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In their ground-breaking paper [BAN89] Burrows, Abadi and Needham give a formalism, BAN
logic, that can be used to reason about security properties of protocols. There are, however,
several implic it or informally described assumptions. Moreover, the semantics gets very little
attention, and is mentioned only in a short, informal description. As  pointed out by Syverson
[Syv91], having only an intuitive understanding of the semantics directly opposes the usual goal
of having semantics at all: to see the logic as part of a system, and to be able to prove statements
about a (more or less) existing model formally. O ur  aim was, therefore, to construct a sound
semantics for BAN, as well as a notion of correctness that makes the additional requirements for
both specification and protocol explicit.

Various authors have tried to give a semantics to BAN logic; some of them left the logic more
or less intact, while others developed semantics for a new logic based on BAN logic. A l l  these
approaches are, just like BAN logic itself, restricted in their description of reality — the world
can only be described through the (belief) eyes of the participants. However, to be able to judge
cryptographic protocols, one cannot avoid looking beyond the individual beliefs of participants.
Since all individual beliefs may be wrong, the outside world must be looked at separately. There-
fore, we have not only looked for a precise semantics for BAN logic (and a proof of its soundness),
but we have also chosen the semantics in such a way that it enables us to reason about knowledge
(and, as a result, about the rightness of the participants' beliefs).

For our investigation we use an extension of BAN logic. I t s  language has, apart from the
constructs taken from BAN, a few additional constructs, such as P possessesK, used to express
possession of a key — and the resulting ability to decrypt messages with that key — without
necessarily believing that it belongs to a certain pair of principals; and P rightly_belleves tp, which
expresses that not only P believes cc), but also co itself holds.

We present the axioms of the logic in a general form: one can derive statements about the
beliefs of principals, but also about the rightness of those beliefs (or of statements in general, inde-
pendent of any beliefs). Defining a rectify operation that maps formulas of the form P believes co to
P rightly_believes ,  leaving other formulas intact, leads to a theorem that expresses that principals
draw the right conclusions from their beliefs. In other words: if  their initial beliefs are right, their
conclusions will be right as well.

However, logical soundness does not yet establish that principals draw correct conclusions
during a protocol run. We define, using operational semantics, what it  means for a protocol to
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meet its specification. In order to prove that property of a protocol, we need certain restrictions
on the protocol, depending on the assumptions. Besides, as it turns out, the assumptions need to
be of a certain form as well, in order to secure monotonicity. Those requirements can be checked
statically and do not exclude well-known examples of protocols.

1 T h e  logic
In this section we introduce our logic with its language and axioms, while indicating the difference
with the original BAN logic. After that, we prove that this logic is stronger than BAN.

1.1 T h e  language
The sorts we distinguish are Principal, Key, Message and Formula. There are (further unspecified)
universes of constants for the sorts Principal and Key. We  view (logical) formulas as being a
subsort of the sort of messages, since messages can also consist of nonces, timestamps or other
constants, drawn from some further unspecified universe, as well as encrypted messages. So there
is an implicit injection M Formula Messag e.

We use variables A, B , P,Q , R, f o r  principals, Greek letters co, 0, f o r  formulas, M, X,Y,
for messages in general, and K,. . .  for keys.

For formulas, the language of the logic has the logical constant True, the logical operators
A, V, —)• and V, and the operator o n  the sort Message. Furthermore we have the following
operators:

• ( _ ,  _) :: Message x Message —› Message
(an associative, commutative and idempotent operator for message joining which is an ex-
tension of A, the logical-and operator, so that the joining of two messages that happen to
be formulas is interpreted as their conjunction')

• believes :: Principal x Formula F o rm u la

• once_said :: Principal x Message F o rm u la
(for messages that have been uttered)

• sees :: Principal x Message —) Formula
(for messages that have been received)

• possesses :: Principal x Key F o rm u la
(possession of information, in our case a key, does not imply any beliefs about validity or
usage)

• _  key_of (_, _) :: Key x Principal x Principal F o rm u la
(symmetric in the last two arguments; intuitively, K  key_of (P,Q) means that K  is a good
key between P and Q)

• - ( -  I - ) :: Key x Message x Principal Messag e
(for encryption; intuitively, K(XIP)  denotes X encrypted with K by P)

The "word" operators bind more tightly  than the traditional logical operators, so that, e.g.,
P believes so A //) must be interpreted as (P believes co) A 0.

Definition 1 We define the operators rightly_believes , controls and fresh as follows:

rightly_believes :: Principal x Formula —› Formula

P rightly_believes : =  P believes so A so
'Using the injection M mentioned above, we could write: (Mco, ,  IVIG, A 10.
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controls :: Principal x Formula F o rm u l a

P controls w := P believes cc) P  rightly_believes

fresh :: Message F o rm u la

fresh X := (VP, w P  oncesaid(X,co) -
)  P  b e l i e v e s  
( p )(intuitively: fresh X i f  X has not been uttered before the current protocol run)

In BAN logic controls and fresh are primitive operators. We could, equivalently, have introduced
these operators as primitives with their definitions turned into axioms.

1.2 A x iom a t is a t ion
For the axiomatisation we need to define the contents of a message as the collection of submessages
when encryption is transparent:

Definition 2 The function c t s r l  takes a message and delivers a set of messages:

ct4(X,1111 : =  f(X,Y)  }Uc ts iThets ill
ctsiK(XIP)] : =  {K(X1P)}UctsIX1
ctsiXfi : =  {X} (otherwise)

The axiomatisation includes the standard axioms for equational logic with Modus Ponens —
which subsumes propositional logic — and the standard rules for universal quantification, where
a formula tp l , t )  is treated as shorthand for (w 11))  A OP co ) .

Beneath, we introduce a collection of axioms for the specific operators of our logic, and mention
the related axiom in the original BAN logic — if such an axiom exists. (Because of the presence
of the Modus Ponens rule, we can replace inference rules 9
+
1  b y  a x i o m s  I -  
c p  -
) 0 . )

For message joining there are all axioms of the forms I- (X, (Y, Z)) ( ( X ,  Y), Z), I- (X, Y)
(Y, X) and I- (X, X) X ,  and for the key_of operator I- K key_of (P, Q) K  key_of (Q , P). Equa-
tional logic allows us to apply theorems of the form I- 9,[x]Ax=y ( 4 1 .

Furthermore, we have:

Rationality The rationality rule introduces a collection of axioms, one for every theorem of the
logic:

I
- 
c
o

P believes tp

This axiom, together with the next one, lifts the level of reasoning from beliefs of principals
to general statements.

Believing Modus Ponens Modus Ponens under the believes operator:

P believes (co -
)  — )  
( P  
b e l i
e v e s  
c
c  
-
)  
P  
b e
l i
e v
e s  
7
/
7
)

Saying parts of a joint message Uttering a joint message implies uttering each of the parts:

P oncesaid (X, Y) P  oncesaid X

The related BAN logic axiom is:

hBAN P believes Q once_said (X, Y) P  believes Q once_said X
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Saying contents of  an encrypted message Uttering an encrypted message, signed by your-
self, while you believe that the key is good, implies uttering of the encrypted message:

P once_said K(XIP)  A P  believes K key_of (P,Q) P  once_said X

There is no similar axiom in BAN logic.

Seeing parts of  a joint message Seeing a joint message means seeing each part separately as
well:

P sees (X, Y) P  sees X

The BAN logic has this axiom (exactly so) as well.
Awareness Awareness of what one sees:

P sees X P  believes P sees X

There is no similar axiom in BAN logic.

Possessing keys of a seen key statement I f  one sees a key statement, one possesses the key
that it  mentioned:

P sees K key_of (Q, R) -
)  P  
p o s s e s s e s  
K

In BAN logic, the notion of possession does not exist.

Possessing believed keys One can only believe that a certain key is good if possessing the key:

P believes K key_of (Q , R) P  possesses K

Decryption Seeing an encrypted message while having the key in possession, means seeing the
message itself:

P possesses K A P sees K(X IQ) P  sees X

The related BAN logic axiom is decryption:

BAN P believes K key_of (P,Q) A P  sees K(X IQ ) P  sees X

In BAN logic one can only decrypt with keys that are believed to be one's own key. With
any other key in possession, decryption cannot be derived, since BAN logic does not have a
notion of possession.

Good key ensures the utterer  A  collection of axioms, stating that if  a key is good, the only
ones that use it for encryption are the owners, so if somewhere, someone sees a message that
contains a part encrypted with that key, that part must have been said by the key owner
who encrypted it:
For all P,Q, R, X ,Y, K such that K(X1Q) E cts[DS

K  key_of (P,Q) A R sees Y —> Q  once_said X

The related BAN logic axiom is the message meaning rule:

hBAN P believes K key_of (P,Q) A P  sees K (X IQ) P  believes Q once_said X
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The BAN axioms that were not mentioned above are:

1.3 Comparison with BAN logic
In order to understand the relation between our logic and BAN logic, we show that every theorem
of BAN logic is a theorem of our logic — in other words, that our logic is stronger. Because our
logic stripped off the believes operator from most of the axioms, the following lemma will be useful
in the proof.

Lemma 3 I f  I-  cp -
> I P ,  
t h e n  I
-  P  
b e l i e
v e s  
( p  
-
>  
P  
b e l i
e v e
s  
7 /
; .

Proof

0

FBAN

FBAN

FBAN

I
-
B
A
N

FBAN

FBAN

P believes cp A P  believes 1/) P  believes (cp,11))

P believes (c,o,'1)) -
,  
P b e l i e v e
s c o
P believes K key_of (Q , R) P  believes K key_of (R, Q)

P believes fresh cp A P  believes Q once_said cp P  believes Q believes cp

P believes fresh X P  believes fresh (X, Y)

P believes Q controls cp A P  believes Q believes cp P  believes fp

h tio 0
{Rationality}

I— P believes (cp 71))
{Believing Modus Ponens, Modus Ponens}

I
- 
P 
b
e
l
i
e
v
e
s 
c
o 
P 
b
e
l
i
e
v
e
s 
0

From Believing Modus Ponens and the Rationality Rule we now obtain:

Lemma 4 I- P believes (cp A IP) 4 -  P  believes (p A P  believes0

If part of a message is fresh, the whole of the message must be fresh as well:

Lemma 5 I- fresh X —› fresh (X, Y)

Note that the reverse does not hold, since a message can contain "old news" next to new data;
the combination is fresh, but every element is not.

Theorem 6 The logic as defined in this article, is  stronger than BAN logic.

Proof I t  suffices to prove that all axioms of the BAN logic are theorems of our logic.

I-BAN P sees (X, Y) —> P  sees X

is our axiom Seeing parts of a joint message, and therefore a theorem.

I
-
B
A
N 
P 
b
e
l
i
e
v
e
s 
c
o 
A 
P 
b
e
l
i
e
v
e
s 
0 
—
k 
P 
b
e
l
i
e
v
e
s 
(
c
o
,
A
b
)

HBAN P believes (tp, 0) P  believes cp

both follow from Lemma 4 using the identification of the joining operator on formulas with the
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logical-and operator.

I
- 
B
A
N 
P 
b
e
l
i
e
v
e
s 
K 
k
e
y
_
o
f 
(
Q 
, 
R
) 
P 
b
e
l
i
e
v
e
s 
K 
k
e
y
_
o
f 
(
R
,
Q
)

follows from the symmetry of the key_of operator.

I
-
B
A
N 
P 
b
e
l
i
e
v
e
s 
Q 
o
n
c
e
s
a
i
d 
(
X
,  
Y
)  
P 
b
e
l
i
e
v
e
s 
Q 
o
n
c
e
s
a
i
d 
X

follows from our axiom Saying parts of  a joint message and Lemma 3.

I
-
B
A
N 
P 
b
e
l
i
e
v
e
s 
K 
k
e
y
_
o
f  
(
P
,  
(
.
2
)  
A 
P 
s
e
e
s 
K
(
X 
I
Q
)  
—
)  
P 
s
e
e
s 
X

follows from our axioms Possessing believed keys and Decryption.

1 -
B
A
N  
P  
b
e
l
i
e
v
e
s  
K  
k
e
y
_
o
f  
(
P
,
Q
)  
A  
P  
s
e
e
s  
K
(
X
I
Q
)  
-
)  
P  
b
e
l
i
e
v
e
s  
Q  
o
n
c
e
s
a
i
d  
X

follows from our axiom Awareness and Lemmas 3 and 4.

I
-
B
A
N 
P 
b
e
l
i
e
v
e
s 
f
r
e
s
h 
c
p 
A 
P 
b
e
l
i
e
v
e
s 
Q 
o
n
c
e
_
s
a 
i
d 
c
o 
P 
b
e
l
i
e
v
e
s 
Q 
b
e
l
i
e
v
e
s 
c
o

follows from the definition of fresh, the idempotence of (_, _), and Lemmas 3 and 4.

I
-
B
A
N 
P 
b
e
l
i
e
v
e
s 
f
r
e
s
h 
X 
—
,  
P 
b
e
l
i
e
v
e
s 
f
r
e
s
h 
(
X
,  
Y
)

follows from Lemmas 3 and 5.

I
-
B
A
N 
P 
b
e
l
i
e
v
e
s 
Q 
c
o
n
t
r
o
l
s 
c
p 
A 
P 
b
e
l
i
e
v
e
s 
Q 
b
e
l
i
e
v
e
s 
w 
-
›  
P 
b
e
l
i
e
v
e
s 
c
o

follows from the definitions of controls and rightly_believes and Lemmas 3 and 4.
0

2 Rect ificat ion of  formulas

The rectify operation R1-1 maps formulas to formulas. I n  particular, it  maps formulas of the
form P believes co to P rightly_believes co. I t  is defined as follows:

Definition 7

RIP believes col : =  P  rightly_believescp
R.Itp A 01 : =  R I P I I  A RI N1
Rh o  V 1/1 : =  R i c o l  V R N ]
RIP —' IA : =  RiCoi R V ]
n i x  :: fp] : =  ( V  x :: Ricall)
RiCol : =  co, other cases

Note the limited recursion, which stops whenever a formula with a "word" operator is encoun-
tered. The operation is extended to a set-to-set mapping in the usual way.

Directly from the definition on sets it follows that:

Lemma 8 I f  A
l C  
A 2 ,  
t h e n  
' R I
M  
C  
R I
A 2
1

Theorem 9 I f  A l- C then R1A1 I- RIC].

Proof
We prove it with structural induction on the derivation.
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Case trivial proof: A  trivial proof is a derivation step of the form Al-  C, where C C A.

RP]] and CC A
{Lemma 8}

RIAU and RV]] C RDA]
{trivial proof}

R,I[C1

Case deduction: Deduction is the introduction of implication by derivation:

If cp I- V), then I- (p V ) .

Using deduction, we may instantiate:

If npl] I- R401, then I- RP]  —) R . M .

From here we can derive, under the assumption R[kpl I- RLIPII:

True
(deduction, Rhofi I- 7ZI[01}

RIPI —) rellq
(definition rectify}

Tei(P 0 1 1

Cases axioms of predicate logic: A s  an example, we prove our claim for the introduction of A.
Other introductions and eliminations (V, —) , -,, V) have analogous proofs.

Rholl and RKII
{introduction A}

R E A  A RI[011

{definition rectify}
RIP A I

Case Rationality: L e t  I- c o. We prove I- RIP believes 4.

True
(Rationality, I- (p}

P believes 99 A co
= { d e fi n i t i o n  rightly_belleves }

Prightly_belleves co
m { d e fi n i t i o n  rectify}

RIP believes call

Case axiom: F o r every axiom I- cp —) lb, we will prove I- Rto —>- I l l ,  by deriving RlIcpll I- RV]J.
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case Believing Modus Ponens: W e  prove it for the equivalent form I- (P believes (co —) 1,b) A
P believes t p) —) P  believes0

RIP believes (co —) lb) A P believes col
{definition rectify}

P rightly_believes (t p —) 0 )  A P rightly_believes ( p
a  ( d e fi n i t i o n  rightly_believes }

P believes (y, —) 0)  A (tp I , b )  A (1:' believes ( p) A ( p
(Believing Modus Ponens, Modus Ponens}

P believes 1/; A gil
a  { d e fi n i t i o n  rightly_belleves }

P rightly_believes 0
{definition rectify}

RIP believes 011

case Saying contents of an encrypted message:

'RIP once_said K (XIP) A P believes K key_of (P,Q)1
= { d e fi n i t i o n  rectify}

P once_said K (XIP) A P rightly_believes K key_of (P,Q)
(definition rightly_believes }

P once_said K (X IP) A P believes K key_of (P, Q)
(Saying contents of an encrypted message}

P once_said X
a { d e fi n i t i o n  rectify}

RIP once_said X]

case Awareness:

RIP sees XII
E { d e fi n i t i o n  rectify}

P sees X
{Awareness, introduction A}

P believes P sees X A P sees X
a ( d e fi n i t i o n  rightly_believes }

P rightly_believes P sees X
a ( d e fi n i t i o n  rectify}

RIP believes P sees Xn

case Possessing believed keys:

RIP believes K key_of (Q , 1?)]]
a  ( d e fi n i t i o n  rectify}

P rightly_believes K key_of (Q , R)
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{definition rightly_believes }
P believes K key_of (Q,R)

{Possessing believed keys}
PpossessesK

{definition rectify}
RIP possesses Kll

The remaining axioms do not contain a believe operator, so they do not change under the
rectify function.
0

3 T h e  model
We view the environment as a system consisting of a finite collection of principals. We define for
a principal P a local state as a tuple (Bp,Op,Sp,1Cp), with the intuitive interpretation:

• Bp, the set of formulas that P currently believes;

• Op, the set of (sub-)messages P once said;

• Sp, the set of messages that P has seen so far;
• ICp, the set of keys P possesses.

It is closed if it satisfies the following (mutually defined) closure properties, each of which corre-
sponds directly to an axiom:

(i). (Rationality) Principals believe every theorem of the logic:

(1
— 
c
o
)  
c
o  
E  
B
p

(ii). (Believing Modus Ponens) Principals apply Modus Ponens in their beliefs:

( ç o
— )
E
B p
A
ç o
E  
B
p  
E  
B
p

(iii). (Saying parts of a joint message) I f  a principal said a combination of messages at a certain
time, then that principal said each of the messages as well:

(X, Y) E Op X  E Op A Y E Op

The reverse does not hold, since the presence of a joint message in Op implies that both
components were uttered (as a joint message) at the same time;

(iv). (Saying contents of an encrypted message) I f  a principal said an encrypted message and
believes the key is good, then that principal said the contents of the encrypted message as
well:

K (XIP) E Op A K key_of (P, Q) E Bp X  E Op

(v). (Seeing parts of a joint message) If a principal sees a joint message, that principal sees each
of the messages as well:

(X, Y) E Sp X  E Sp A Y E Sp

(Note that the reverse does not hold, since a joint message implies utterance of its components
at the same time, i.e., within the same message.)
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(vi). (Awareness) If  a principal sees a message, then that principal also believes he sees it:

X  E Sp ( P  sees X) E Bp

(vii). (Possessing keys of a seen key statement) I f  a principal sees a key statement, then that
principal possesses the key mentioned:

K  key_of (Q , R) E Sp K  E Kp

(viii). (Possessing believed keys) If  a principal believes that a certain key is a good key statement,
then that principal must possess that key as well:

K  key_of (Q , R) E Bp K  E Kp

(ix). (Decryption) If a principal P possesses a key K, and if P sees a message X labeled with CI
and encrypted with K,  then P also sees X itself:

K  1Cp A K(XICI) e Sp X  e Sp

(Note that there is no closure property corresponding to the axiom Good key ensures the
utterer.)

The closure of a local state s is the least closed local state s' such that s C s', where the ordering
is obtained by component-wise lifting of the set ordering. Note that taking the closure only adds
elements to the sets involved, and leaves an already closed local state unchanged.

A global state is a mapping from principals to local states (for each principal in the environment).
Global states are ordered by lifting the ordering on local states. The closure of a global state s,
denoted by cio(s), is defined in the obvious way. The unqualified term "state" will, from now on,
mean a closed global state.

We consistently use the convention that for a state denoted by the variable s its local state for
principal P  is denoted by the tuple (Bp,Op,Sp,Kp), and likewise that for a state si its local
state for principal P is denoted by the tuple (14, O
p
,  S i
p  , 1 C
p
)

Lemma 10 The function do is monotonic, augmenting and idempotent:

x C y c l o ( x )  C clo(y)

x C clo(x)

clo(clo(x)) c lo ( x )
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4 Semant ics of formulas

a True;
s (p A ip if a c o  and a l b ;
3 ( V 1

1
1 Y )

if a c o  A 0;s (
t
o 
—
) 
l
b

if a c o  implies a l p ;
a (Vs :: co) if a cp[x<—u] holds for all terms u of the appropriate kind

not containing unbound variables;
a P believes cp if 92 E Bp;
a P oncesaid X if x  e Op;
8 P sees X if X  E Sp;
a P possesses K if K  E Kp;
a K key_of (P, Q) if for all S E {P, Q}, all R, and all X, Y such that

K ( X I S )  E c t 4P1

We define the relation between states and formulas (where a c o  means: in state a formula co
holds) inductively on the structure of formulas as the least relation satisfying:

a R  sees Y implies a S  oncesaid X.

The notation (p[x4—u] above means: cp with u substituted for the free occurrences of x. I f  1,1, =
MO :: 40), the whole formula 1/1 may be substituted for cp, and since co[(p4-01. lb, the "recursion"
in the definition of i s  unbounded, whence the appeal above to "least relation".

Note that the relation k  is not monotonic in its left argument, i.e., when a C a', a k  A does
in general not imply a' A .

5 Soundness
Theorem 11 (Soundness) The logic as described in this article is sound with respect to the
newly defined semantics.

Corollary 12 BAN logic is sound.

Proof of Theorem 11 F o r each axiom I- cp —, IP, as summed up in section 1.2, we prove
s c o  a  l b .

Rationality does not have the form I- cp —), lb; instead, we have to show that for each theorem co
(and any P in the environment) the formula P believes (p is a tautology.

I- co
{closure property (i) }

for all states a : tp E Bp
a { s e m a n t i c s  of believes)

for all states a : a  P  believes (p

Believing Modus Ponens We prove the soundness of the following, equivalent variant of the
axiom: I- P believes (cp —, lb) A P believes co P  believes 0.

a P  believes (co 0 )  A P  believes co
a { s e m a n t i c s  of believes }

(co 0 )  e Bp and cc E Bp
{closure property (fi)}

1/7 E Bp
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Awareness

a  { s e m a n t i c s  of believes }
s P  believes V)

Saying parts of a joint message

8 Ponce_said (X, Y)
a { s e m a n t i c s  of once_said }

(X, Y) E Op
{closure property ( iii)}

X  E Op
a { s e m a n t i c s  of once_said }

s P  once_said X

Saying contents of an encrypted message

8 Ponce_said K(X IP) A P  believes K key_of (P,Q)
a  { s e m a n t i c s  of once_said and believes}

IC(X1P) E Op and K key_of (P,Q) E Bp
{closure property (iv)}

X  E Op
a { s e m a n t i c s  of once_said }

s P  once_said X

Seeing parts of a joint message

8 P  sees (X, Y)
{semantics of sees }

(X, Y) E Sp
{closure property (v)}

X E Sp
a { s e m a n t i c s  of sees }

s P  sees X

s P  sees X
a { s e m a n t i c s  of sees }

X E Sp
{closure property (vi)}

P sees X E Bp
a  { s e m a n t i c s  of sees }

s P  believes P sees X

Possessing keys of a seen key statement
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Possessing believed keys

Decryption

0

s P  sees K key_of (Q,R)
{semantics of sees }

K key_of (Q, R) E Sp
{closure property (va))

K E Xp
a  { s e m a n t i c s  of possesses }

s P  possesses K

s P  believes K key_of (Q, R)
{semantics of believes }

K key_of (Q, R) E Bp
{closure property (viii)}

K E Kp
a { s e m a n t i c s  of possesses }

s k  P possesses K

s k  P possesses K A P sees K(XIQ)
a  { s e m a n t i c s  of possesses and sees }

K E 1Cp A K(XIQ) E Sp
{closure property (ix)}

X  E Sp
{semantics of sees }

s P  sees X

Good key ensures the utterer We prove the soundness of this equivalent variant of the axiom:
I- K key_of (P,Q) —) ( R  sees Y —> Q  once_said X), where we may use the assumption that
K(XIQ) E cts[[1
7
1: s K  key_of (P,Q)

{semantics of key_of}
for all S
E  
{ P ,
Q } ,  
a l
l  
R
,  
a
n
d  
a
l
l  
X
,  
Y  
s
u
c
h  
t
h
a
t
K
(
X
I
S
)  
E  
c
t
s
i
l
l  
:

s R  sees Y implies s S  once_said X
{instantiate Si—Q, Ri—R, Xi—X , Y 4
-
Y }

if I  f (XIQ) E ct4Y1, s R  sees Y implies s Q  once_said X
{discharge the assumption}

s k  R sees Y implies s k  Q once_said X
a  { s e m a n t i c s  of -
›  }s R  sees Y Q  once_said X

13



6 Pr otocols
In the previous section we have proven our logic sound, so every theorem of the logic is a tautology
in the model. This, however, does not by itself establish in any way the suitability of the logic as
a tool for proving protocols correct. In fact, protocols were not referred to at all.

Definition 13 A protocol is a finite sequence of actions, where each protocol action has the form
P Q  : X , signifying the sending of a message X from P to Q.

The empty protocol is denoted by 0, and the sequencing operator "  ; " is used to denote con-
catenation of protocols.

The participants of a protocol are the principals mentioned in its actions.

We model actions as transitions from states to states. I f  in state 8 the action P —> Q : X  is
performed, only the local states for P and Q will be changed. The new state st is the least (closed
global) state such that 8 C 3
1
, X  E  O '
p  a n d  
X  
E  
S .  
F r o
m  
t h e  
c l o s
u r e  
p r o p
e r t i e
s  
w
e  
k n
o w  
t h
a t

the local states for other principals stay unchanged. Formally:

Definition 14 We define the transition function tra, mapping a state and an action to a new
state, by

tra(s,(P Q  : X)) : =  c lo(s [0 p 4
-  O P U I X 1 ,  
S Q  4
-  
S Q U I X 1 ] )

that is, for the action of sending a message X from P to Q, X  is added to both Op and Sc, and
then the closure is taken (to make it a well-formed state).

We define the extension of tra to protocols by:

tra(s,0) : =  s
tra(s, P
i
;  
P 2 )  
:
=  
t r a
( t r
a
( s ,
P
1
) ,
1 ' 2
)

Using Lemma 10 it follows immediately from the definition of tra that the transition function is
augmenting for a fixed protocol:

Lemma 15 s C tra(s,P)

A specification of a protocol is given by two sets of formulas, A  (the assumptions) and C (the
conclusions). Protocol P  satisfies such a specification (notation: { A }  P {C}) when " A  holds
initially" guarantees that "C holds finally", i.e., after running P. W e  extend the relation k
between states and formulas to a relation between states and sets of formulas, as follows:

s . F  : =  f o r  all w E ..F : 8  (
s
oUsing this, the semantics of the specification triple {A)  P {C} is now defined as follows:

{A}  P {C} i f  f o r  all states 8 : 8 A  implies tra(s,'P) C  .

Lemma 16 The specifications may be composed: I f  { A }  PI {13} and I B 1 P 2  {C}, then
{ A} Pi; P2 {C}
Proof

{A}  Pl {B} and p  {/3} P2 fC1
{semantics of specification triples}

for all states s : s  A  implies tra(s ,P
1
)  p  B  a n d
for all states 8
1 :  8
1  
1 3  
i m p l
i e s  
t r a
( s
s  
, P
2 )  
C

(instantiate sz 4—tra(s,P1 )1
for all states s : s  A  implies tra(8,P
1
)  k  B  a n d
tra(s ,P
1
)  k  
8  
i m
p l i
e s  
t r a
( t r
a
( s ,
P 1
) , P
2 )  
k  
C

14



0

{transitivity of implication}
for all states s : s  =  A implies tra(tra(s,P1), P2) =  C

a { d e fi n i t i o n  o f  tra}
for all states s : s  A  implies tra(s, PI; P2) p  c

a  ( s e m a n t i c s  of specification triples}
{A} Pl; P2 {C}

Similarly, one can prove:

Lemma 17 I f  k  {A}  P {8} and { A l  'P 181, then { A U X }  P {8U8
1
)7 Correctness of protocols
Our aim now is to prove that if C can be derived in our logic from A together with (some yet-to-
be-defined logic translation of) P, then = {A}  P {C} holds. From that we can conclude a rectified
version, so that we know that participants in protocols draw correct conclusions.

As we have seen, the sending of a message is modelled by adding the message to the sender's
0  set of messages once-said, and to the receiver's S set of messages seen, and then to apply the
closure as mentioned in section 3. We now define the logical equivalent of this:

Definition 18 For an action P —>- Q : X,  i.e., the sending of a message X  from P to Q, we
define its logic translation T(P Q  : X) as a (singleton) set of formulas:

T(P Q  : X)  : =  f P  once_said X A  Q  sees X1
The extension to protocols is recursively defined:

T(0) : =  0
I(Pi;P2)  : =  T(21)UT(P2)

Lemma 19 For all actions a: f o l a { T ( a ) }

Proof Let a be P —) Q : X.

0} P —) • Q : X IT  (P —> C 1 : X) }
(semantics of specification triples}

for all s : s  =  0 implies tra(s, P —> Q : X)  =  T(P —, Q : X)
a  { d e fi n i t i o n  o f  l ' }

for all s : s  =  0 implies tra(s, P Q  : X)  {  P once_said X A Q sees X}
= { d e fi n i t i o n  o f  = on sets of formulas}

for all s : tra(s, P Q  : X)  P  once_said X A Q sees X
a ( d e fi n i t i o n  o f  tra)

f o r  a l l  s  :  C 1 0 ( 8 [ 0  p < -  0  pt..) { X }  , S  Q < -  S  Qt..) ' P O D  P  o n c e _ s a i d  X  A  Q  s e e s  X

Now let s be any state, and put 8' = clo(s[Op—OpU{ X), SQ4-80-(X11). We have

X  E Opt..q.X1 A X E SU{X}
{ do is augmenting}

X E 0
1
p
A X
E S

a ( s e m a n t i c s  of once_said and sees }
s' =  P once_said X A Q sees X

15
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Definition 20 For a collection of predicates A and a protocol step a = P Q  : X , the predicate
A allows a is defined recursively with respect to the structure of the message X :

A allows P —) Q : K(X1P) : =  f o r  some S : A  I- P believes K key_of (P, S)
and A allows P S  : X

A allows P Q  : K (XIR), R P  : =  A  I- PseesK(X117)
A allows P Q  : (X ,Y) : =  A  allows P Q  : X and A allows P —> Q : Y
A allows P Q  : : =  A  I- P believes cp
A allows P Q  : X : =  t r u e  (all other cases)

Longer protocols are allowed if  each of the steps is allowed in the respective states:

A allows 0 : =  t r u e
A allows (a;P) : =  A  allows a and (AUT(a)) allows P

Lemma 21 I f  A allows a, then RIAII allows a.

Proof We prove RUA]] allows P Q  : X from A allows P Q  : X with induction on X.

Case K(X1P):

A allows P Q  : K(X1P)
(definition allows }

for some S A  I- PbelievesK key_of (P, S)
and A allows P S  : X

{Theorem 9}
for some S : I .
4
fl  I -  
R I P  
b e l i e
v e s  
K  
k e y
_ o f  
(
P
,  
S
)
1
1

and A allows P S  : X
{definition rectify}

for some S : P  rightly_believes K key_of (P, S)
and A allows P —) S : X

(definition rightly_believes }
for some S : R P ]  F P believes K key_of (P, S)
and A allows P S  : X

{Induction Hypothesis}
for some S : P  believes K key_of (P, S)
and 7ZIA1 allows P S  : X

{definition allows}
R P ]  allows P —) Q : K (XIP)

Case K  (XIR), R P :

A allows P Q  : K(X1R)
{definition allows}

A I- PseesK(X1R)
(Theorem 9}

R P ]  I- 1iPseesK(X1R)ll
(definition rectify}

16



RILA1 I- Psees If(X1R)
E ( d e fi n i t i o n  allows }

14.41 allows P Q  : K (XII?)

Case (X,Y):

Case co:

0

A allows P Q  : (X ,Y)
{definition allows }

A allows P —> Q : X and A allows P Q  : Y
(Induction Hypothesis}

RIAU allows P —) - Q : X and RDA allows P Q  : Y
E ( d e fi n i t i o n  allows }

RIAJI allows P Q  : (X ,Y)

A allows P Q  : w
E ( d e fi n i t i o n  allows }

A I- P believes cp
{Theorem 9}

'RP]] I- RIP believes 4
{definition rectify}

RiAll I- P rightly_believes w
(definition rightly_believes }

RIAU I- P believes cp
E ( d e fi n i t i o n  allows }

RIA1 allows P —, Q : co

Case other X:

A allows P Q  : X
E. { d e fi n i t i o n  allows }

true
E { d e fi n i t i o n  allows }

RiAl allows P Q  : X

17



Definition 22 We define positive formulas as the least set such that:

Lemma 25

Lemma 29

co
K  key_of (P,Q)
P possesses K
P believes fresh X
P believes co, other formulas
(P controls(p) A cp
(P believes Q controls cp) A (R believes cp)
P sees X
P once_said X
cp A .0
so V V;
(Nix :: cp)

is positive if
is positive;
is positive;
is positive;
is positive if
is positive if
is positive if
is positive;
is positive;
is positive if
is positive if
is positive if

Proof This follows now directly from Lemmas 17, 19 and 23. El

I
- 
i
i
o
;
co is positive;
c
o
o 
i
s 
p
o
s
i
t
i
v
e
;

cp is positive;

cp is positive and t,II is positive;
cp is positive and 0 is positive;
cp4x4—ul is  positive for all
terms u of the appropriate kind
not containing unbound variables.

This is extended to finite sets of formulas: .T
. i s  p o s i t i v e  
w h e n e v e r  
t h e  
f o r m u l a  
A  .
7
-  
i s .

Lemma 23 I f  AUT(a) is  positive and A allows a, then k  {A}  a fi l l

This follows immediately from the following lemma:

Lemma 24 I f  A allows a, A I- co and co positive, then { A }  a {p}

The proof of this lemma can be found in the appendix.

I f  AUT(a) positive and A allows a, then k  {A}  a fA,T(a)1.

Definition 28 We define a collection of predicates A to be safe i f  A positive or  there exists a
positive collection A' such that A = 1441.

The following lemma follows immediately from the definition of safe.

Lemma 27 I f  A is positive, then 'RIAU is safe.

We now formulate Lemma 23 for the weaker requirement of A being safe, rather than positive.

Lemma 28 I f  AUT(a) safe and A allows a, then f A l  a {A}

The proof of this lemma can be found in the appendix.

I f  AUT(a) safe and A allows a, then { A } a  {A, T(a)}.

Proof This follows now directly from Lemmas 17, 19 and 23.
0

Theorem 30 I f  AUT(P) safe, A  allows P and AuT(P) I- C, then k  { A} P {O.

Proof We prove the theorem by induction on the protocol.
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Case 0 :

Case (a; P):

AUT(a; P) safe, A  allows (a; 'P) and AUT(a;'P) C
{definitions of T and allows

AUT(a)UT('P) safe, A  allows a, AUT(a) allows 'P and AUT(a)UT(P) C
{Induction hypothesis}

AUT(a) safe, A  allows a and f A U T ( a ) 1  P fC1
{Lemma 29}

{A} a fAUT(a)1 and f A U T ( a ) 1 P  fC1
{composition of specifications (Lemma 16)}

1.41 a; 'P (C)

AUT(0) C
(definition of T(0)1

A I- C
{soundness (Theorem 11)}

for all states 8: 8 A  implies s C
{definition of tra(s, 0)}

for all states 8: A  implies tra(s, 0) C
{definition of A 1  P fC11

1.41 {C).

From Theorem 9 our main theorem now follows: a  proof of a specification in the logic indeed
ensures the right conclusions of the principals during the protocol.

Theorem 31 I f  AUT(P) positive, A allows P and AUT(P) C ,  then I N A 1 1  P

Proof L et  AUT(P) be positive, A  allows P and AUT(P) I-  C. Then RIAUT(P)1 is safe
(Lemma 27), RIAll allows P (Lemma 21) and RIAIIUT(P) 7Z ICII  (Lemma 9). Now we can
apply Theorem 30. El

8 Conclusion
The original BAN logic has proved successful for finding many unintended errors in security
protocols. I t  does, though, not spot all potential security breaches and thus is less suited for
finding intentional (possibly malicious) errors.

Our formalism resulted from a systematic attempt to formulate precise restrictions under which
the changing beliefs of principals during a protocol run accurately reflect the changing state of
affairs while communication takes place. The restrictions that emerged from our investigation
are rather unelegant and complicated, the reason being that we wanted to keep them such that
they can be checked statically and do not exclude well-known examples of protocols. They are,
however, necessary; for most of the restrictions we have an example of a simple concrete protocol
(not obeying the restriction) that leads to a false conclusion.

The semantic correctness criterium we have formulated is weak; it does not take the threats
imposed by intruders and impostors into account. It  remains to be investigated whether a stronger
correctness criterium requires further restrictions. Extrapolating from our experience, we think
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in fact that that is rather likely. In view of the complications already engendered, an appropriate
question is whether the approach of translating protocols into a logical framework is the most
felicitous one.
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