Bitonic Sort on Ultracomputers

by Lambert Meertens \dagger

Ultracomputer Research Laboratory
Courant Institute of Mathematical Sciences
715 Broadway, 10th Floor
New York, NY 10003
Ultracomputer Note \#1
March, 1979
\dagger Matematisch Centrum, Amsterdam

ABSTRACT

Batcher's bitonic sort (cf. Knuth, v. III, pp. 232 ff) is a sorting network, capable of sorting n inputs in $\Theta\left((\log \mathrm{n})^{2}\right)$ stages. When adapted to conventional computers, it gives rise to an algorithm that runs in time $\Theta\left(\mathrm{n}(\log \mathrm{n})^{2}\right)$. The method can also be adapted to ultracomputers (Schwartz [1979]) to exploit their high degree of parallelism. The resulting algorithm will take time $\Theta\left((\log \mathrm{N})^{2}\right)$ for ultracomputers of "size" N . The implicit constant factor is low, so that even for moderate values of N the ultracomputer architecture performs faster than the $\Theta(\mathrm{N} \log \mathrm{N})$ time conventional architecture can achieve. The purpose of this note is to describe the adapted algorithm. After some preliminaries a first version of the algorithm is given whose correctness is easily shown. Next, this algorithm is transformed to make it suitable for an ultracomputer.

1. Introduction

Batcher's bitonic sort (cf. Knuth, v. III, pp. 232 ff) is a sorting network, capable of sorting n inputs in $\Theta\left((\log n)^{2}\right)$ stages. When adapted to conventional computers, it gives rise to an algorithm that runs in time $\Theta\left(\mathrm{n}(\log \mathrm{n})^{2}\right)$. The method can also be adapted to ultracomputers (Schwartz [1979]) to exploit their high degree of parallelism. The resulting algorithm will take time $\Theta\left((\log \mathrm{N})^{2}\right)$ for ultracomputers of "size" N. The implicit constant factor is low, so that even for moderate values of N the ultracomputer architecture performs faster than the $\Theta(N \log N)$ time conventional architecture can achieve. The purpose of this note is to describe the adapted algorithm. After some preliminaries a first version of the algorithm is given whose correctness is easily shown. Next, this algorithm is transformed to make it suitable for an ultracomputer.

Definition A sequence $\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}-1}$ of elements from a totally ordered set is bitonic if there exist i and j , $0 \leq i \leq j \leq n-1$, such that either

$$
s_{i} \leq s_{i+1} \leq \ldots \leq s_{j} \text { and } s_{j} \geq s_{j+1} \geq \ldots \geq s_{n-1} \geq s_{0} \geq s_{1} \geq \ldots \geq s_{i},
$$

or

$$
s_{i} \geq s_{i+1} \geq \ldots \geq s_{j} \text { and } s_{j} \leq s_{j+1} \leq \ldots \leq s_{n-1} \leq s_{0} \leq s_{1} \leq \ldots \leq s_{i} .
$$

(If the sequence is made into a cycle by connecting the rear back to the front, this means that both ways of going from s_{i} to s_{j} give an ordered "run.") Note that a sequence of length ≤ 3 is always bitonic.

Bitonic sort hinges on the following.
Lemma 1. Let $\mathrm{s}_{0}, \ldots, \mathrm{~s}_{2 \mathrm{n}-1}$ be bitonic. For $\mathrm{i}=0, \ldots, \mathrm{n}-1$, interchange s_{i} and $\mathrm{s}_{\mathrm{n}+1}$ if $\mathrm{s}_{\mathrm{n}+1}<\mathrm{s}_{\mathrm{i}}$. Then for the resulting sequence, both $\mathrm{s}_{0}, \ldots, \mathrm{~S}_{\mathrm{n}-1}$ and $\mathrm{s}_{\mathrm{n}}, \ldots, \mathrm{s}_{2 \mathrm{n}-1}$ are bitonic. Moreover, each of the elements $\mathrm{s}_{0}, \ldots, \mathrm{~S}_{\mathrm{n}-1}$ is less than or equal to each of the elements $\mathrm{s}_{\mathrm{n}}, \ldots, \mathrm{s}_{2 \mathrm{n}-1}$.

Proof: See Batcher (1968) or Stone (1971). (The proofs given are rather informal. A more formal proof would be elementary but not very enlightening; it would proceed by distinguishing a number of cases.)

The elements to be sorted are stored in an array $a[0: N-1]$, where $N=2^{D}$ for some integer D. The indices of the array will often be written as bitstrings (binary numbers) $\mathrm{b}_{\mathrm{D}-1} \mathrm{~b}_{\mathrm{D}-2} \ldots \mathrm{~b}_{0}$, corresponding to the
integer $\mathrm{b}_{\mathrm{D}-1} 2^{\mathrm{D}-1}+\ldots+\mathrm{b}_{0} 2^{0}$. The notation $\mathrm{b}_{\mathrm{H}: \mathrm{L}}$ denotes the substring $\mathrm{b}_{\mathrm{H}} \mathrm{b}_{\mathrm{H}-1} \ldots \mathrm{~b}_{\mathrm{L}}$. (Note that the subscript runs from high to low; in order to minimize confusion, capital letters will be used for such subscripts.)
Definition. Ω stands for a mapping from the set of substrings $b_{H: L}$ into the set of order relations \leq and \geq, satisfying $\Omega\left(\mathrm{b}_{\mathrm{H}: \mathrm{H}+1}\right)$ is \leq and $\Omega\left(\mathrm{b}_{\mathrm{H}: L+1} 0\right) \neq \Omega\left(\mathrm{b}_{\mathrm{H}: \mathrm{L}+1} 1\right)$. One possible solution is given by

$$
\begin{aligned}
& \Omega\left(\mathrm{b}_{\mathrm{H}: \mathrm{L}}\right) \text { is } \leq \text { if } \mathrm{b}_{\mathrm{H}} \oplus \mathrm{~b}_{\mathrm{H}-1} \oplus \ldots \oplus \mathrm{~b}_{\mathrm{L}}=0, \\
& \Omega\left(\mathrm{~b}_{\mathrm{H}: \mathrm{L}}\right) \text { is } \geq \text { if } \mathrm{b}_{\mathrm{H}} \oplus \mathrm{~b}_{\mathrm{H}-1} \oplus \ldots \oplus \mathrm{~b}_{\mathrm{L}}=1 .
\end{aligned}
$$

The symbol \oplus stands for the "logical sum"' or "exclusive or", so the summation determines the parity of $\mathrm{b}_{\mathrm{H}: \mathrm{L}}$. A simpler solution is given by: $\Omega\left(\mathrm{b}_{\mathrm{H}: \mathrm{L}+1} 0\right)$ is $\leq, \Omega\left(\mathrm{b}_{\mathrm{H}: \mathrm{L}+1} 1\right)$ is \geq. (By convention, $\Omega\left(\mathrm{b}_{\mathrm{H}: \mathrm{H}+1}\right)$ is \leq in either case.)

The assertions of the correctness proof will use three predicates, defined below. Let the array a be (conceptually) divided into $2^{\mathrm{D}-\mathrm{P}}$ segments of 2^{P} elements each. The indices of the elements of a given segment are precisely those which have a common initial bitstring $\mathrm{b}_{\mathrm{D}-1: \mathrm{P}}$.

Definition. Ordered (P) stands for:
within each segment the elements are sorted in $\Omega\left(\mathrm{b}_{\mathrm{D}-1: \mathrm{P}}\right)$-order.
Definition. Bitonic (P) stands for:
each segment forms a bitonic sequence.
Let now each segment be subdivided into $2^{\mathrm{P}-\mathrm{Q}}$ subsegments, or boxes, of 2^{Q} elements each. If the elements of a segment were sorted in some order, each element would end up in its destination box according to that order.

Definition. In_Boxes (P,Q) stands for:
within each segment the elements are (already) in their destination boxes according to $\Omega\left(\mathrm{b}_{\mathrm{D}-1: \mathrm{P}}\right)$ order.

Lemma 2. If $0 \leq \mathrm{P} \leq \mathrm{D}$, then
(1) In_Boxes (P,P);
(2) if In_Boxes ($\mathrm{P}, 0)$, then Ordered (P)
(3) for $\mathrm{P} \geq 1$, if $\operatorname{Ordered}(\mathrm{P}-1)$, then Bitonic (P).

Proof: As to (a), In_Boxes (P, P) means that the boxes coincide with the segments. As there is only one destination box per segment, each element of a segment must be in its destination box. As to (b), if In_Boxes (P, O), the boxes have one element. So if within a segment the elements are in their destination box, they must be in place and each segment is sorted. (Actually, In_Boxes (P, O) is equivalent to Ordered (P).) As to (c), if Ordered ($\mathrm{P}-1$), then for each segment of length 2^{P} the lower half and the upper half are both sorted in $\Omega\left(\mathrm{b}_{\mathrm{D}-1: \mathrm{P}-1}\right)$ - order. For the lower half $\mathrm{b}_{\mathrm{P}-1}=1$, so the upper half is sorted in the reverse order of the order of the lower half. The whole segment is then bitonic.

Definition. $\operatorname{ich}(H: P, Q), 0 \leq Q \leq P \leq H+1 \leq D$, stands for the following action:
for all b , interchange $\mathrm{a}\left[\mathrm{b}\right.$ with $\left.\mathrm{b}_{\mathrm{Q}}=0\right]$ and $\mathrm{a}\left[\mathrm{b}\right.$ with $\left.\mathrm{b}_{\mathrm{Q}}=1\right]$ if they are not in $\Omega\left(\mathrm{b}_{\mathrm{H}: \mathrm{P}}\right)$ - order.
Lemma 3. If $0 \leq \mathrm{Q} \leq \mathrm{P} \leq \mathrm{D}$, then
$\left\{\right.$ Bitonic $\left.(\mathrm{Q}+1) \& \operatorname{In} _\operatorname{Boxes}(\mathrm{P}, \mathrm{Q}+1)\right\}$ ich(D-1:P,Q) $\left\{\operatorname{Bitonic}(\mathrm{Q}) \& \operatorname{In} _\operatorname{Boxes}(\mathrm{P}, \mathrm{Q})\right\}$.
Proof: This lemma is a generalization of Lemma 1 for sequences whose length is a power of two. (Lemma 1 is obtained from Lemma 3 by taking $\mathrm{P}=\mathrm{D}$ and $\mathrm{Q}=\mathrm{D}-1$.) The generalization follows by applying Lemma 1 to each (bitonic) box of length $2^{\mathrm{Q}+1}$ in a segment of length 2^{P}. The boxes are then "refined" by splitting each box into two halves (each of which receives again a bitonic sequence), and its elements are divided over the two new boxes of length 2^{Q} according to $\Omega(\mathrm{D}-1: \mathrm{P})$ - order. Since the elements were already in their destination boxes of length $2^{\mathrm{Q}+1}$, they now reach their destination box of length 2^{Q}.

First version of the algorithm:

```
\(\{\) In_Boxes \((0,0)\)
\{Ordered (0)\}
for \(P=1,2, \ldots, D\) do
    \{Ordered (P-1)\}
    \{Bitonic ( P ) \& In_Boxes ( \(\mathrm{P}, \mathrm{P}\) ) \}
    for \(\mathrm{Q}=\mathrm{P}-1, \mathrm{P}-2, \ldots, 0\) do
        \(\{\) Bitonic \((\mathrm{Q}+1) \&\) In_Boxes \((\mathrm{P}, \mathrm{Q}+1)\}\)
        ich (D-1:P,Q)
        \{Bitonic (Q) \& In_Boxes (P,Q)\}
    end for Q
    \(\{\) In_Boxes (P,0) \}
    \{Ordered (P) \}
end for \(P\)
\(\{\) Ordered (D) \}.
```

Correctness proof: Each of the verification conditions is either trivially satisfied or is an immediate consequence of Lemmas 2 and 3. The final assertion Ordered (D) asserts that the whole array is sorted in \leq - order.

If the operation ich $(D-1: P, Q)$ could be realized in time $\Theta(1)$, the algorithm would take time $\Theta\left(D^{2}\right)$. If the elements of the array a are stored in consecutive processors of an ultracomputer, it is, however, not possible to compare two arbitrary elements immediately, since not all processors are directly connected. Consecutive processors are connected, so operations of the form $\operatorname{ich}(\mathrm{H}: \mathrm{P}, \mathrm{O})$ operate in time $\Theta(1)$. Other connections are the shuffle lines, connecting each processor $\mathrm{b}_{\mathrm{D}-1: 0}$ to the processor $\sigma\left(\mathrm{b}_{\mathrm{D}-1: 0}\right)=\mathrm{b}_{0} \mathrm{~b}_{\mathrm{D}-1: 1}$. Through this connection, the following parallel assignments take time $\Theta(1)$:
shuffle: for all $\mathrm{b}, \mathrm{a}[\mathrm{b}]:=\mathrm{a}[\sigma(\mathrm{b})]$;
unshuffle: for all $\mathrm{b}, \mathrm{a}[\sigma(\mathrm{b})]:=\mathrm{a}[\mathrm{b}]$.
The two operations permute a and are each other's inverse.

Let shuffle ${ }^{\mathrm{Q}}$ stand for the null action if $\mathrm{Q}=0$, and for shuffle ${ }^{\mathrm{Q}-1}$; shuffle if $\mathrm{Q} \geq 1$. So shuffle ${ }^{\mathrm{Q}}$ stands for:

$$
\text { for all } \mathrm{b}, \mathrm{a}[\mathrm{~b}]:=\mathrm{a}\left[\sigma^{\mathrm{Q}}(\mathrm{~b})\right] \text {. }
$$

Let unshuffle ${ }^{\mathrm{Q}}$ be defined similarly.
Lemma 4. ich ($\mathrm{D}-1: \mathrm{P}, \mathrm{Q}$), where $0 \leq \mathrm{Q} \leq \mathrm{P} \leq \mathrm{D}$, is equivalent to

$$
\text { unshuffle }^{\mathrm{Q}} \text {; ich (D-Q-1:P-Q,0); shuffle }{ }^{\mathrm{Q}} \text {. }
$$

Proof: The operation ich(D-1:P,Q) stands for:
for all b , interchange $\mathrm{a}\left[\mathrm{b}\right.$ with $\left.\mathrm{b}_{\mathrm{Q}}=0\right]$ and $\mathrm{a}\left[\mathrm{b}\right.$ with $\left.\mathrm{b}_{\mathrm{Q}}=1\right]$ if they are not in $\Omega\left(\mathrm{b}_{\mathrm{D}-1: \mathrm{P}}\right)$-order.
Using the assignment rule, this is seen to be equivalent to

$$
\begin{aligned}
& \text { for all } \mathrm{b}, \mathrm{a}\left[\sigma^{\mathrm{Q}}(\mathrm{~b})\right]:=\mathrm{a}[\mathrm{~b}]\left(\text { or unshuffle }{ }^{\mathrm{Q}}\right) \text {; } \\
& \text { for all } \mathrm{b} \text { interchange } \mathrm{a}\left[\sigma^{\mathrm{Q}}(\mathrm{~b}) \text { with } \mathrm{b}_{\mathrm{Q}} 0\right] \\
& \text { and } \mathrm{a}\left[\sigma^{\mathrm{Q}}(\mathrm{~b}) \text { with } \mathrm{b}_{\mathrm{Q}}=1\right] \\
& \text { if they are not in } \Omega\left(\mathrm{b}_{\mathrm{D}-1: P}\right) \text { - order; } \\
& \text { for all } \mathrm{b}, \mathrm{a}[\mathrm{~b}]:=\mathrm{a}\left[\sigma^{\mathrm{Q}}(\mathrm{~b})\right] \quad\left(\text { or unshuffle }{ }^{\mathrm{Q}}\right) \text {. }
\end{aligned}
$$

Substituting in the middle part $\sigma^{-\mathrm{Q}}\left(b^{\prime}\right)$ for b, using $b_{R}=\sigma^{-\mathrm{Q}}\left(b^{\prime}\right)^{R}=b^{\prime}{ }_{R-Q}$ for R, we obtain

$$
\begin{aligned}
& \text { for all } \mathrm{b}^{\prime}, \text { interchange } \mathrm{a}\left[\mathrm{~b}^{\prime} \text { with } \mathrm{b}^{\prime}{ }_{0}=0\right] \\
& \text { and } \mathrm{a}\left(\mathrm{~b}^{\prime} \text { with } \mathrm{b}^{\prime}{ }_{0}=1\right] \\
& \text { if they are not in } \Omega\left(\mathrm{b}_{\mathrm{D}-\mathrm{Q}-1: \mathrm{P}-\mathrm{Q}}\right) \text {-order. }
\end{aligned}
$$

This is exactly the meaning of ich(D-Q-1:P-Q,0).
Using Lemma 4, the algorithm may be transformed to:

```
for P=1,2,\ldots,D do
    for Q = P-1,P-2,\ldots,0 do
            unshuffle}\mp@subsup{}{}{\textrm{Q}}
            ich (D-Q-1:P-Q,0);
            shuffle}\mp@subsup{}{}{Q
        end for Q
end for P.
```

This intermediate version would require time $\theta\left(D^{3}\right)$.
Lemma 5. For $\mathrm{K} \geq 0$

$$
\begin{aligned}
& \mathrm{LOOP}_{\mathrm{K}} \equiv \text { for } \mathrm{Q}=\mathrm{K}, \mathrm{~K}-1, \ldots, 0 \text { do unshuffle }{ }^{\mathrm{Q}} ; \mathrm{S}(\mathrm{Q}) \text {; shuffle }{ }^{\mathrm{Q}} \text { end. } \\
& \text { where } S(Q) \text { is any statement depending on } \mathrm{Q} \text {, is equivalent to } \\
& \text { unshuffle }{ }^{\mathrm{K}+1} ; \mathrm{LOOP}{ }_{\mathrm{K}}, \text { where } \\
& \mathrm{LOOP}^{\prime}{ }_{\mathrm{K}} \equiv \text { for } \mathrm{Q}=\mathrm{K}, \mathrm{~K}-1, \ldots, 0 \text { do shuffle; } \mathrm{S}(\mathrm{Q}) \text { end. }
\end{aligned}
$$

Proof: By induction on $\mathrm{K} . \mathrm{LOOP}_{0}$ and unshuffle; $\mathrm{LOOP}_{0}{ }_{0}$ reduce to an obvious equivalence. For larger K, we see that $\mathrm{LOOP}_{\mathrm{K}}$ is equivalent to

$$
\text { unshuffle }^{\mathrm{K}} ; \mathrm{S}(\mathrm{~K}) ; \text { shuffle }^{\mathrm{K}} ; \mathrm{LOOP}_{\mathrm{K}-1}
$$

by moving the first execution of the loop body outside. By the inductive hypothesis, this is equivalent to

$$
\text { unshuffle }^{\mathrm{K}} ; \mathrm{S}(\mathrm{~K}) ; \text { shuffle }^{\mathrm{K}} ; \text { unshuffle }^{\mathrm{K}} ; \text { LOOP }^{\mathrm{K}-1}
$$

which again is equivalent to

$$
\text { unshuffle }{ }^{\mathrm{K}+1} ; \text { shuffle; S(K); LOOP }{ }_{\mathrm{K}-1} .
$$

Moving shuffle; $\mathrm{S}(\mathrm{K})$ inside the loop, we obtain

$$
\text { unshuffle }{ }^{\mathrm{K+1}} ; \text { LOOP }_{\mathrm{K}} .
$$

By this lemma, we finally obtain

Algorithm for bitonic sort on ultracomputers

```
for P=1,2,\ldots,D do
    unshuffle}\mp@subsup{}{}{P}
    for Q = P-1,P-2,\ldots,0 do
            shuffle;
            ich (D-Q-1:P-Q,0)
    end for Q
end for P.
```

This algorithm clearly takes time $\theta\left(D^{2}\right)=\theta\left((\log N)^{2}\right)$.
Remark. The idea of using shuffles to implement bitonic sort is described in Stone [1971].

2. References

K.E. Batcher [1968] Sorting networks and their applications. Proc. AFIPS Spring Joint Computer Conf., pp.307-314
J.T.Schwartz [1979] Ultracomputers. Preprint, Computer Science Department Courant Institute of Mathematical Sciences, New York University, New York.
H.S.Stone [1971] Parallel processing with the perfect shuffle. IEEE Trans. on Computers, v. C-20, pp. 153-161.

