Bitonic Sort on Ultracomputers by Lambert Meertens†

Ultracomputer Research Laboratory Courant Institute of Mathematical Sciences 715 Broadway, 10th Floor New York, NY 10003 Ultracomputer Note #1

March, 1979

† Matematisch Centrum, Amsterdam

ABSTRACT

Batcher's *bitonic sort* (cf. Knuth, v. III, pp. 232 ff) is a sorting network, capable of sorting n inputs in $\Theta((\log n)^2)$ stages. When adapted to conventional computers, it gives rise to an algorithm that runs in time $\Theta(n(\log n)^2)$. The method can also be adapted to *ultracomputers* (Schwartz [1979]) to exploit their high degree of parallelism. The resulting algorithm will take time $\Theta((\log N)^2)$ for ultracomputers of "size" N. The implicit constant factor is low, so that even for moderate values of N the ultracomputer architecture performs faster than the $\Theta(N \log N)$ time conventional architecture can achieve. The purpose of this note is to describe the adapted algorithm. After some preliminaries a first version of the algorithm is given whose correctness is easily shown. Next, this algorithm is transformed to make it suitable for an ultracomputer.

1. Introduction

Batcher's *bitonic sort* (cf. Knuth, v. III, pp. 232 ff) is a sorting network, capable of sorting n inputs in $\Theta((\log n)^2)$ stages. When adapted to conventional computers, it gives rise to an algorithm that runs in time $\Theta(n(\log n)^2)$. The method can also be adapted to *ultracomputers* (Schwartz [1979]) to exploit their high degree of parallelism. The resulting algorithm will take time $\Theta((\log N)^2)$ for ultracomputers of "size" N. The implicit constant factor is low, so that even for moderate values of N the ultracomputer architecture performs faster than the $\Theta(N \log N)$ time conventional architecture can achieve. The purpose of this note is to describe the adapted algorithm. After some preliminaries a first version of the algorithm is given whose correctness is easily shown. Next, this algorithm is transformed to make it suitable for an ultracomputer.

Definition A sequence $s_0, ..., s_{n-1}$ of elements from a totally ordered set is *bitonic* if there exist i and j, $0 \le i \le j \le n-1$, such that either

$$s_i \le s_{i+1} \le \dots \le s_j$$
 and $s_j \ge s_{j+1} \ge \dots \ge s_{n-1} \ge s_0 \ge s_1 \ge \dots \ge s_i$,

or

 $s_i \ge s_{i+1} \ge \dots \ge s_i$ and $s_i \le s_{i+1} \le \dots \le s_n \le s_0 \le s_1 \le \dots \le s_i$.

(If the sequence is made into a cycle by connecting the rear back to the front, this means that both ways of going from s_i to s_i give an ordered "run.") Note that a sequence of length ≤ 3 is always bitonic.

Bitonic sort hinges on the following.

Lemma 1. Let $s_0,...,s_{2n-1}$ be bitonic. For i = 0,...,n-1, interchange s_i and s_{n+1} if $s_{n+1} < s_i$. Then for the resulting sequence, both $s_0,...,s_{n-1}$ and $s_n,...,s_{2n-1}$ are bitonic. Moreover, each of the elements $s_0,...,s_{n-1}$ is less than or equal to each of the elements $s_n,...,s_{2n-1}$.

Proof: See Batcher (1968) or Stone (1971). (The proofs given are rather informal. A more formal proof would be elementary but not very enlightening; it would proceed by distinguishing a number of cases.)

The elements to be sorted are stored in an array a[0:N-1], where N=2^D for some integer D. The indices of the array will often be written as bitstrings (binary numbers) $b_{D-1}b_{D-2}...b_0$, corresponding to the

integer $b_{D-1}^{2D-1} + ... + b_0^{20}^{0}$. The notation $b_{H:L}$ denotes the substring $b_H^{} b_{H-1}^{} ... b_L^{}$. (Note that the subscript runs from high to low; in order to minimize confusion, capital letters will be used for such subscripts.)

Definition. Ω stands for a mapping from the set of substrings $b_{H:L}$ into the set of order relations \leq and \geq , satisfying $\Omega(b_{H:H+1})$ is \leq and $\Omega(b_{H:L+1}0) \neq \Omega(b_{H:L+1}1)$. One possible solution is given by

$$\begin{split} \Omega & (\mathbf{b}_{\mathrm{H}:\mathrm{L}}) \text{ is } \leq \mathrm{if } \mathbf{b}_{\mathrm{H}} \oplus \mathbf{b}_{\mathrm{H}-1} \oplus ... \oplus \mathbf{b}_{\mathrm{L}} = \mathbf{0}, \\ \Omega & (\mathbf{b}_{\mathrm{H}:\mathrm{L}}) \text{ is } \geq \mathrm{if } \mathbf{b}_{\mathrm{H}} \oplus \mathbf{b}_{\mathrm{H}-1} \oplus ... \oplus \mathbf{b}_{\mathrm{L}} = \mathbf{1}. \end{split}$$

The symbol \oplus stands for the "logical sum" or "exclusive or", so the summation determines the parity of $b_{H:L}$. A simpler solution is given by: $\Omega(b_{H:L+1}^{-0})$ is \leq , $\Omega(b_{H:L+1}^{-1})$ is \geq . (By convention, $\Omega(b_{H:H+1})$ is \leq in either case.)

The assertions of the correctness proof will use three predicates, defined below. Let the array a be (conceptually) divided into 2^{D-P} segments of 2^{P} elements each. The indices of the elements of a given segment are precisely those which have a common initial bitstring $b_{D,1-P}$.

Definition. Ordered (P) stands for:

within each segment the elements are sorted in $\Omega(b_{D_1,p})$ -order.

Definition. Bitonic (P) stands for:

each segment forms a bitonic sequence.

Let now each segment be subdivided into 2^{P-Q} subsegments, or *boxes*, of 2^Q elements each. If the elements of a segment were sorted in some order, each element would end up in its *destination box* according to that order.

Definition. In Boxes (P,Q) stands for:

within each segment the elements are (already) in their destination boxes according to $\Omega(b_{D-1:P})$ - order.

Lemma 2. *If* $0 \le P \le D$, *then*

- (1) In Boxes (P,P);
- (2) *if* In Boxes (P,0), *then* Ordered (P)
- (3) for $P \ge 1$, if Ordered (P-1), then Bitonic(P).

Proof: As to (a), In_Boxes (P,P) means that the boxes coincide with the segments. As there is only one destination box per segment, each element of a segment must be in its destination box. As to (b), if In_Boxes (P,O), the boxes have one element. So if within a segment the elements are in their destination box, they must be in place and each segment is sorted. (Actually, In_Boxes (P,O) is equivalent to Ordered (P).) As to (c), if Ordered (P-1), then for each segment of length 2^{P} the lower half and the upper half are both sorted in $\Omega(b_{D-1:P-1})$ - order. For the lower half $b_{P-1} = 1$, so the upper half is sorted in the reverse order of the lower half. The whole segment is then bitonic.

Definition. ich(H:P,Q), $0 \le Q \le P \le H+1 \le D$, stands for the following action:

for all b, interchange a[b with $b_0=0$] and a[b with $b_0=1$] if they are not in $\Omega(b_{H\cdot P})$ - order.

Lemma 3. *If* $0 \le Q \le P \le D$, *then*

{Bitonic (Q+1)&In_Boxes(P,Q+1)} ich(D-1:P,Q) {Bitonic(Q)&In_Boxes(P,Q)}.

Proof: This lemma is a generalization of Lemma 1 for sequences whose length is a power of two. (Lemma 1 is obtained from Lemma 3 by taking P=D and Q=D -1.) The generalization follows by applying Lemma 1 to each (bitonic) box of length 2^{Q+1} in a segment of length 2^{P} . The boxes are then "refined" by splitting each box into two halves (each of which receives again a bitonic sequence), and its elements are divided over the two new boxes of length 2^{Q} according to $\Omega(D-1:P)$ - order. Since the elements were already in their destination boxes of length 2^{Q+1} , they now reach their destination box of length 2^{Q} .

First version of the algorithm:

```
 \{ In\_Boxes (0,0) \\ \{ Ordered (0) \} \\ \text{for } P = 1,2,...,D \text{ do} \\ \{ Ordered (P-1) \} \\ \{ Bitonic (P) \& In\_Boxes (P,P) \} \\ \text{ for } Q = P - 1, P - 2,...,0 \text{ do} \\ \{ Bitonic (Q+1) \& In\_Boxes (P,Q+1) \} \\ ich (D-1:P,Q) \\ \{ Bitonic (Q) \& In\_Boxes (P,Q) \} \\ \text{ end for } Q \\ \{ In\_Boxes (P,0) \} \\ \{ Ordered (P) \} \\ \text{ end for } P \\ \{ Ordered (D) \}.
```

Correctness proof: Each of the verification conditions is either trivially satisfied or is an immediate consequence of Lemmas 2 and 3. The final assertion Ordered (D) asserts that the whole array is sorted in \leq - order.

If the operation ich(D-1:P,Q) could be realized in time $\Theta(1)$, the algorithm would take time $\Theta(D^2)$. If the elements of the array a are stored in consecutive processors of an ultracomputer, it is, however, not possible to compare two arbitrary elements immediately, since not all processors are directly connected. Consecutive processors *are* connected, so operations of the form ich(H:P,O) operate in time $\Theta(1)$. Other connections are the *shuffle* lines, connecting each processor $b_{D-1:0}$ to the processor $\sigma(b_{D-1:0}) = b_0 b_{D-1:1}$. Through this connection, the following *parallel* assignments take time $\Theta(1)$:

shuffle: for all b, $a[b] := a[\sigma(b)];$ unshuffle: for all b, $a[\sigma(b)] := a[b].$

The two operations permute a and are each other's inverse.

Let shuffle^Q stand for the null action if Q=0, and for shuffle ^{Q-1}; shuffle if $Q \ge 1$. So shuffle^Q stands for:

for all b,
$$a[b] := a[\sigma^Q(b)]$$
.

Let unshuffle ^Q be defined similarly.

Lemma 4. ich (D-1:P,Q), where $0 \le Q \le P \le D$, is equivalent to

unshuffle^Q; ich (D-Q-1:P-Q,0); shuffle^Q.

Proof: The operation ich(D-1:P,Q) stands for:

for all b, interchange a[b with $b_0=0$] and a[b with $b_0=1$] if they are not in $\Omega(b_{D-1:P})$ -order.

Using the assignment rule, this is seen to be equivalent to

for all b, $a[\sigma^Q(b)] := a[b]$ (or unshuffle ^Q); for all b, interchange $a[\sigma^Q(b) \text{ with } b_Q 0]$ and $a[\sigma^Q(b) \text{ with } b_Q=1]$ if they are not in $\Omega(b_{D-1:P})$ - order; for all b, $a[b] := a[\sigma^Q(b)]$ (or unshuffle ^Q).

Substituting in the middle part $\sigma^{-Q}(b')$ for b, using $b_R = \sigma^{-Q}(b')^R = b'_{R-Q}$ for R, we obtain

for all b', interchange a[b' with b'_0 =0] and a(b' with b'_0 = 1] if they are not in $\Omega(b_{D-O-1:P-O})$ -order.

This is exactly the meaning of ich(D-Q-1:P-Q,0).

Using Lemma 4, the algorithm may be transformed to:

```
for P = 1,2,...,D do
for Q = P-1,P-2,...,0 do
unshuffle<sup>Q</sup>;
ich (D-Q-1:P-Q,0);
shuffle <sup>Q</sup>
end for Q
end for P.
```

This intermediate version would require time $\theta(D^3)$.

Lemma 5. *For* K≥0

LOOP _K = for Q=K,K-1,...,0 do unshuffle^Q; S(Q); shuffle^Q end. where S(Q) is any statement depending on Q, is equivalent to unshuffle ^{K+1};LOOP'_K, where LOOP'_K = for Q = K,K-1,...,0 do shuffle; S(Q) end.

Proof: By induction on K. $LOOP_0$ and unshuffle; $LOOP'_0$ reduce to an obvious equivalence. For larger K, we see that $LOOP_K$ is equivalent to

unshuffle^K; S(K); shuffle^K; LOOP_{K-1}

by moving the first execution of the loop body outside. By the inductive hypothesis, this is equivalent to 1 - 52 K - 1 - 52 K -

 $unshuffle^{K}$; S(K); $shuffle^{K}$; $unshuffle^{K}$; LOOP'_{K-1}

which again is equivalent to

unshuffle^{K+1}; shuffle; S(K); LOOP'_{K-1}.

Moving shuffle; S(K) inside the loop, we obtain

unshuffle^{K+1}; LOOP'_K.

By this lemma, we finally obtain

Algorithm for bitonic sort on ultracomputers

```
for P = 1,2,...,D do
    unshuffle<sup>P</sup>;
    for Q = P-1,P-2,...,0 do
        shuffle;
        ich (D-Q-1:P-Q,0)
    end for Q
end for P.
```

This algorithm clearly takes time $\theta(D^2) = \theta((\log N)^2)$.

Remark. The idea of using shuffles to implement bitonic sort is described in Stone [1971].

2. References

K.E. Batcher [1968] *Sorting networks and their applications*. Proc. AFIPS Spring Joint Computer Conf., pp.307-314

J.T.Schwartz [1979] *Ultracomputers*. Preprint, Computer Science Department Courant Institute of Mathematical Sciences, New York University, New York.

H.S.Stone [1971] *Parallel processing with the perfect shuffle*. IEEE Trans. on Computers, v. C-20, pp. 153-161.