Map-functor Factorized

Maarten Fokkinga, CWI \& UT, Lambert Meertens, CWI \& RUU
February 18, 1991

It is well known that any initial data type comes equipped with a so-called map-functor. We show that any such map-functor is the composition of two functors, one of which is -closely related to- the data type functor, and the other is -closely related to- the function μ (that for any functor F yields an initial F -algebra, if it exists).

Notation

Let K be a category, and $\mathrm{F}: K \rightarrow K$ be an endo-functor on K. Then $\mu \mathrm{F}$ denotes "the" initial F -algebra over K, if it exists. Further, $\mathcal{F}(K)$ is the category of endo-functors on K whose morphisms are, as usual, natural transformations; and $\mathcal{F}_{\mu}(K)$ denotes the full sub-category of $\mathcal{F}(K)$ whose objects are those functors F for which $\mu \mathrm{F}$ exists.

For mono-functors F, G and bi-functor \dagger we define the composition FG by $x(\mathrm{FG})=(x \mathrm{~F}) \mathrm{G}$, and we denote by $\mathrm{F} \dagger \mathrm{G}$ the mono-functor defined by $x(\mathrm{~F} \dagger \mathrm{G})=x \mathrm{~F} \dagger x \mathrm{G}$. Object A when used as a functor is defined by $x A=A$ for any object x and $f A=i d_{A}$ for any morphism f. (An alternative notation for $A \dagger \mathrm{I}$ is the 'section' $A \dagger$.) In the examples we assume that $X, \grave{\pi}, \dot{\pi}, \Delta$ form a product, and $+, i, i, v$ a co-product.

Making μ into a functor

We define a functor ${ }_{-}^{\mu}: \mathcal{F}_{\mu}(K) \rightarrow K$ that is closely related to μ, and has therefore a closely related notation. For any $\mathrm{F}, \mathrm{G} \in \operatorname{Obj}\left(\mathcal{F}_{\mu}(K)\right)$ and $\phi: \mathrm{F} \rightarrow \mathrm{G}$ we put
(1) $\mathrm{F}^{\mu}=$ target of $\mu \mathrm{F}$
(2) $\phi^{\mu}=(\mathrm{F} \mid \phi ; \mu \mathrm{G}): \mathrm{F}^{\mu} \rightarrow \mathrm{G}^{\mu}$.

Notice that by (1) we have $\mu \mathrm{F}: \mathrm{F}^{\mu} \mathrm{F} \rightarrow \mathrm{F}^{\mu}$. (Some authors in the Squiggol community are used to define $(L, i n)=\left(\mathrm{F}^{\mu}, \mu \mathrm{F}\right)$.) The instance of ϕ that has to be taken in the right-hand side of (2) is $\phi_{G^{\mu}}: \mathrm{G}^{\mu} \mathrm{F} \rightarrow \mathrm{G}^{\mu} \mathrm{G}$; the typing $\phi^{\mu}: \mathrm{F}^{\mu} \rightarrow \mathrm{G}^{\mu}$ is then easily verified. In order to prove that ${ }^{\mu}$ satisfies the two other functor axioms, we present a lemma first.
(3) Lemma For $\phi: \mathrm{F} \rightarrow \mathrm{G}$ and $\psi: A \mathrm{G} \rightarrow A$,

$$
(\mathbb{F} \mid \phi ; \psi)=(\phi ; \mu \mathrm{G}) ;(\mathrm{G} \mid \psi) .
$$

Proof (Within this proof we use the law names and notation of Fokkinga \& Meijer [1]. The reader may easily verify the steps by unfolding $f: \phi \stackrel{\mathrm{F}}{\rightarrow} \psi$ into $\phi ; f=f_{\mathrm{F}} ; \psi$, and using $\phi: F \rightarrow G \equiv(\forall f:: f F ; \phi=\phi ; f G)$.

$$
\begin{aligned}
& \text { required equality } \\
& \Leftarrow \quad \text { Fusion } \\
& (\mathrm{G} \mid \psi): \phi ; \mu \mathrm{G} \xrightarrow{\mathrm{~F}} \phi ; \psi \\
& \Leftarrow \quad \text { Ntrf то Номо, } \phi: \mathrm{F} \rightarrow \mathrm{G} \\
& (\mathrm{G} \mid \psi): \mu \mathrm{G} \xrightarrow{\mathrm{G}} \psi \\
& \equiv \text { Cata Номо } \\
& \text { true. }
\end{aligned}
$$

(End of proof)
It is now immediate that ${ }_{-}^{\mu}$ distributes over composition. For $\phi: \mathrm{F} \rightarrow \mathrm{G}$ and $\psi: \mathrm{G} \rightarrow \mathrm{H}$ we have $\phi ; \psi: \mathrm{F} \rightarrow \mathrm{H}$ and

$$
\begin{aligned}
& =\begin{array}{l}
(\phi ; \psi)^{\mu} \\
=(\mathrm{F} \mid \phi ; \psi ; \mu \mathrm{H}) \\
=\quad \text { Lemma (3), noting that } \psi ; \mu \mathrm{H}: \mathrm{H}^{\mu} \mathrm{G} \rightarrow \mathrm{H}^{\mu} \\
=(\mathrm{F} \mid \phi ; \mu \mathrm{G}) ;(\mathrm{G} \mid \psi ; \mu \mathrm{H}) \\
\phi^{\mu} ; \psi^{\mu} .
\end{array}
\end{aligned}
$$

It is also clear that $i d^{\mu}=i d$. Thus, ${ }_{-}^{\mu}$ is a functor, ${ }_{-}^{\mu}: \mathcal{F}_{\mu}(K) \rightarrow K$.
(4) Remark Another corollary of the lemma is this: for $\phi: \mathrm{F} \rightarrow \mathrm{G}$ we have that $\phi^{\mu} ; f$ is a catamorphism whenever f is a catamorphism. (The typing determines that the former is an f-catamorphism, and the latter a G-catamorphism.)

Let us look at some $\phi: F \rightarrow G$ and see what ϕ^{μ} is.
Example Probably the most simple, non-trivial, choice is $\mathrm{F}, \mathrm{G}:=\mathbf{1}+A X_{\mathrm{I}}, 1+\mathrm{I}$ and ϕ $:=$ id $+\dot{\pi}$. Notice that $\mathrm{F}^{\mu}=$ the (set L of) cons-lists and $\mu \mathrm{F}=$ nil ∇ cons, $\mathrm{G}^{\mu}=$ the (set \mathbb{N} of) naturals and $\mu \mathrm{G}=$ zero ∇ suc. We find

$$
\phi^{\mu}=(\mathbb{F} \mid \text { id }+\dot{\pi} ; \text { zero } \nabla \text { suc })=\text { size }: L \rightarrow \mathbf{N} .
$$

Example Another non-trivial choice is $F=G=A+\mathbb{I}$, so that $\mathrm{F}^{\mu}=\mathrm{G}^{\mu}=$ the (set of) non-empty binary join trees over A, and $\mu \mathrm{F}=\operatorname{tip} \nabla$ join. Apart from the trivial id: $\mathrm{F} \rightarrow \mathrm{G}$, we have $\phi:=i d+\bowtie: \mathrm{F} \rightarrow \mathrm{G}$ where $\bowtie=\dot{\pi} \Delta \grave{\pi}$. We have

$$
\phi^{\mu}=(\text { id }+\bowtie i \text { tip } \nabla \text { join } \rrbracket=\bowtie /=\text { reverse. }
$$

Since ${ }^{\mu}$ is a functor, we have a simple proof that reverse is its own inverse:

$$
\left.\begin{array}{rl}
= & \text { reverse } ; \text { reverse } \\
\phi^{\mu} ; \phi^{\mu}
\end{array}\right) \quad \text { functor axiom } .
$$

Notice also that by Remark (4), reverse; f is a catamorphism whenever f is.
Example Let \dagger be a bi-functor and let $\mathrm{F}=A \dagger_{\mathrm{I}}$ and $\mathrm{G}=\mathbf{1} \dagger \mathrm{I}$. Take $\phi=!\dagger i d: A \dagger_{\mathrm{I}} \rightarrow \mathbf{1} \dagger_{\mathrm{I}}$. Then

$$
\phi^{\mu}=(A \dagger \mathrm{I} \mid!\dagger i d ; \mu(\mathbf{1} \dagger \mathrm{I})=\text { shape }(=\text { !-map })
$$

Factorizing map-functors

Let \dagger be any bi-functor for which $\mu(A \dagger \mathrm{I})$ exists for all A. Recall that the map-functor induced by $\dagger,{ }^{w}$ say, is defined by

$$
\begin{aligned}
& A^{w}=\text { target of } \mu(A \dagger \mathrm{I}) \\
& f^{w}=\left(A \dagger \mathrm{I} \mid f \dagger i d ; \mu(B \dagger \mathrm{I}) \downarrow: \quad A^{w} \rightarrow B^{w}\right.
\end{aligned}
$$

for $f: A \rightarrow B$. We shall now define a functor ${ }^{\dagger}: K \rightarrow \mathcal{F}_{\mu}(K)$ in such a way that composed with ${ }_{-}^{\mu}: \mathcal{F}_{\mu}(K) \rightarrow K$ it equals the map-functor ${ }_{-}{ }^{w}: K \rightarrow K$. To this end define

$$
\begin{aligned}
A^{\dagger} & =A \dagger \mathrm{I} \\
f^{\dagger} & =f \dagger i d: A \dagger \mathrm{I} \rightarrow B \dagger \mathrm{I} \quad\left(\text { with }(f \dagger i d)_{C}=f \dagger i d_{C}\right)
\end{aligned}
$$

for any $f: A \rightarrow B$. (That f^{\dagger} is a natural transformation is easily verified; it also follows from laws Ntrf Triv, Ntrf Id, Ntrf Bi-Distr from Fokkinga \& Meijer [1].) Indeed

$$
\begin{aligned}
& A^{\dagger \mu}=(A \dagger \mathrm{I})^{\mu}=A^{w} \\
& f^{\dagger \mu}=(f \dagger i d)^{\mu}=\left(A \dagger \mathrm{I} \mid f \dagger i d ; \mu(B \dagger \mathrm{I}) \downarrow=f^{w} .\right.
\end{aligned}
$$

So $\varpi=\dagger \mu$.
Remark It can be shown that ${ }_{-}$tis just $\operatorname{curry}(\dagger)$. (Here $\operatorname{curry}\left({ }_{-}\right)$is the well-defined functor from the category $\mathbf{A} \times \mathbf{B} \rightarrow \mathbf{C}$ to the category $\mathbf{A} \rightarrow(\mathbf{B} \rightarrow \mathbf{C})$, where each arrow denotes a category of functors with natural transformations as morphisms.) Thus, given bi-functor \dagger, we can express its map-functor without further auxiliary definitions as $\operatorname{curry}(\dagger)$ composed with ${ }^{\mu}$.

References

[1] M.M. Fokkinga and E. Meijer. Program calculation properties of continuous algebras. December 1990. CWI, Amsterdam.

