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1 Constraints

A constraint over a set of variables V is a propositional sentence in some
logic, with free variables drawn from a ‘sufficiently large’ set V . For the sake
of simplicity we will assume that all variables have type N. For example. if
V = {xxxx, yyyy, zzzz}, a constraint might be

x+ 1 ≤ y ∧ x+ y ≤ 9x+ 1 ≤ y ∧ x+ y ≤ 9x+ 1 ≤ y ∧ x + y ≤ 9x+ 1 ≤ y ∧ x + y ≤ 9

An assignment on V is a function of type A = V →N. For example, the
function {xxxx 7→ 3, yyyy 7→ 5, zzzz 7→ 0} is an assignment on {xxxx, yyyy, zzzz}.

The meaning (semantics) of a constraint is a function of type A→B, that
is, a predicate on the set of assignments.

We blur the distinction between constraints and predicates. More precisely,
when C is a constraint, we also use C to denote the predicate on A it
represents (in a context where a predicate is required) — in other words,
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the meaning mapping is treated like a type coercion. For example, if the
symbols used have their usual interpretation, the assignment above satisfies
the constraint above.

We assume that the formalism is sufficiently rich that we can express any
constraint we need to express. In particular, we assume the usual constants
and connectives of propositional logic, with the usual semantics:

true(a) ≡ true
false(a) ≡ false
(C ∧∧∧∧ D)(a) ≡ C (a) ∧ D(a)
(C ∨∨∨∨ D)(a) ≡ C (a) ∨ D(a)
(C ⇒⇒⇒⇒ D)(a) ≡ C (a) ⇒D(a)
(C ≡≡≡≡ D)(a) ≡ C (a) ≡ D(a)

Here, the connectives in the left-hand sides are constructors in the formalism
used for building sentences, while in the right-hand sides they stand for the
usual mathematical operations on the set B of truth values. (To belabour the
point: we might have written something like “((((and C D ))))” on the left-hand
side.)

The notation |= C means that all asignments satisfy C , or ∀(a :: C (a)). We
say then that C is universally valid. Furthermore, C |= C ′ stands for

∀(a :: C (a) ⇒ C ′(a))

which may also be written as |= C ⇒⇒⇒⇒ C ′. Two constraints C and C ′ are
equivalent, denoted by C ≃ C ′, when C |= C ′ and C ′ |= C . This means
that they have the same meaning:

∀(a :: C (a) ≡ C
′(a))

since:

C ≃ C
′

≡ {definition of ≃}

C |= C
′ ∧ C

′ |= C

≡ {definition of |=}

∀(a :: C (a) ⇒ C ′(a)) ∧ ∀(a :: C ′(a) ⇒ C (a))
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≡ {predicate calculus}

∀(a :: C (a) ≡ C
′(a))

≡ {definition of |=}

|= C ≡≡≡≡ C ′

Given the semantics of the connectives, we can use all the laws of conventional
propositional calculus in a proof that C ≃ C ′.

Let the set of variables U be a subset of V . Two assignments a and a ′ agree

on U , denoted a ≈U a ′, whenever

∀(u : u ∈ U : a(u) = a ′(u))

If U is the set of free variables in C , the value of C (a) only depends on the
assignment a restricted to U , so then

∀(a, a ′ : a ≈U a ′ : C (a) ≡ C (a ′))

Constraint C is a projection of constraint C ′ on U , denoted C �U C ′,
whenever

∀(a :: C (a) ≡ ∃(a ′ : a ′ ≈U a : C ′(a ′)))

For example, the constraint 2 ≤ z ≤ 182 ≤ z ≤ 182 ≤ z ≤ 182 ≤ z ≤ 18 is a projection of the constraint
x + 1 ≤ y ∧ x+ y ≤ 9 ∧ z = x + 2∗yx + 1 ≤ y ∧ x+ y ≤ 9 ∧ z = x + 2∗yx + 1 ≤ y ∧ x+ y ≤ 9 ∧ z = x + 2∗yx + 1 ≤ y ∧ x+ y ≤ 9 ∧ z = x + 2∗y on {zzzz}. Clearly, the projections of
a given constraint on U are all equivalent. Moreover, if C �U C ′, then
C ′ |= C :

C
′ |= C

≡ {definition of |=}

∀(a :: C ′(a) ⇒ C (a))

⇐ {since ≈U is reflexive, C ′(a) ⇒ ∃(a ′ : a ′ ≈U a : C ′(a ′))}

∀(a :: ∃(a ′ : a ′ ≈U a : C ′(a ′)) ⇒ C (a))

⇐ {propositional calculus}

∀(a :: C (a) ≡ ∃(a ′ : a ′ ≈U a : C ′(a ′)))

≡ {definition of �}

C �U C ′
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2 Solutions

There is a class of constraints called displays. We will not formalize the
notion, but the informal idea is that a display is a constraint that is in such a
form that the assignments satisfying it can be ‘read off’ directly. For example,

x = 3 ∧ 4 ≤ y ≤ 6x = 3 ∧ 4 ≤ y ≤ 6x = 3 ∧ 4 ≤ y ≤ 6x = 3 ∧ 4 ≤ y ≤ 6

might be a display.

We assume that the set of displays is closed under semantic conjunction,
disjunction, and projection. That is, for all displays D and D ′, and all
subsets U of V , there exist displays Dc, Dd and Dp such that

Dc ≃ D ∧∧∧∧ D
′

Dd ≃ D ∨∨∨∨ D ′

Dp �U D

We denote such a Dc , Dd and Dp by, respectively, D ∧∧∧∧ D ′, D ∨∨∨∨ D ′ and
πU (D), since we’ll never be interested in the syntactic specifics of the sentence
picked from the equivalence class.

Constraint S is a solution of constraint C whenever S is a display such that
S |= C . For example, the display above is a solution of

x + 1 ≤ y ∧ x+ y ≤ 9x + 1 ≤ y ∧ x+ y ≤ 9x+ 1 ≤ y ∧ x+ y ≤ 9x+ 1 ≤ y ∧ x+ y ≤ 9

We call a solution S of C a full solution whenever S ≃ C . The display
false is a solution of any constraint, but not a very interesting one. We’ll
call it (and any equivalent displays) an empty solution.

3 Searching

A problem is a pair D&C , in which D is a display and C a constraint. (The
symbol ‘&’ here is just a constructor.)

By definition, the solutions to problem D&C are the solutions to the con-
straint D ∧∧∧∧C . In other words, from a semantic point of view & and ∧∧∧∧ are
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synonymous. The role of the two components, however, is different. Think
of D as a search space in which the solution of C is sought for.

Initially, constraint C can be modelled as the problem true&C , which will
be the root of a search process.

We extend the domain of the relations ≃ and �U so as to include problems,
by coercing problems to the equivalent constraints. So D&C ≃ C ′ iff
D ∧∧∧∧C ≃ C

′, etcetera.

We concentrate on finding full solutions; the adaptations for finding just any
non-empty solution should be fairly obvious.

What we do next is give a framework for a ‘non-deterministic’ recursive
searching procedure, by discussing various possible solution steps which might
lead to the solution if supplemented by an appropriate strategy that deter-
mines when to take what kind of step. What constitutes a good strategy
depends, of course, on the specifics of the constraint formalism we have ab-
stracted from. Questions like whether there exists a decision procedure, and
if so whether some strategy leads to an algorithm (an always terminating
search procedure), are outside the scope of this investigation.

3.1 Simplification

If in the problem D&C one of the components D or C (or both) can be
simplified to an equivalent component, solve instead the problem using the
simplified component(s).

3.2 Trivial problems

A problem of the form D & true is trivial: a full solution is D :

D ≃ D & true

≡ {definition of ≃}
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|= D ≡≡≡≡ D ∧∧∧∧ true

≡ {propositional calculus}

true

Other trivially solvable problems are special cases of steps treated below.

3.3 Introducing new variables

Let U be the set of free variables in problem D&C . If D&C �U D&C ′,
and S is a full solution of D&C ′, then πU (S) is a full solution of D&C :

πU (S) ≃ D&C

≡ {definitions of ≃ and πU}

D&C �U S

≡ {S is a full solution of D&C ′}

D&C �U D&C ′

The assumption here is that C
′ involves additional variables (otherwise C

and C ′ are equivalent and the step would be pointless), which are introduced
in order to bring the constraint into a more convenient form (for example,
removing existential quantifiers).

From the definition of �U it is easy to see that we don’t loose solutions by
the step, assuming sufficient expressiveness.

3.4 Propagation

If under assumption D , constraint C can be strengthened to C ′, we may
replace problem D&C by D&C ′. More formally, if D |= C ≡≡≡≡ C ′, then
D&C is equivalent to D&C ′:

D&C ≃ D&C ′
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≡ {definition of ≃}

|= D ∧∧∧∧ C ≡≡≡≡ D ∧∧∧∧ C
′

≡ {propositional calculus}

|= D ⇒⇒⇒⇒ (C ≡≡≡≡ C
′)

≡ {property of |=}

D |= C ≡≡≡≡ C ′

3.5 Cutting

If, given problem D&C , there exists a display D ′ such that D ∧∧∧∧ C |= D ′,
then D&C may be replaced by (D ∧∧∧∧D ′) &C :

D&C ≃ (D ∧∧∧∧D
′) &C

≡ {definition of ≃}

|= D ∧∧∧∧ C ≡≡≡≡ D ∧∧∧∧ D ′ ∧∧∧∧ C

≡ {propositional calculus}

|= D ∧∧∧∧ C ⇒⇒⇒⇒ D
′

≡ {definition of |=, semantics}

∀(a :: (D ∧∧∧∧ C )(a) ⇒ D
′(a))

≡ {definition of |=}

D ∧∧∧∧ C |= D ′

An additional requirement that D 6|= D ′ serves to ensure that the search
space is effectively reduced.
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3.6 Solving by cases

If D ≃ D1 ∨∨∨∨ D2 ∨∨∨∨ · · · ∨∨∨∨ Dn , to solve D&C we may find a full solution
Si of each case Di&C , giving a full solution S1 ∨∨∨∨ S2 ∨∨∨∨ · · · ∨∨∨∨ Sn . This is an
immediate consequence of the fact that conjunction distributes over disjunc-
tion.

Likewise, if D |= C ≡≡≡≡ C1 ∨∨∨∨ C2 ∨∨∨∨ · · · ∨∨∨∨ Cn , we may solve each subproblem
D&Ci giving solution Si and combine the solutions as before.

A special case is n = 0, which arises when D or C is equivalent to false.
Then any full solution of the whole problem is empty, so we may return false.

4 Tactics

We show that one particular solution step, piecemeal solving, is in fact a
tactic obtained by appropriately combining solution steps introduced before.

The step is as follows. To solve D & (C ∧∧∧∧ C ′), first find a full solution S of
D&C , and then a full solution of S &C ′. This can obviously be extended to
n-ary conjunctions.

Here is how this arises by combining three basic steps of the previous section:

D & (C ∧∧∧∧ C
′)

≃ {D & (C ∧∧∧∧ C ′) |= D&C |= S , cutting}

(D ∧∧∧∧S) & (C ∧∧∧∧ C
′)

≃ {S |= D&C |= D , simplification}

S & (C ∧∧∧∧ C ′)

≃ {S |= D&C |= C , so S |= (C ∧∧∧∧ C ′) ≡≡≡≡ C ′, propagation}

S &C
′
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