≡ { selector property (f), which holds by
biased-selector property (a) }

true

For ⊳-skip:

xRy ⇒ x⊳y = x

≡ { section, definition of ⊳ }
x ∈ Ry ⇒ x§(Ry) = x

≡ { biased-selector property (b) }
true

End of proof.

As the proof shows, both biased-selector properties are needed to make this
construction of a maintainer work. By performing the construction in both
directions, we obtain a maintainer 〈⊳, ⊲〉. The idea is now that, indeed, for

specific constraints maintainers will be constructed by reasoning from prop-

erties of biased selectors, using the above construction. Thus, this theorem is
of more than purely theoretical interest. However, there is no guarantee that
the attempted construction will succeed; consider for example the case that
the problem xRy is undecidable, of which we will see an example in Section
4.1.

Constructing biased selectors. A good method for constructing a biased
selector for a set A is described in the following steps.

1. Determine an intuitively natural notion of “closeness” between pairs of
elements of A, so that it is meaningful to ask whether some element
x′ is closer than, equally close as, or farther than, some other element
x′′ is to a given element x. This gives a total pre-order ⊑x, that is,
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a reflexive and transitive relation under which any two elements are
comparable. Clearly, the only element as close to x as x itself is x, or:

[ x′ ⊑x x ≡ x′ = x ]

If we interpret x′ ⊑x x
′′ as δ〈x, x′〉 ≤ δ〈x, x′′〉, in which δ is some metric

on the choice space, it must be the case that

[ x ⊑z y ∧ y ⊑x z ⇒ x ⊑y z ]

In many cases the choice for the pre-order will be fairly obvious. A
good metric on structured values is often the so-called edit distance.
The resulting pre-order may be refined by taking account of the distance
between their discrepant elements, using the lexical product order. For
example, on sets,

[ {x′} ⊑{x} {x′′} ≡ x′ ⊑x x′′ ]

2. For non-empty s ⊆ A, the set Cx(s) of values in s that are “as close as
possible” to x is formed by the minimal values under the pre-order ⊑x.
In a formula:

[ y ∈ Cx(s) ≡ y ∈ s ∧ [ z ∈ s ⇒ y ⊑x z ] ]

3. If Cx(s) is always non-empty, proceed to step 4. Otherwise, ⊑x is
not well-founded, that is, there exist some infinite strongly descending
chain

x′
❂x x′′

❂x x′′′
❂x · · ·

In that case, “adjust” relation ⊑x (see below) to ensure non-emptiness.
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4. Note that, by construction, [ Cx(s) ⊆ s ]. Now define

[ x§s = init(Cx(s)) ]

That is, if there are several equally close candidates, it is recommended
to break the tie by selecting the “nullest” one.

We prove below that any function § thus constructed is a biased selector.

In discussing how to adjust problematic (ill-founded) pre-orders, we present
some conditions under which no problem can occur.

Given a well-ordered set 〈B,�〉 where B is non-empty, (e.g., 〈N,≤〉), we
call a function δ: A× A→B a proximity under � whenever it satisfies the
property

[ δ〈x, y〉 = min�(B) ≡ x = y ]

In particular, a metric whose codomain is (a subset of) N is a proximity
under ≤.

Two proximities

δA : A × A→C

δB : B × B→D

under respective well-orders �C and �D can be combined into a single prox-
imity

δ: (A×B)× (A×B)→C ×D

under any well-order that is product-consistent with �C and �D by defining:

[ δ〈〈x, y〉, 〈x′, y′〉〉 = 〈δA〈x, y〉, δB〈x′, y′〉〉 ]

34



If ⊑x is the pre-order derived from proximity δ by

[ x′ ⊑x x′′ ≡ δ〈x, x′〉 � δ〈x, x′′〉 ]

then Cx(s) is never empty. So a possible way of adjusting a problematic
⊑x derived from a metric is to impose a well-order on the codomain of the
metric.

Further, if ⊑x is a well-order, Cx(s) = {min⊑x
(s)}, and is therefore also

guaranteed to be non-empty. So a good way of adjusting ⊑x is to refine it
(if possible) to a well-order.

Here are some examples of problematic situations, and how to resolve them.

First, assume that we try to approximate
√
2 as closely as possible with a

rational number. An entirely reasonable pre-order is given by:

[ x ⊑√
2 x

′ ≡ |x−
√
2| ≤ |x′ −

√
2| ]

However, the relation is not well-founded: for any x, taking x′ = u2+2
2

where
u = x ↑ 1, it is the case that x ❂√

2 x′. Consequently, C√
2(s) is always

empty. The example is not realistic in the sense that in the application of
biased selectors its left argument x and the elements of its right argument s
are from the same domain.

More realistic is the case that we try to approximate the real number 0 as
closely as possible with a positive real number. This case can arise from
a constraint x < y. Using the assumption that “our” real numbers are
nowhere dense, but discrete approximations of the mathematical reals, the
metric codomain of non-negative real numbers becomes well-ordered, and the
problem disappears. However, a more principled solution is not to use such
a constraint, which is only infinitesimally different from x ≤ y, but to use
either the weaker constraint x ≤ y, or the stronger constraint x ≤ y−ε for
some ε > 0 in case x is required to be truly less than y.

Finally, take the domain of words over the alphabet {a, b} with a ≺ b, and
assume that we try to approximate the empty word [ ] with a non-empty
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word. Using the pre-order (actually a total order)

[ x ⊑[ ] x
′ ≡ x�∗x′ ]

is not unreasonable, but leads to empty C[ ](s). Taking instead the edit
distance as metric and defining [ x ⊑[ ] x

′ ≡ length(x) ≤ length(x′) ] solves
the problem.

As a last resort, it is always possible to use the discrete metric δ defined by:

[ x = y ⇒ δ〈x, y〉 = 0 ]

[ x 6= y ⇒ δ〈x, y〉 = 1 ]

This gives for Cx :

[ x ∈ s ⇒ Cx(s) = {x} ]
[ x 6∈ s ⇒ Cx(s) = s ]

We recapitulate the essential required properties of ⊑x, Cx and § for some
domain A, where the dummy x ranges over a, and s ranges over P+A:

⊑x is a total pre-order

[ x′ ⊑x x ≡ x′ = x ]

[ y ∈ Cx(s) ≡ y ∈ s ∧ [ z ∈ s ⇒ y ⊑x z ] ]

[ x§s = init(Cx(s)) ]

Before proceeding to the main claim, we prove some consequences of these
properties.

Lemma 10: For ⊑x, Cx and § constructed as described above:

(a) [ x ⊑x y ]

(b) [ x ∈ s ⇒ Cx(s) = {x} ]
(c) [ u ∈ s ⇒ x§s ⊑x u ]
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Proof. First we show (a):

[ x ⊑x y ]

≡ { propositional calculus: p ≡ (p ∨ q) ∧ (q ⇒ p) }
[ (x ⊑x y ∨ y ⊑x x) ∧ (y ⊑x x⇒ x ⊑x y) ]

≡ { ⊑x is total }
[ y ⊑x x⇒ x ⊑x y ]

≡ { the only element as close to x as x itself is x }
[ y = x⇒ x ⊑x y ]

≡ { one-point rule }
[ x ⊑x x ]

≡ { ⊑x is reflexive }
true

For part (b), assume that x ∈ s. Then:

Cx(s) = {x}
≡ { extensionality, membership of singleton set }

[ y ∈ Cx(s) ≡ y = x ]

≡ { construction of Cx(s) }
[ y ∈ s ∧ [ z ∈ s ⇒ y ⊑x z ] ≡ y = x ]

We split the equivalence into an if part and an only-if part. For the if part:

[ y = x ⇒ y ∈ s ∧ [ z ∈ s ⇒ y ⊑x z ] ]

≡ { one-point rule }
x ∈ s ∧ [ z ∈ s ⇒ x ⊑x z ]

≡ { assumption: x ∈ s }
[ z ∈ s ⇒ x ⊑x z ]
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≡ { shown above: (a) }
true

For the only-if part:

y = x

≡ { the only element as close to x as x itself is x }
y ⊑x x

≡ { assumption: x ∈ s }
x ∈ s⇒ y ⊑x x

⇐ { by instantiating z:=x }
[ z ∈ s ⇒ y ⊑x z ]

⇐ { propositional calculus }
y ∈ s ∧ [ z ∈ s ⇒ y ⊑x z ]

As to part (c), assume that u ∈ s. Then:

x§s ⊑x u

≡ { construction of § }
init(Cx(s)) ⊑x u

⇐ { initial-element property (a): [ init(Cx(s)) ∈ Cx(s) ] }
[ y ∈ Cx(s) ⇒ y ⊑x u ]

≡ { construction of Cx(s) }
[ y ∈ s ∧ [ z ∈ s ⇒ y ⊑x z ] ⇒ y ⊑x u ]

⇐ { instantiate z:=u, assumption: u ∈ s }
[ y ∈ s ∧ y ⊑x u ⇒ y ⊑x u ]

≡ { propositional calculus }
true

End of proof.
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Now we come to the main claim of this section.

Theorem 11: Any function § constructed as described above is a biased
selector.

Proof. We establish first that x§ is a selector for all x by proving the two
defining selector properties. As to selector property (a),

[ x§s ∈ s ]

≡ { construction of § }
[ init(Cx(s)) ∈ s ]

⇐ { Cx(s) ⊆ s }
[ init(Cx(s)) ∈ Cx(s) ]

≡ { initial-element property (a) }
[ true ]

For selector property (b),

[ x§(s ∪ t) = x§{x§s, x§t} ]
≡ { construction of § }

[ init(Cx(s ∪ t)) = init(Cx{x§s, x§t}) ]
⇐ { initial-element property (b) }

[ Cx{x§s, x§t} ⊆ Cx(s ∪ t) ∧
init(Cx(s ∪ t)) ∈ Cx{x§s, x§t}

]

Again, we prove the two conjuncts separately. First,

[ Cx{x§s, x§t} ⊆ Cx(s ∪ t) ]

≡ { definition of ⊆ }
[ y ∈ Cx{x§s, x§t} ⇒ y ∈ Cx(s ∪ t) ]
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≡ { construction of Cx }
[ y ∈ {x§s, x§t} ∧ [ z ∈ {x§s, x§t} ⇒ y ⊑x z ] ⇒

y ∈ s ∪ t ∧ [ z ∈ s ∪ t ⇒ y ⊑x z ]

]

To establish the validity of the implication, assume its antecedent. The
conjunct y ∈ {x§s, x§t} equivales the disjunction y = x§s ∨ y = x§t. By the
s ↔ t-symmetry, it suffices to prove the consequent under the more specific
assumption that y = x§s ∧ [z ∈ {x§s, x§t} ⇒ y ⊑x z ]. We first simplify this
assumption:

y = x§s ∧ [ z ∈ {x§s, x§t} ⇒ y ⊑x z ]

≡ { membership of set union, propositional calculus }
y = x§s ∧ [ (z = x§s ⇒ y ⊑x z) ∧ (z = x§t ⇒ y ⊑x z) ]

≡ { one-point rule }
y = x§s ∧ x§s ⊑x x§s ∧ x§s ⊑x x§t

≡ { ⊑x is reflexive }
y = x§s ∧ x§s ⊑x x§t

Then:

y ∈ s ∪ t ∧ [ z ∈ s ∪ t ⇒ y ⊑x z ]

≡ { assumption: y = x§s }
x§s ∈ s ∪ t ∧ [ z ∈ s ∪ t ⇒ x§s ⊑x z ]

≡ { proved above: x§ has selector property (a) }
[ z ∈ s ∪ t ⇒ x§s ⊑x z ]

≡ { membership of set union, propositional calculus,

[ P ∧ Q ] = [ P ] ∧ [Q ] }
[ z ∈ s ⇒ x§s ⊑x z ] ∧ [ z ∈ t ⇒ x§s ⊑x z ]

⇐ { assumption: x§s ⊑x x§t, ⊑x is transitive }
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[ z ∈ s ⇒ x§s ⊑x z ] ∧ [ z ∈ t ⇒ x§t ⊑x z ]

≡ { Lemma 10(c) }

true

We have proved now that x§ is a selector, thereby establishing biased-selector
property (a) for §.

As to biased-selector property (b):

x§s = x

≡ { construction of § }

init(Cx(s)) = x

⇐ { membership of singleton set }

init(Cx(s)) ∈ {x}

⇐ { initial-element property (a): init(Cx(s)) ∈ Cx(s) }

Cx(s) = {x}

⇐ { Lemma 10(b) }

x ∈ s

End of proof.

4 Combining maintainers

Assume that we have maintainers of constraints R and S. The question we
consider here is whether these maintainers can somehow be combined to form
a maintainer of some composition R ⊕ S of these constraints.
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4.1 Relational composition

Given maintainers of constraints R: A∼B and S: B∼C , can they be com-
bined to form a maintainer of their composition (R ;S): A∼C?

We first show that in the general case this is impossible, at least in a con-
structive way. The assumption of constructiveness implies that, if the con-
stituent maintainers are computable, so is the combined maintainer. Further,
if a relation has a computable maintainer, or even only a compuable semi-
maintainer, the relation is decidable by virtue of ⊳-est or dually ⊲-est.
Below we present two relations that both have computable maintainers, but
whose composition is undecidable. So no maintainer of the composition can
be constructed from maintainers of the constituents.

Let CFG be the set of context-free grammars over some alphabet, with the
exclusion of grammars whose language is empty. Let S be the set of words
over the same alphabet. Consider constraint ⊢: CFG ∼S, where G ⊢ x
means: grammar G has word x as a terminal production, or, equivalently,
x ∈ L(G), the language produced by G. It is easy to find a maintainer of ⊢;
take, e.g.,

G⊳x = G if G ⊢ x,

= {S → x} otherwise

G⊲x = x if G ⊢ x,

= init(L(G)) otherwise

Here, {S → x} stands for a context-free grammar whose only production from
the start symbol S gives word x. So ⊢, and by duality ⊢̆, have computable
maintainers. But the composition (⊢ ; ⊢̆) is an undecidable relation, since

G0 (⊢ ; ⊢̆)G1

≡ { relational composition }

∃(x : x ∈ S : G0⊢x ∧ x⊢̆G1 )

≡ { converse }
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∃(x : x ∈ S : G0⊢x ∧G1⊢x)
≡ { equivalently }

∃(x : x ∈ S : x ∈ L(G0 ) ∧ x ∈ L(G1 ))

≡ { membership of intersection }
∃(x : x ∈ S : x ∈ L(G0 ) ∩ L(G1 ))

≡ { membership of empty set }
L(G0 ) ∩ L(G1 ) 6= ∅

The latter proposition, common membership of two context-free languages,
is a well-known undecidable problem.

In the context of using maintainers to guard the consistency of a constrained
tree, this impossibility result is not a great loss. In order to create an (R ;S)
constraint between two objects A and C, it suffices to introduce a mediating
object B and to create an R constraint between A and B, and an S constraint
between B and C.

The following theorem deals with an interesting special case in which main-
tainers of a composition (R ;S) can be created from maintainers of the indi-
vidual components, namely when R (or, dually, S̆) is functional.

Theorem 12: Given a maintainer 〈⊳F , ⊲F 〉 of a functional relation F =
〈〈f〉〉: A∼B, and a maintainer 〈⊳S , ⊲S 〉 of an arbitrary constraint S: B∼C ,
where B 6= ∅, the composition (F ;S) of these constraints is maintained by
〈⊳, ⊲〉, where

[ x⊳z = x⊳F (f(x)⊳S z) ]

[ x⊲z = f(x)⊲S z ]

(If f is not already explicitly given, it can be retrieved, using Theorem 1, by
[ f(x) = (x⊲F (init(B))) ].)

Proof. We establish mnt1, and thereby, by Theorem 6, the maintainership.
To establish mnt1, we establish ⊲-char, ⊳⊲-skip and ⊲⊳-skip. First, how-
ever, we derive the auxiliary result [ f(x⊳z) = f(x)⊳S z ], which is used in the
proof of ⊳⊲-skip:

[ f(x⊳F y) = y ]
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≡ { definition of F }
[ (x⊳F y)Fy ]

≡ { ⊳-est for ⊳F }
true

and so

f(x⊳z)

= { definition of ⊳ }
f(x⊳F (f(x)⊳S z))

= { result just above with y := f(x)⊳S z }
f(x)⊳S z

For ⊲-char we argue:

x⊲z = z

≡ { definition of ⊲ }
f(x)⊲S z = z

≡ { ⊲-char for ⊲S }
f(x)Sz

≡ { one-point rule for ∃ }
∃(y :: f(x) = y ∧ ySz)

≡ { definition of F }
∃(y :: xFy ∧ ySz)

≡ { definition of relational composition }
x(F ;S)z

For ⊳⊲-skip:

(x⊳z)⊲z
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= { definition of ⊲ }

f(x⊳z)⊲S z

= { auxiliary result }

(f(x)⊳S z)⊲S z

= { ⊳⊲-skip for 〈⊳S , ⊲S 〉 }

z

Finally, for ⊲⊳-skip:

x⊳(x⊲z) = x

≡ { definitions of ⊳ and ⊲ }

x⊳F (f(x)⊳S (f(x)⊲S z)) = x

≡ { ⊲⊳-skip for 〈⊳S , ⊲S 〉 }

x⊳F f(x) = x

≡ { ⊳-char for ⊳F }

xFf(x)

≡ { definition of F }

true

End of proof.

These maintainers require, each time, the recomputation of f(x). If that
involves an expensive computation, it is more efficient to implement (F ;S)
with a mediating object that caches the function results. But if f is cheap
to compute, the implementation suggested by this theorem saves some ad-
ministrative overhead.

In a case like (F ; Ğ), where F = 〈〈f〉〉 and G = 〈〈g〉〉, Theorem 12 gives us
two ways of computing a maintainer. The result, however, is the same for
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either way. We show this by following one way; the result is obviously dual
to the effect of swapping F and G:

x⊳z

= { Theorem 12 }

x⊳F (f(x)⊳Ğz)

= { duality }

x⊳F (z⊳Gf(x))

= { Theorem 1 }

x⊳F g(z)

while

x⊲z

= { Theorem 12 }

f(x)⊲Ğz

= { duality }

z⊲Gf(x)

Decomposing constraints. Sometimes finding a maintainer of some con-
straint R is problematic, while it is possible to find maintainers of S and T ,
where R = (S ;T ). While we have just seen that this does not help us to
construct a maintainer of R (unless S or T̆ is functional), it gives an imple-

mentation for the constraint R between two objects by means of a mediating
object, as sketched in Figure 3.

x S✒✑
✓✏

m T✒✑
✓✏

y

Figure 3: The constraint x(S ;T )y implemented by the two con-
straints xSm and mTy, using a mediating object m.
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An example of this phenomenon is, of course, given by R = (⊢ ; ⊢̆) treated
above. The result of this construction does not necessarily follow the Princi-
ple of Least Change, even when the constituent maintainers do. For exam-
ple, take the top relation ⊤⊤: Z∼Z, of which the generic version is treated
in 5.1.b. Since the constraint is always satisfied, a change to one side should
entail no change to the other side. It can be decomposed by ⊤⊤ = ( 6= ; 6=),
where 6=: Z∼Z is treated in 5.4.a. Suppose now that constraint ⊤⊤ between
x and y is implemented according to this decomposition with a mediating
object m, and that the initial values are x = 0, m = 1, y = 0. If now x gets
changed to 1, the maintainer of the first inequality constraint will change m
to 0. Now the second inequality constraint is violated, and y gets set to 1.

In spite of the potential violation of the Principle of Least Change, using
a mediating object is (sometimes) a useful construction, in particular when
direct methods fail. Furthermore, as we shall see later, such decompositions
may reflect the structure of a constraint in a natural way.

We treat one standard decomposition, other useful decompositions usually
being expressible as specialized variants of the standard one. Let R: A∼B.
In the typings given below we view R as a set of pairs; more specifically, a
subset of A×B. Define the constraints

S: A∼R

T : R∼B

by:

[ xS〈ξ, η〉 ≡ x = ξ ∧ ξRη ]

[ 〈ξ, η〉Ty ≡ ξRη ∧ η = y ]

In both cases the typing already implies that 〈ξ, η〉 ∈ R, so that we could
remove the conjunct ξRη in either definiens above without change of mean-
ing. The reason it is explicitly included, though, is that this allows to fold
instances of the definiens without having to check the typing prerequisites,
while in the other direction it gives a verification of the typing of proposed
maintainers. First we show that indeed R = (S ;T ):

xRy
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≡ { one-point rules for ∃ }
∃(ξ, η :: x = ξ ∧ ξRη ∧ η = y)

≡ { predicate calculus }
∃(ξ, η :: (x = ξ ∧ ξRη) ∧ (ξRη ∧ η = y))

≡ { definitions of S and T }
∃(ξ, η :: xS〈ξ, η〉 ∧ 〈ξ, η〉Ty)

≡ { relational composition }
x(S ;T )y

The constraints S̆ and T are both functional, and by Theorem 1 we have no
choice but to define

[ x⊳S 〈ξ, η〉 = ξ ]

[ 〈ξ, η〉⊲T y = η ]

Suppose that we only have a semi-maintainer of R. This then gives us a
bidirectional maintainer of S or T , depending on the direction. We treat one
case, the other being dual.

Theorem 13: Let R and S be as above, and let ⊲R be a semi-maintainer of
R (i.e., satisfying ⊲-est and ⊲-skip). Then 〈⊳S , ⊲S 〉 maintains S, where ⊳S

is as above, and ⊲S is given by:

[ x⊲S 〈ξ, η〉 = 〈x, x⊲Rη〉 ]

Proof. We only have to verify ⊲-est and ⊲-skip for ⊲S .

For ⊲-est:

xS(x⊲S 〈ξ, η〉)
≡ { definition of ⊲S }

xS〈x, x⊲Rη〉
≡ { definition of S }
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x = x ∧ xR(x⊲Rη)

≡ { = is reflexive, ⊲-est for ⊲R }
true

For ⊲-skip:

x⊲S 〈ξ, η〉 = 〈ξ, η〉
≡ { definition of ⊲S }

〈x, x⊲Rη〉 = 〈ξ, η〉
≡ { pairing is surjective }

x = ξ ∧ x⊲Rη = η

≡ { ⊲-char for ⊲R }
x = ξ ∧ xRη

≡ { one-point rule }
x = ξ ∧ ξRη

≡ { definition of S }
xS〈ξ, η〉

End of proof.

4.2 Relational union

Given maintainers of constraints R: A∼B and S: A∼B, can they be com-
bined to form a maintainer of their union R∪S : A∼B?

We use the fact that ∪ distributes through sectioning, since:

(R∪S)y
= { section }

(x :: x(R∪S)y)
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= { switching notation }

(x :: 〈x, y〉 ∈ R∪S)
= { definition of ∪ }

(x :: 〈x, y〉 ∈ R ∨ 〈x, y〉 ∈ S)

= { switching notation }

(x :: xRy ∨ xSy)

= { definition of ∪ }

(x :: xRy) ∪ (x :: xSy)

= { section }

(Ry) ∪ (Sy)

Because of the duality of ∪ — that is, (R∪S )̆ = R̆∪ S̆ — we focus on finding
a semi-maintainer ⊳. We can indeed find a maintainer under the following
assumption: Both ⊳R and ⊳S are based on the same biased selector §, using
the construction of Theorem 9. For then, continuing that construction,

x⊳y

= { Theorem 9 }

x§((R∪S)y)
= { ∪ distributes through sectioning }

x§((Ry) ∪ (Sy))

= { selector property (b) }

x§{x§(Ry), x§(Sy)}
= { construction of ⊳R and ⊳S }

x§{x⊳Ry, x⊳S y}
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Example. We consider relations of type Z∼Z. Let [ xRy ≡ x ≤ y − 1 ] and
[ xSy ≡ x ≥ y + 1 ], with semi-maintainers

x⊳Ry = x ↓ (y − 1)
x⊳S y = x ↓ (y + 1)

Because we are in the domain of integers, R ∪ S = ( 6=). In the construction
of ⊳ as above we distinguish two cases.

The first case is x 6= y. In this case, either x ≤ y − 1 or x ≥ y + 1, so either
x⊳Ry = x or x⊳S y = x. Then x⊳y = x by biased-selector property (b). (The
same result could, of course, have immediately been obtained from ⊳-skip.)

The second case is x = y. Then x⊳Ry = x − 1 and x⊳S y = x + 1.
So x⊳y = x§{x− 1, x+ 1}. Both possible choices are equally close to x.
Using the preferred method for tie breaking, we have x§{x− 1, x+ 1} =
min{x− 1, x+ 1}, where the minimum is taken under the well-order �num,
giving x− 1 when x > 0, and x+ 1 otherwise. End of example.

5 Maintainers for specific constraints

In this section we construct maintainers of specific constraints. We give, for
each constraint, first the relation, next its maintainer, and finally a justi-
fication of the construction. We reason from properties of biased selectors
constructed in accordance with the methods of the last section, by using, for
a ditotal relation R: A∼B:

[ x⊳y = x§A(Ry) ]
[ x⊲y = y§B(xR) ]

For a functional relation 〈〈f〉〉 we use of course Theorem 1:

[ x⊲y = f(x) ]

Whenever applicable, we will assume that selector 〈x, y〉§A×B is product-
consistent with x§A and y§B, that is:

[ 〈x, y〉§A×B(s× t) = 〈x§As, y§Bt〉 ]
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5.1 Generic constraints

5.1.a Equality

Relation: = : A∼A

Maintainer: [ x⊳y = y ]
[ x⊲y = x ]

Equality is as tight a constraint as possible. The relation is functional: it
equals 〈〈id〉〉, in which id is the identity function; moreover, it is symmetric.
Theorem 1 now gives us the result.

5.1.b Top

Relation: ⊤⊤: A∼B

Maintainer: [ x⊳y = x ]
[ x⊲y = y ]

Relation ⊤⊤ is the top of the lattice of relations, defined by [ x⊤⊤y ]: anything
goes. This is the laxest constraint possible; in everyday language it would
not be called a constraint, and x and y would be called “unrelated”. We
have [⊤⊤y = A ] and [x⊤⊤ = B ]. Since x ∈ A and y ∈ B, the result follows
by biased-selector property (b).

It is interesting to compare this maintainer to that for equality; it is in some
sense its opposite (as is the constraint). The constraint is included in this
list mainly for its theoretical interest.

5.1.c Left projection

Relation: 〈〈πL〉〉: A×B∼A

Maintainer: [ 〈x, y〉⊳u = 〈u, y〉 ]
[ 〈x, y〉⊲u = x ]
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We have

〈〈πL〉〉u
= { section, 〈〈f〉〉 and πL }

(x, y : 〈x, y〉 ∈ A×B : x = u)

= { membership of product set, shunting }
(x, y :: x = u ∧ x ∈ A ∧ y ∈ B)

= { one-point rules, u ∈ A }
(x, y :: x ∈ {u} ∧ y ∈ B)

= { membership of product set, set comprehension }
{u} × B

Then

〈x, y〉⊳u
= { construction of § }

〈x, y〉§(〈〈πL〉〉u)
= { above result }

〈x, y〉§({u} × B)

= { product-consistency }
〈x§{u}, y§B〉

= { y ∈ B, biased-selector properties }
〈u, y〉

Further, by Theorem 1, 〈x, y〉⊲u = πL〈x, y〉 = x.

5.1.d Right projection

Relation: 〈〈πR〉〉: A×B∼B

Maintainer: [ 〈x, y〉⊳v = 〈x, v〉 ]
[ 〈x, y〉⊲v = y ]

This is the mirror image of πL.
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5.2 Constraints involving sets

For measuring the proximity of two finite sets s and t we use the size #(s�t)
of their symmetric set difference, where the symmetric difference of two sets
is given by:

[ s�t = (x :: x ∈ s 6≡ x ∈ t) ]

Pleasant properties of � are that it is symmetric (hence the name) and as-
sociative, has ∅ as neutral element, and is involutive (self-cancelling):

[ s�t = t�s ]

[ s�(t�u) = (s�t)�u ]

[ s�∅ = s = ∅�s ]
[ s�s = ∅ ]

It follows that

[ s�t = u ≡ s = u�t ]

Further, ∩ distributes over �:

[ s ∩ (t�u) = (s∩u)� (t∩u) ]

The normal, asymmetric set difference operation s − t can be expressed as
(s∪t)� t, since

s− t = (s∪t)� t

≡ { set extensionality }
[ x ∈ s− t ≡ x ∈ (s∪t)� t ]

≡ { membership rules }
[ (x∈s ∧ x 6∈t) ≡ ((x∈s ∨ x∈t) 6≡ x∈t) ]

≡ { propositional calculus }
true
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Alternative expressions for s − t in terms of � are s� (s∩t) and s ∩ (s�t).
Since for set s ∈ PA its set complement s with respect to A equals A− s, we
can also express this as A�s. These and further set-calculus properties are
introduced without proof; they can be readily verified by translating them
into their propositional counterparts by set extensionality, and verifying those
using propositional calculus, as was done above for s− t = (s∪t)� t.

Some inequations involving � can be solved for unknown u thus:

[ s ⊆ t�u ≡ s− t ⊆ u ⊆ s ∩ t ]

[ s�u ⊆ t ≡ s− t ⊆ u ⊆ s ∪ t ]

5.2.a Member

Relation: ∈ : A∼P+A

Maintainer: [ x⊳s = x§As ]
[ x⊲s = s ∪ {x} ]

Assuming the availability of a biased selector for A, finding a definition for
⊳ is easy: since

∈s
= { section }

(x :: x ∈ s)

= { set comprehension }
s

we have

x⊳s

= { construction of § }
x§A(∈s)

= { just shown: ∈s = s }
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x§As

For the other direction, put s′ = x⊲s. The hard requirement on s′ is that
x ∈ s′, or, equivalently, {x} ⊆ s′. We translate this into a requirement on
the difference d = s�s′, which we want to keep as small as possible:

{x} ⊆ s′

≡ { properties of � }
{x} ⊆ s�s�s′

≡ { definition of d }
{x} ⊆ s�d

≡ { solving for d }
{x} − s ⊆ d ⊆ {x} ∩ s

The smallest d satisfying this requirement is d = {x} − s. Then

x⊲s

= { definition of s′ }
s′

= { properties of �, definition of d }
s�d

= { above formula for d }
s�({x}−s)

= { − in terms of � }
s�s�(s ∪ {x})

= { � is involutive }
s ∪ {x}

5.2.b Subset
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Relation: ⊆: PA∼PA

Maintainer: [ s⊳t = s ∩ t ]
[ s⊲t = s ∪ t ]

Putting s′ = s⊳t, the requirement is s′ ⊆ t. Using d = s�s′ we have:

s′ ⊆ t

≡ { properties of �, definition of d }
s�d ⊆ t

≡ { solving for d }
s− t ⊆ d ⊆ s ∪ t

The smallest d satisfying this requirement is d = s− t. Then

s⊳t

= { definition of s′, properties of �, definition of d }
s�d

= { above formula for d }
s�(s−t)

= { − in terms of � }
s� s� (s∩t)

= { � is involutive }
s ∩ t

For the other direction we find, likewise, that s − t is the smallest possible
value for t�t′, giving t′ = s ∪ t.

5.2.c Disjoint

Relation: |∗ : PA∼PA
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Maintainer: [ s⊳t = s− t ]
[ s⊲t = t − s ]

This is the constraint of two sets being disjoint: [ s |∗ t ≡ s ∩ t = ∅ ]. Using
the law [ s ∩ t = ∅ ≡ s ⊆ t ] in combination with Theorem 12, we find that
s⊳ |∗ t = s⊳⊆t = s ∩ t = s − t. The symmetry of |∗ gives the result for
the other direction.

5.2.d Intersection

Relation: 〈〈∩〉〉: PA× PA ∼ PA

Maintainer: [ 〈s, t〉⊳u = 〈u ∪ (s−t), u ∪ t〉 ]
[ 〈s, t〉⊲u = s ∩ t ]

Note the asymmetry in the definition for ⊳ , in spite of the symmetry of ∩.
It will emerge from the calculations as a result of tie breaking, which in this
case also breaks the symmetry. We must tackle the construction of 〈s′, t′〉
“close” to 〈s, t〉 such that s′∩ t′ = u. For the edit distance between 〈s, t〉 and
〈s′, t′〉 we use #ds +#dt, where 〈ds, dt〉 = 〈s�s′, t�t′〉. We know that s′ and
t′ have to satisfy u ⊆ s′ and u ⊆ t′, since

u ⊆ s′ ∧ u ⊆ t′

≡ { set calculus }
u ⊆ s′ ∩ t′

⇐ { ⊆ is reflexive }
s′ ∩ t′ = u

As before, this implies that ds ⊇ u − s and dt ⊇ u − t, and so ds ∩ dt ⊇
(u−s) ∩ (u−t) = u − (s∪t), and ds ∪ dt ⊇ (u−s) ∪ (u−t) = u − (s∩t).
Furthermore,

ds ∪ dt

= { definitions of ds and dt }
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(s�s′) ∪ (t�t′)

⊇ { set calculus }
(s∩t)− (s′∩t′)

= { s′ ∩ t′ = u }
(s∩t)− u

Combining this with the previous lower bound on ds ∪ dt, we have ds ∪ dt ⊇
(u − (s∩t)) ∪ ((s∩t) − u) = u� (s∩t) (see Figure 4), and so #ds + #dt =
#(ds ∪ dt) + #(ds ∩ dt) ≥ #(u� (s∩t)) + #(u− (s∪t)). If we can choose ds
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Figure 4: A Venn diagram indicating by shading the area corre-
sponding to the lower bound u�(s∩t) on ds∪dt. The upper shaded
part corresponds to u− (s∩t), the shield-shaped lower shaded part
to (s∩t) − u.

and dt so that ds ∪ dt = u� (s∩t) and ds ∩ dt = u− (s∪t), we get equalities
for ≥, so that is the best choice we can hope for. Let the “jointly required”
set (s∩t) − u, that is, the set that the union ds ∪ dt is required to contain
beyond the union u− (s∩t) of the individual lower bounds on ds and dt (the
shield-shaped part in Figure 4), be split into two disjoint (possibly empty)
sets xs and xt. So assume that xs ∪ xt = (s∩t) − u, where xs |∗xt. Now
consider the choice ds = (u−s) ∪ xs, dt = (u−t) ∪ xt. If allowed — that is, if
it satifies the requirement s′ ∩ t′ = u — this choice is optimal, since then

ds ∪ dt

= { choice of ds, dt }
(u−s) ∪ xs ∪ (u−t) ∪ xt

= { set calculus }
(u− (s∩t)) ∪ xs ∪ xt
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= { xs ∪ xt = (s∩t)− u }
(u− (s∩t)) ∪ ((s∩t)− u)

= { set calculus }
u� (s∩t)

while also

ds ∩ dt

= { choice of ds, dt }
((u−s) ∪ xs) ∩ ((u−t) ∪ xt)

= { set calculus }
(u− (s∪t)) ∪ (xs ∩ (u−t)) ∪ (xt ∩ (u−s)) ∪ (xs ∩ xt)

= { xs |∗xt }
(u− (s∪t)) ∪ (xs ∩ (u−t)) ∪ (xt ∩ (u−s))

= { xs, xt ⊆ (s∩t)−u |∗ u }
u− (s∪t)

We now show that this choice is indeed allowed:

s′ ∩ t′

= { definitions of ds and dt }
(s�ds) ∩ (t�dt)

= { choice of ds, dt }
(s�((u−s) ∪ xs)) ∩ (t�((u−t) ∪ xt))

= { set calculus }
((u∪s)�xs) ∩ ((u∪t)�xt)

= { xs ⊆ s, xt ⊆ t }
((u∪s)− xs) ∩ ((u∪t)− xt)
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= { set calculus }
(u ∪ (s∩t))− (xs ∪ xt)

= { xs ∪ xt = (s∩t)− u }
(u ∪ (s∩t))− ((s∩t)− u)

= { set calculus }
u

We are not yet quite done, since in general there is a range of choices, each
giving the same minimal value for #ds + #dt. We break the tie by using
the well-order of Section 3.1 on pairs of finite sets, in this case the set of
pairs 〈s′, t′〉 consistent with the construction above. This means we have to
minimize #s′, and therefore to maximize #xs. Now the largest possible xs

is the one that takes up the whole “jointly required” set (s ∩ t)− u, leaving
∅ for xt. Then

s′

= { as above }
(u∪s)− xs

= { largest xs }
(u∪s)− ((s∩t)− u)

= { set calculus }
u ∪ (s−t)

and

t′

= { as above }
(u∪t)− xt

= { xt = ∅ }
u ∪ t
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In the other direction we use the functionality of 〈〈∩〉〉.

As an illustration of the solution found for ⊳, take

s = {1, 3, 4, 7}
t = {2, 3, 4, 6}
u = {1, 2, 4, 5}

We find

s′ = {1, 2, 4, 5} ∪ ({1, 3, 4, 7}−{2, 3, 4, 6})
= {1, 2, 4, 5} ∪ {1, 7}
= {1, 2, 4, 5, 7}

t′ = {1, 2, 4, 5} ∪ {2, 3, 4, 6}
= {1, 2, 3, 4, 5, 6}

Indeed,

s′ ∩ t′ = {1, 2, 4, 5, 7} ∩ {1, 2, 3, 4, 5, 6}
= {1, 2, 4, 5}
= u

5.2.e Union

Relation: 〈〈∪〉〉: PA× PA ∼ PA

Maintainer: [ 〈s, t〉⊳u = 〈u ∩ s, u− (s−t)〉 ]
[ 〈s, t〉⊲u = s ∪ t ]

We use s ∪ t = s ∩ t, so that we can derive the answer from the solution
for intersection. We have to be careful, though, since in the tie breaking
we want the smallest possible s, but using the tie breaking for ∩ would give
the smallest s, and therefore the largest s. This can be resolved as follows.
Since the collection of candidates that tie are pairs of sets all having the
same symmetric difference, smaller for one of the two sets means larger for
the other one. So, if restricted to pairs from the tying set, the well-order on
pairs of sets has the property that

[ 〈 s, t 〉 � 〈 s′, t′ 〉 ≡ 〈t, s〉 � 〈t′, s′〉 ]
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We therefore get the desired tie breaking if we switch the s- and t-positions:

〈s, t〉⊳∪u

= { switching s and t to get the right tie breaking }
〈s′, t′〉 where 〈 t′, s′ 〉 = 〈 t, s 〉⊳∩u

= { definition of ⊳∩ }
〈s′, t′〉 where 〈 t′, s′ 〉 = 〈u ∪ (t−s), u ∪ s〉

= { eliminate “where”, set complement is an involution }
〈u ∪ s, u ∪ (t−s) 〉

= { set calculus }
〈u ∩ s, u− (s−t)〉

As an illustration, take again

s = {1, 3, 4, 7}
t = {2, 3, 4, 6}
u = {1, 2, 4, 5}

Then

s′ = {1, 2, 4, 5} ∩ {1, 3, 4, 7}
= {1, 4}

t′ = {1, 2, 4, 5} − ({1, 3, 4, 7}−{2, 3, 4, 6})
= {1, 2, 4, 5} − {1, 7}
= {2, 4, 5}

Indeed,

s′ ∪ t′ = {1, 4} ∪ {2, 4, 5}
= {1, 2, 4, 5}
= u

5.2.f Asymmetric set difference

For the asymmetric operation − we treat both 〈〈−〉〉 and 〈〈−̆〉〉
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Relation: 〈〈−〉〉: PA× PA ∼ PA

Maintainer: [ 〈s, t〉⊳u = 〈u ∪ (s∩t), t− u〉 ]
[ 〈s, t〉⊲u = s− t ]

Relation: 〈〈−̆〉〉: PA× PA ∼ PA

Maintainer: [ 〈s, t〉⊳u = 〈s− u, u ∪ (s∩t〉 ]
[ 〈s, t〉⊲u = s− t ]

We obtain ⊳− analogously to ⊳∪ :

〈s, t〉⊳−u

= { s− t = s ∩ t }
〈s′, t′〉 where 〈 s′, t′ 〉 = 〈 s, t 〉⊳∩u

= { definition of ⊳∩ }
〈s′, t′〉 where 〈 s′, t′ 〉 = 〈u ∪ (s−t), u ∪ t 〉

= { eliminate “where”, set complement is an involution }
〈u ∪ (s−t), u ∪ t 〉

= { set calculus }
〈u ∪ (s∩t), t− u〉

Again, take

s = {1, 3, 4, 7}
t = {2, 3, 4, 6}
u = {1, 2, 4, 5}

Then

s′ = {1, 2, 4, 5} ∪ ({1, 3, 4, 7}∩{2, 3, 4, 6})
= {1, 2, 4, 5} ∪ {3, 4}
= {1, 2, 3, 4, 5}

t′ = {2, 3, 4, 6} − {1, 2, 4, 5}
= {3, 6}
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Indeed,

s′ − t′ = {1, 2, 3, 4, 5} − {3, 6}
= {1, 2, 4, 5}
= u

Since tie breaking is asymmetric, it is not obvious that ⊳−̆ can be found by
simply switching the s-field with the t-field in ⊳− . As it is, this happens to
give the right answer. The explanation is that this switch gives just the right
tie breaking, as before for ⊳∪ .

5.2.g Symmetric set difference

Relation: 〈〈�〉〉: PA× PA ∼ PA

Maintainer: [ 〈s, t〉⊳u = 〈(s∩t)�(s∩u), (s∩t) ∪ (u−s)〉 ]
[ 〈s, t〉⊲u = s�t ]

Putting again 〈ds, dt〉 = 〈s�s′, t�t′〉, where we want to minimize #ds +#dt,
the requirement is that

u = s′
� t′

= { definitions of ds and dt; properties of � }
u = s� t� ds � dt

= { � is involutive }
ds � dt = s� t�u

Since #ds + #dt = #(ds�dt) + 2#(ds ∩ dt) = #(s�t�u) + 2#(ds∩dt), we
want to minimize #(ds∩dt), which certainly succeeds if we have ds |∗ dt. We
calculate:

ds |∗ dt
≡ { definition of |∗ }

ds ∩ dt = ∅
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≡ { ds � dt = s� t�u }
ds ∩ (ds � s� t� u) = ∅

≡ { ∩ distributes over � }
ds � (ds ∩ (s�t�u)) = ∅

≡ { � is involutive }
ds = ds ∩ (s�t�u)

≡ { set calculus }
ds ⊆ s� t�u

This inequation has possibly many solutions in ds. To break the tie, we
additionally minimize #s′. For this we find:

#s′

= { definition of ds }
#(s�ds)

= { splitting ds into ds ∩ s and ds − s }
#s−#(ds ∩ s) + #(ds − s)

Clearly, we must keep ds ⊆ s, and further as large as possible, which gives
us

ds

= { combining the two upper bounds }
s ∩ (s�t�u)

= { ∩ distributes over � }
s� (s ∩ (t�u))

Now

s′
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= { definition of ds }
s� ds

= { solution found for ds }
s� s� (s ∩ (t�u))

= { � is involutive }
s ∩ (t�u)

= { ∩ distributes over � }
(s∩t)� (s∩u)

and

t′

= { s′
� t′ = u }

s′
� u

= { solution found for s′ }
(s∩t)� (s∩u)� u

= { ∩ distributes over � }
(s∩t)� ((s�u) ∩ u)

= { − expressed in � }
(s∩t)� (u−s)

= { s∩t |∗u− s }
(s∩t) ∪ (u−s)

For the running example of s = {1, 3, 4, 7}, t = {2, 3, 4, 6}, u = {1, 2, 4, 5},
we compute:

s′ = ({1, 3, 4, 7}∩{2, 3, 4, 6})� ({1, 3, 4, 7}∩{1, 2, 4, 5})
= {3, 4}� {1, 4}
= {1, 3}

t′ = ({1, 3, 4, 7}∩{2, 3, 4, 6}) ∪ ({1, 2, 4, 5}−{1, 3, 4, 7})
= {3, 4} ∪ {2, 5}
= {2, 3, 4, 5}
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Indeed,

s′
� t′ = {1, 3}� {2, 3, 4, 5}

= {1, 2, 4, 5}
= u

5.3 Constraints involving lists

A constraint between two data structures may bring about a notion of cor-
respondence between certain entries of the two data structures. In trying
to apply the Principle of Least Change, not only do we want to keep the
edit distance small, but — as least as importantly — we also want to keep
correspondences intact as much as possible. To express that with the kind of
notions introduced thus far is not directly formally possible, since it involves
something (namely the notion of “correspondence”) that is extraneous to the
choice space. It could be modelled using the “standard decomposition” of
Section 4.1. However, here we shall use a less formal and more operational
approach.

We introduce a new notion here, namely that of edit sequences. The idea is
that a change to a data structure can be viewed as the result of a sequence of
“elementary” changes, or edit operations. The advantage of this viewpoint
is that it makes explicit which entries are not involved in a change. The
edit operations are the constructors of an algebra for the data type, where
the algebra need not be free but may satisfy a number of laws. We could
already have taken that viewpoint for finite sets. If the edit operations on sets
consist of the insertion or removal of a single element at a time, any change
can be described as a sequence of edit operations. In fact, usually there are
many ways. Some of those involve redundant operations, such as adding an
element and removing it later in the edit sequence. An edit sequence not
containing such redundant operations is called irreducible. For sets it is not
hard to show that for the constraints dealt with in Section 5.2, with the
notable exception of ∈, all irreducible edit sequences yield the same result as
the one-fell-swoop approach of that section. We call that property of a semi-
maintainer (which is relative to the set of edit operations) indifference. Any
semi-maintainer of a functional relation in the direction argument→result,
is, of course, indifferent, regardless of what edit operations are included.
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The following example shows that ⊳∈ is not indifferent. Assume that in
the constraint x ∈ s initially x = 3 and s = {0, 2, 3, 5}. We consider two
irreducible edit sequences resulting in s′′ = {0, 5}, namely

(a) s = {0, 2, 3, 5} ❀ s′ = {0, 3, 5} ❀ s′′ = {0, 5}
(b) s = {0, 2, 3, 5} ❀ s′ = {0, 2, 5} ❀ s′′ = {0, 5}

With route (a) we get x′ = 3§{0, 3, 5} = 3, x′′ = 3§{0, 5} = 5. With route
(b) we get x′ = 3§{0, 2, 5} = 2, x′′ = 2§{0, 5} = 0.

The type of finite lists of A-elements is denoted as List(A); for the type of
non-empty lists we use List+(A). For lists, the simplest set of edit operations
is:

nil : 1 →List (A)
— create an empty list

cons〈a, x〉 : A×List(A)→List+(A)
— prepend a to list x

Instead of nil we also write [ ], and for cons〈a, x〉 we also write a:x. So
3 : [1, 4] = [3, 1, 4]. For denoting the result of concatenating two lists, we use
++: [3, 1]++[4, 1, 5, 9] = [3, 1, 4, 1, 5, 9].

The corresponding destructor functions head: List+(A)→A and tail :
List+(A)→List(A) are characterized by:

[ cons〈a, x〉 = y ≡ 〈a, x〉 = 〈head(y), tail(y)〉 ]

More advanced edit operations are:

insert〈x, i, a〉 : List (A)×N×A→List+(A)
— insert a new list entry a at position i

delete〈x, i〉 : List+(A)×N →List (A)
— delete an existing list entry

change〈x, i, a〉 : List+(A)×N×A→List+(A)
— change the value of an existing list entry
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The index arguments i must be in range. The effect of insertion is that
entries with higher indices are moved up:

insert〈[6, 1, 5, 7], 2, 4〉 = [6, 1, 4, 5, 7]

We have:

[ insert〈x, 0, b〉 = b : x ]
[ insert〈a:x, i+1, b〉 = a : insert〈x, i, b〉 ]

[ delete〈a:x, 0〉 = x ]
[ delete〈a:x, i+1〉 = a : delete〈x, i〉 ]

[ change〈a:x, 0, b〉 = b : x ]
[ change〈a:x, i+1, b〉 = a : change〈x, i, b〉 ]

The destructor functions ✷[i]: List(A)→A, where the index i must be in
range, are characterized by:

[ (insert〈x, i, a〉)[i] = a ]

We use, without further justification, the usual laws for these operations,
such as [ change〈insert〈x, i, a〉, i, b〉 = insert〈x, i, b〉 ], which can be derived
from the other equations.

The set of edit operations insert, delete and change is expressible in terms of
the one-element set consisting of a replace operation that allows replacing an
arbitrary segment of a list of length m by a list of length n. We have:

[ replace〈x, 0, 0, y〉 = y ++ x ]
[ replace〈a:x, 0, m+1, y〉 = replace〈x, 0, m, y〉 ]
[ replace〈a:x, i+1, m, y〉 = a : replace〈x, i,m, y〉 ]

[ insert〈x, i, a〉 = replace〈x, i, 0, [a]〉 ]

[ delete〈x, i〉 = replace〈x, i, 0, [ ]〉 ]

[ change〈x, i, a〉 = replace〈x, i, 1, [a]〉 ]

5.3.a Cons, head, tail
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Relation: 〈〈cons〉〉: A× List(A) ∼ List+(A)

Maintainer: [ 〈a, x〉 ⊳ y = 〈head(y), tail(y)〉 ]
[ 〈a, x〉 ⊲ y = cons〈a, x〉 ]

Relation: 〈〈head〉〉: List+(A)∼A

Maintainer: [ x ⊳ a = cons〈a, tail(x)〉 ]
[ x ⊲ a = head(x) ]

Relation: 〈〈tail〉〉: List+(A)∼List(A)

Maintainer: [ x ⊳ y = cons〈head(x), y〉 ]
[ x ⊲ y = tail(x) ]

From the characterization of head and tail,

cons〈a, x〉 = y ≡ 〈a, x〉 = 〈head(y), tail(y)〉

we see that cons is a bijection, meaning that 〈〈cons〉〉 is functional in both
directions. Its maintainer now follows immediately.

We further see that 〈〈head〉〉 = (〈〈cons〉〉̆ ; 〈〈πL〉〉) and 〈〈tail〉〉 = (〈〈cons〉〉̆ ; 〈〈πR〉〉).
Duality, in combination with Theorem 12, now gives the solutions.

5.3.b Map

Relation: map(R): List(A)∼List(B) where R: A∼B

The relation x(map(R))y holds whenever x and y have the same set of indices,
and [ (x[i])R (y[i]) ]. We assume the existence of a maintainer of R.

Maintainer: [ nil ⊲ y = nil ]
[ insert〈x, i, a〉 ⊲ y = insert〈y, i, a⊲R init(B)〉 ]
[ delete〈x, i〉 ⊲ y = delete〈y, i〉 ]
[ change〈x, i, a〉 ⊲ y = change〈y, i, a⊲R y[i]〉 ]
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We treat only the semi-maintainer ⊲ because the other one is dual, using
that converse commutes with map.

The semi-maintainer given above is obvious — there is no other choice —
except for the occurrence of init(B). The explanation is that we view insert

as the combination of a virtual create operation immediately followed by a
mandatory change operation:

insert〈x, i, a〉 = change〈create〈x, i〉, a〉

The result of create〈x, i〉 on a list x of type List(A) is the same as that of
insert〈x, i, init(A)〉, and its contribution to ⊲ is:

[ create〈x, i〉 ⊲ y = create〈y, i〉 ]

So, putting y′ = create〈x, i〉 ⊲ y and y′′ = change〈x′, i, a〉 ⊲ y′, where x′ =
create〈x, i〉, we have

y′[i]

= { definition of y′ }
(create〈x, i〉 ⊲ y)[i]

= { ⊲ for create }
(create〈y, i〉)[i]

= { result of create }
(insert〈y, i, init(B)〉)[i]

= { insert-indexing law }
init(B)

so that

y′′

= { definition of y′′ }
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change〈x′, i, a〉 ⊲ y′

= { ⊲ for change }

change〈y′, i, a⊲R y
′[i]〉

= { above result }

change〈y′, i, a⊲R init(B)〉

= { definition of y′, result of create }

change〈insert〈y, i, init(B)〉, i, a⊲R init(B)〉

= { change-insert law }

insert〈y, i, a⊲R init(B)〉

In an implementation, map(R) maintenance can be realized by setting up
a (trivial) network of R constraints between corresponding list entries, as
suggested in Figure 5. This network is modified in the obvious way for each
structural change of the lists involved.

x0 y0❦R
x1 y1❦R
x2 y2❦R

Figure 5: The network created for constraint map(R) between to
three-element lists.

5.3.c Fold

Relation: fold(R): List+(A)∼A where R: A× A ∼ A

Maintainer: [ insert〈x, i, a〉 ⊲ y = insert〈y, i, a⊲R init(B)〉 ]
[ delete〈x, i〉 ⊲ y = delete〈y, i〉 ]
[ change〈x, i, a〉 ⊲ y = change〈y, i, a⊲R y[i]〉 ]
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5.4 Constraints involving numbers

In the following R stands for the set of real numbers and Z for the set of
integers. We use V to stand for either of R or Z, with the convention that
in any paragraph the choice for either reading is made consistently for the
scope of that paragraph. For real numbers we make use of the assumption
that the set of representable numbers (for example, floating-point numbers)
is nowhere dense, and in particular that for any b ∈ R there is a largest value
β ∈ R such that β < b, so [ x < b ≡ x ≤ β ]. This number β will be denoted
by b−ε.

For intervals of numbers we have the following shorthands:

V[a⌢b] = (x : x ∈ V : a ≤ x ≤ b) , for a, b ∈ V, a ≤ b

V[a⌢ ) = (x : x ∈ V : a ≤ x) , for a ∈ V

V( ⌢b] = (x : x ∈ V : x ≤ b) , for b ∈ V

V[a⌢b) = (x : x ∈ V : a ≤ x < b) , for a, b ∈ V, a < b

Note that R[a⌢ b) = R[a⌢ b−ε], and Z[a⌢ b) = Z[a⌢ b−1].

For numbers there is an obvious notion of closeness: x is closer to a than x′

whenever |x− a| < |x′ − a|. With this interpretation we have:

[ x§V[a⌢b] = a ↑ x ↓ b ]

[ x§V[a⌢ ) = a ↑ x ]

[ x§V( ⌢b] = x ↓ b ]

[ x§R[a⌢b) = a ↑ x ↓ (b−ε) ]

[ x§Z[a⌢b) = a ↑ x ↓ (b−1) ]

In the right-hand sides of these equalities parentheses are not needed to
indicate which of ↑ and ↓ takes precedence, since, for a ≤ b, (a ↑ x) ↓ b =
a ↑ (x ↓ b).

5.4.a Unequal

Relation: 6=: Z∼Z
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Maintainer: [ x⊳y = x if x 6= y,
= x− 1 if x = y ∧ x > 0,
= x+ 1 if x = y ∧ x ≤ 0 ]

[ x⊲y = y⊳x ]

This was treated as an example in Section 4.2.

5.4.b At most

Relation: ≤: V∼V

Maintainer: [ x⊳y = x ↓ y ]
[ x⊲y = x ↑ y ]

The constraint x ≤ y can be expressed equivalently both as x ∈ V( ⌢y] and
as y ∈ V[x⌢ ). From this the result is immediate.

5.4.c Absolute value

Relation: 〈〈 |✷| 〉〉: V∼V[0⌢ )

Maintainer: [ x⊳y = y if x ≥ 0,
= −y if x < 0 ]

[ x⊲y = |x| ]

The constraint |x| = y can be expressed equivalently as x ∈ {−y, y}, giving
[ x⊳y = x§{−y, y} ]. If the old value of x is 0 and the new value of y is not
0, the selection from {−y, y} requires a tie to be broken, and it is suggested
to pick then the positive candidate, y. Otherwise, the candidate closest to x
has to be picked, which depends purely on the sign of x.

5.4.d Floor

Relation: 〈〈floor〉〉: R∼Z
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Maintainer: [ x⊳n = n ↓ x ↑ (n+ 1)−ε ]
[ x⊲n = floor(x) ]

The constraint x〈〈floor〉〉n can be expressed equivalently as x ∈ R[n⌢n+ 1).

5.4.e Modulo

Relation: 〈〈mod a〉〉: V∼V[0⌢a)

Maintainer: [ x⊳y = y + a× round((x− y)/a) ]
[ x⊲y = x mod a ]

Here the parameter a is assumed to be a positive (constant) number in V.
The constraint x〈〈mod a〉〉y can be expressed equivalently as x ∈ y+a×Z, in
which the operations a× and y+ have been extended to sets. The problem is
thus to find a nice expression for x§(y + a×Z). The linear bijection f defined
by [ f(ξ) = y + a× ξ ] is monotonic in the order induced by closeness. So
x§(y + a×Z) = f(f−1(x)§Z). Now, in general, ξ §Z = round(ξ), which gives
us the maintainer.

It is instructive to see what happens, for a = 100, say, when the value of y is
99 and is ‘incremented’ by 1 modulo 100, thus jumping back to 00. Assume,
for the sake of concreteness, that the old value of x is 1999. Then the new
value becomes

1999⊳0

= { definition of ⊳ }
0 + 100 × round((1999 − 0)/100)

= { arithmetic }
100 × round(19.99)

= { round, arithmetic }
2000

Rounding may require tie breaking, as when (still for a = 100) the value of
x is 1992, and the value of y jumps from 92, say, to 42. The two candidates
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1942 and 2042 are equally close to 1992. The tie-breaking method suggested
earlier picks 1942 as being the value closest to 0.

5.4.f Polar to Cartesian

Relation: 〈〈pol2cart〉〉: R[0⌢)×R ∼ R×R

Maintainer:

[ 〈r, ϕ〉⊳〈x, y〉 = 〈0, ϕ〉 if 〈x, y〉 = 〈0, 0〉,
= 〈z, α+ 2π × round((ϕ− α)/2π)〉 otherwise,

where z = radius〈x, y〉
α = angle〈x, y〉 ]

[ 〈r, ϕ〉⊲〈x, y〉 = (r × cos(ϕ), r × sin(ϕ)) ]

Here the function pol2cart is defined by

[ pol2cart〈r, ϕ〉 = (r × cos(ϕ), r × sin(ϕ)) ]

The constraint pol2cart〈r, ϕ〉 = 〈x, y〉 can be expressed equivalently as

r = radius〈x, y〉 ∧ (〈x, y〉 = 〈0, 0〉 ∨ ϕ mod 2π = angle〈x, y〉)

where the function angle is partial: it is defined on R×R with the exception
of the origin 〈0, 0〉. The choice space is clearly of a ‘rectangular’ shape s ×
t, in which s is even a singleton set, since the r component of the polar
representation of a point 〈x, y〉 depends functionally on 〈x, y〉. We focus
therefore on the second conjunct, which gives the ϕ part of the constraint.
We distinguish between the case 〈x, y〉 = 〈0, 0〉 and the case 〈x, y〉 6= 〈0, 0〉.

If 〈x, y〉 = 〈0, 0〉, the constraint is vacuously satisfied; the choice space for ϕ
is all of R, and we use ϕ§R = ϕ.

If 〈x, y〉 6= 〈0, 0〉, we can use the solution given above for maintaining
〈〈mod a〉〉.
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6 More . . .

Hysteresis Example; abs

(semi-)lattices

Normalization

Error handling
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