Map-functor Factorized

Maarten Fokkinga, CWI & UT, Lambert Meertens, CWI & RUU

February 18, 1991

It is well known that any initial data type comes equipped with a so-called map-functor. We show that any such map-functor is the composition of two functors, one of which is —closely related to— the data type functor, and the other is —closely related to— the function μ (that for any functor F yields an initial F-algebra, if it exists).

Notation

Let K be a category, and $F : K \to K$ be an endo-functor on K. Then μF denotes "the" initial F-algebra over K, if it exists. Further, $\mathcal{F}(K)$ is the category of endo-functors on K whose morphisms are, as usual, natural transformations; and $\mathcal{F}_{\mu}(K)$ denotes the full sub-category of $\mathcal{F}(K)$ whose objects are those functors F for which μF exists.

For mono-functors F, G and bi-functor \dagger we define the composition FG by x(FG) = (xF)G, and we denote by F \dagger G the mono-functor defined by $x(F \dagger G) = xF \dagger xG$. Object A when used as a functor is defined by xA = A for any object x and $fA = id_A$ for any morphism f. (An alternative notation for $A \dagger I$ is the 'section' $A \dagger$.) In the examples we assume that $X, \dot{\pi}, \dot{\pi}, \dot{\pi}, \Delta$ form a product, and $+, \dot{\iota}, \dot{\iota}, \nabla$ a co-product.

Making μ into a functor

We define a functor $_{-}^{\mu} : \mathcal{F}_{\mu}(K) \to K$ that is closely related to μ , and has therefore a closely related notation. For any $\mathsf{F}, \mathsf{G} \in Obj(\mathcal{F}_{\mu}(K))$ and $\phi : \mathsf{F} \to \mathsf{G}$ we put

- (1) F^{μ} = target of μF
- (2) $\phi^{\mu} = ([F | \phi; \mu G] : F^{\mu} \rightarrow G^{\mu}.$

Notice that by (1) we have $\mu F : F^{\mu}F \to F^{\mu}$. (Some authors in the Squiggol community are used to define $(L, in) = (F^{\mu}, \mu F)$.) The instance of ϕ that has to be taken in the right-hand side of (2) is $\phi_{G^{\mu}} : G^{\mu}F \to G^{\mu}G$; the typing $\phi^{\mu} : F^{\mu} \to G^{\mu}$ is then easily verified. In order to prove that $_{\mu}$ satisfies the two other functor axioms, we present a lemma first.

(3) Lemma For $\phi : F \rightarrow G$ and $\psi : AG \rightarrow A$,

 $\big(\!\!\big[\mathsf{F} \mid \phi;\psi\big]\!\!\big) = \big(\!\!\big[\phi;\mu\mathsf{G}\big]\!\!\big];\big(\!\!\big[\mathsf{G} \mid \psi\big]\!\!\big].$

Proof (Within this proof we use the law names and notation of Fokkinga & Meijer [1]. The reader may easily verify the steps by unfolding $f: \phi \xrightarrow{\mathsf{F}} \psi$ into $\phi; f = f_{\mathsf{F}}; \psi$, and using $\phi: \mathsf{F} \to \mathsf{G} \equiv (\forall f :: f_{\mathsf{F}}; \phi = \phi; f_{\mathsf{G}}).)$

required equality

(End of proof)

It is now immediate that $_{-}^{\mu}$ distributes over composition. For $\phi: F \to G$ and $\psi: G \to H$ we have $\phi; \psi: F \to H$ and

$$= \begin{array}{l} (\phi;\psi)^{\mu} \\ (F|\ \phi;\psi;\mu H) \\ = & \text{Lemma (3), noting that } \psi;\mu H:H^{\mu}G \to H^{\mu} \\ = & \left(F|\ \phi;\mu G\right);(G|\ \psi;\mu H) \\ \phi^{\mu};\psi^{\mu}. \end{array}$$

It is also clear that $id^{\mu} = id$. Thus, $_{-}^{\mu}$ is a functor, $_{-}^{\mu} : \mathcal{F}_{\mu}(K) \to K$.

(4) **Remark** Another corollary of the lemma is this: for $\phi : F \to G$ we have that ϕ^{μ} , f is a catamorphism whenever f is a catamorphism. (The typing determines that the former is an F-catamorphism, and the latter a G-catamorphism.)

Let us look at some $\phi : \mathbf{F} \rightarrow \mathbf{G}$ and see what ϕ^{μ} is.

Example Probably the most simple, non-trivial, choice is $F, G := \mathbf{1} + AXI$, $\mathbf{1} + I$ and $\phi := id + \pi$. Notice that $F^{\mu} =$ the (set L of) cons-lists and $\mu F = nil \nabla cons$, $G^{\mu} =$ the (set \mathbb{N} of) naturals and $\mu G = zero \nabla suc$. We find

$$\phi^{\mu} = ([\mathsf{F} | id + \pi; zero \lor suc]) = size : L \to \mathbb{N}.$$

Example Another non-trivial choice is F = G = A + II, so that $F^{\mu} = G^{\mu} =$ the (set of) non-empty binary join trees over A, and $\mu F = tip \lor join$. Apart from the trivial $id : F \to G$, we have $\phi := id + \bowtie : F \to G$ where $\bowtie = \pi \land \pi$. We have

$$\phi^{\mu} = (id + \bowtie; tip \lor join) = \bowtie / = reverse.$$

Since $_{\mu}$ is a functor, we have a simple proof that *reverse* is its own inverse:

$$= \frac{reverse; reverse}{\phi^{\mu}; \phi^{\mu}}$$

$$= \quad \text{functor axiom}$$

$$(\phi; \phi)^{\mu}$$

$$= \quad \text{easy: } \bowtie; \bowtie = id$$

$$= \frac{id^{\mu}}{id.}$$

Notice also that by Remark (4), reverse: f is a catamorphism whenever f is. \Box

Example Let \dagger be a bi-functor and let $F = A \dagger I$ and $G = 1 \dagger I$. Take $\phi = ! \dagger id : A \dagger I \rightarrow 1 \dagger I$. Then

 $\phi^{\mu} = ([A \dagger I] ! \dagger id; \mu(1 \dagger I)] = shape (= !-map).$

Factorizing map-functors

Let \dagger be any bi-functor for which $\mu(A \dagger I)$ exists for all A. Recall that the map-functor induced by \dagger , $\underline{\ }^{\varpi}$ say, is defined by

for $f: A \to B$. We shall now define a functor $f: K \to \mathcal{F}_{\mu}(K)$ in such a way that composed with $f^{\mu}: \mathcal{F}_{\mu}(K) \to K$ it equals the map-functor $f^{\varpi}: K \to K$. To this end define

 $\begin{array}{rcl} A^{\dagger} &=& A \dagger I \\ f^{\dagger} &=& f \dagger i d &:& A \dagger I \rightarrow B \dagger I \quad (\text{with } (f \dagger i d)_{C} = f \dagger i d_{C}) \end{array}$

for any $f : A \to B$. (That f^{\dagger} is a natural transformation is easily verified; it also follows from laws NTRF TRIV, NTRF ID, NTRF BI-DISTR from Fokkinga & Meijer [1].) Indeed

$$A^{\dagger \mu} = (A \dagger I)^{\mu} = A^{\varpi}$$

$$f^{\dagger \mu} = (f \dagger id)^{\mu} = ([A \dagger I] \ f \dagger id; \mu(B \dagger I)]) = f^{\varpi}.$$

So $\varpi = \dagger \mu$.

Remark It can be shown that $_$ [†] is just $curry(\dagger)$. (Here $curry(_)$ is the well-defined functor from the category $\mathbf{A} \times \mathbf{B} \to \mathbf{C}$ to the category $\mathbf{A} \to (\mathbf{B} \to \mathbf{C})$, where each arrow denotes a category of functors with natural transformations as morphisms.) Thus, given bi-functor \dagger , we can express its map-functor without further auxiliary definitions as $curry(\dagger)$ composed with μ .

References

[1] M.M. Fokkinga and E. Meijer. Program calculation properties of continuous algebras. December 1990. CWI, Amsterdam.