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Manna's theorem on (partial) correctness of programs essentially states that in the 
statement of the Floyd inductive assertion method, "A flow diagram is correct with 
respect to given initial and final assertions if suitable intermediate assertions can be 
found," we may replace "if" by "if and only if." In other words, the method is complete. 
A precise formulation and proof for the flow chart case is given. The theorem is then 
extended to programs with (parameterless) recursion; for this the structure of the 
intermediate assertions has to be refined considerably. The result is used to provide 
a characterization of recursion which is an alternative to the minimal fixed point 
characterization, and to clarify the relationship between partial and total correctness. 
Important tools are the relational representation of programs, and Scott's induction. 

1. INTRODUCTION 

Our paper describes an investigation in the area of the foundations of program 
proving. For the statement of the problem we are concerned with, some history is 

needed. 
In  [6], Floyd proposed a technique for proving program correctness which later 

became known as the inductive assertion method. Let us call a program P correct with 
respect to assertions p, q iff for all states x, y, if x satisfies p, and x is mapped by P 
onto y, then y satisfies q. Floyd's technique can be phrased: I n  order to prove the 
(global) correctness of P with respect to p and q, it is sufficient to find suitable inter- 
mediate assertions, and prove the (local) correctness of the program fragments between 
the intermediate assertions. This  method is justified by an inductive argument on 
the number  of times the loops in the program are executed. In  several papers by 
Manna  (e.g., [11, 12]), Floyd's method was rephrased in the language of (second-order) 
predicate calculus, and the following theorem stated: P is correct (with respect to 

given p and q) if and only i f  suitable intermediate assertions can be found. This  
theorem may be viewed as a completeness theorem on the inductive assertion method. 
However, the proofs in [11, 12] were not worked out, and, moreover, the theorem 
was restricted to programs in flow diagram form. 

* This publication is registered as Report IW 12/73 of the Mathematical Centre. 
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The present paper provides the generalization of the completeness theorem for 
programs involving recursion, of which, as is well known, programs in flow diagram 
form may be considered to be a special case. (The paper by Manna and Pnueli [14] 
does not give this generalization, since--in the terminology of Section 2-- i t  is 
concerned with inclusion correctness only, the completeness of which is a direct 
consequence of the minimal fixed point characterization of recursion; see below.) 

The construction of the inductive assertions in the case of full recursion is rather 
more complex than in the flow chart case. In fact, an infinite collection of intermediate 
assertions turns out to be necessary. Structure is brought into this infinity by means 
of a mechanism which indexes the assertions with traces reflecting the history of the 
computation. 

The basic tools for stating and proving our completeness theorem (given in Section 4) 
are developed in Sections 2 and 3. In Section 2 we introduce the relational approach 
to programming concepts, in particular of sequencing, selection, and while statements. 
The approach allows convenient statement of program correctness, and treatment 
of the following constructions. Given program P and assertion p, we are interested in: 
the strongest q such that P is correct with respect to initial p and final q (denoted 
by p o P) and: the weakest q such that P is correct with respect to initial q and final p 
(denoted by P--+p).  A number of basic properties of these operations are derived, 
and a few remarks on other aspects of the relational approach are made. 

Section 3 introduces (parameterless) recursive procedures. The by now well-known 
results on their minimal fixed-point characterization, leading to Scott's induction 
rule as important proof rule (as first stated in [18]), are derived again. However, we 
chose a different approach from, e.g., that of [3] by this time exploiting the relationship 
between a context-free grammar and a system of procedure declarations. In particular, 
we apply the result on context-free languages as minimal solutions of systems of 
equations (e.g., [7]) to the "languages" of elementary actions defined by procedures. 

Section 4 brings the main result of the paper. First, the completeness theorem for 
the flow chart case is proved by way of introduction. Use is made of the well-known 
technique of replacing the flow chart by an equivalent system of recursive procedures 
which are regular in form; i.e., each term contains at most one procedure call, and 
this is the last operation in the term. A finite system of intermediate assertions, one 
for each procedure in the system, suffices here. Next, the general case is treated, viz, 
of a system of declarations in context-free form. This time an infinite system of asser- 
tions is needed. The main step in their construction is a technique for associating 
with a finite context-free system an equivalent infinite regular system. Once this is 
done, the intermediate assertions are obtained in the same way as with the flow chart 
case. The formalism of the just-mentioned construction is rather forbiddingly complex. 
However, it is shown both that a simpler construction will not work and that there is 
a way of looking at the construction which does lead to practical applications (Section 5). 
An important role is played by the notion of (left and right) companions of a procedure 
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call, constructs which specify the computation preceding and following an inner call 
of a procedure within a tree of incarnations of procedures. These companions give 
the necessary grasp on the history (and future) of the procedure call, and are defined 
using the indexing mechanism mentioned above. The companions, together with 
the "o" and "--~" operations of Section 2, are the main tools in the proof of the 
completeness theorem for which, furthermore, Scott's induction is essential. 

The result is applied in two ways. First of all, an alternative to the minimal fixed- 
point characterization is immediately obtained from it. Second, the relationship 
between the notion of correctness given above (actually called partial correctness by 
Manna) and that of total correctness is studied. The completeness theorem is somewhat 
refined, which then allows the proof of the validity of Manna's reduction of total 
correctness proofs to proofs in terms of partial correctness. 

As remarked at the beginning, the paper is specifically devoted to foundational 
problems, and not so much to the application of the techniques of Section 4 to practical 
program-proving problems. However, in Section 5 we illustrate by means of an 
example--the recursive solution to the Towers of Hanoi puzzle--that our technique 
does have practical applications. 

As related work, besides the already mentioned paper, we should note that of 
Engelfriet [5], who is also concerned with completeness results for flow diagrams. 

The soundness (not the completeness) of Floyd's method for programs with 
recursion was proved earlier in [3]. 

The present paper is a modification and extension of our technical report [4]. 
We acknowledge critical comments by M. Fokkinga and W. P. de Roever. 

2. PROGRAMS AND RELATIONS 

The starting point of the present section is the conception of a program as specifica- 
tion of a mapping between states. Of course, this view has its limitations, since it 
abstracts from many properties of the computation performed in transforming the 
states. Therefore, in the next section, in our treatment of recursion, we will have 
to say more about the connection between the relational and the computational 
approach. 

It  is convenient to allow, at the start, nondeterministic programs, and to see the 
mapping P from initial state x to final state y as a binary relation, written as (x, y) ~ P, 
or, usually, as xPy. Thus, (nondeterministic) programs allow xPy and xPy', with 
y@y ' .  

A slight articulation of the notion of state may be useful. This is done mainly 
for explanatory reasons, since almost nowhere in the sequel is this analysis of the state 
really needed. 

We view the state, in first approximation, as a mapping from addresses--which, 
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called by any other name ( A L G O L  68) would work as wel l - - to  values. As an elemen- 
tary example, consider the effect of an assignment statement X i : =  f ( X 1 ,  X2 , . . .  , Xn) ,  
where for f one may think of any n-ary function ( n / >  0). Suppose that the address 
(associated with; see remark below) Xi  has value a i ,  i = 1, 2,..., n. Then  we have, 
in a self-explanatory notation: 

. . .  . . .  : = i ( x ,  ' u  ' 

a 1 . . .  a i ... a n ..... al ... f ( a  I .... ,an) ... an/" 

Remark. A more refined analysis distinguishes the identifier Xi  and the address 
associated with it, using, e.g., environment techniques, or the possess relationship 
of A L G O L  68. Such refinement is not necessary for our present  aim. 

Mostly, it will not even be necessary to look as closely at elementary programs as 
we have above. I t  suffices to have "elementary actions" A 1 , A S .... , each of which 
de te rmines - - in  some way we do not  care to analyze fu r the r - - a  relation between 
states. T h e  reader may always "fill in,"  e.g., an asignment statement for such an 
elementary action, but  the structure of that statement will then play no part  in our 
story. 

F rom elementary actions we build up more complex programs with associated 
relations. Before we go into this, we introduce some notational conventions about 
operations with relations. Let  $/" be the domain of states, and let R, R1, R2 ,..., 
be binary relations over Y/" (i.e., subsets of $/" • ~F'). Then  we define 

a. Binary operations. Composition: R 1 ; R~ = {(x, y)  [ 3z[XRlZ ^ zR2y]}.  Union: 
R 1 u R2 = {(x,y) f x R l y  v xR2y} .  Intersection: R 1 c~ R 2 = {(x,y) ] x R l y  A x R 2 y  }. 

b. Unary  operation. Conversion: 1~ = (( y ,  x) ] xRy) .  

c. Nullary operations. The  empty relation ~2 = Z (the empty subset of ~F" • $~). 
The  identity relation I = {(x, x) ] x e 3r The  universal relation U = ~F" • ~//'. 

co 
d. The  star operation. R* = I k3 R u R; R U . . . .  0i=0 Ri. 

These operations are used in associating relations with programs, or, also, in the 
formulation of assertions about the correctness of programs. 

The  programming concepts we treat in this section are: sequencing (denoted by 
the "go-on"  symbol " ;" ) ,  selection ( i f  "" then "." else) and simple iteration ("whi le"  
iteration). 

The  first concept is immediately taken care of: Let  S 1 , S 2 be two programs with 
associated relations R 1 , R 2 . Then  with S t ; S 2 we associate the relation R t ; R 2 . 

For  selection we need some special measures. Consider the conditional s tatement 
i f  p then $1 else $2 ,  where p is some Boolean expression (usually called a predicate 

in the sequel). Let  the relations p+ and p_ be defined by:  p+ = {(x, x) [p(x) is true}, 
p_ = {(x, x) ] p(x)  is false}. I t  is not difficult to verify that  the relat ionp+ ; R 1 u p_ ; R 2 
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satisfies the usual meaning of the conditional, i.e., x(p+ ; Rx u p_ ; R2) y iff p(x) and 
xRly  or ~p(x) and xRzy. 

Observe that for the relations p+ and p_ we have: p+ c~ p_ = 12, p+ tJ p_ _C/, 
and p+ u p_ = I iff p is a total predicate (p is defined for all states x). In the sequel, 
all predicates are assumed to be total. The present notation may take a moment to get 
used to. As an exercise, the reader might try to derive, e.g., properties of  conditionals 
such as if p then (if p then S 1 else S~) else S 3 = i f  p then S 1 else $3, by proving the 
equality of the associated relations. (Hint: Use p+ ; p_ = p+ n p_ = 52, and q; q = q, 
for each q which is a subset of L) 

The  next concept we deal with is iteration, for the moment only in the form of 
the while statement while p do S, with the usual semantics: Iterate S as long as p 
is true (including the case "do nothing" (I!), if p is false to begin with). As corre- 
sponding relation we have (assuming, again, that R corresponds to S, this assumption 
becoming tacit from now on): (p+ ; R)*; p _ ,  also abbreviated as p �9 R. 

Remark. Please observe that nothing is alleged to be proved here. The treatment 
is intuitive; a rigorous one follows in the next section, provided the reader is willing 
to agree that the while loop is a special case of recursion. 

The exercises here are: T ry  to prove, by manipulating with relations: (1) p * R ---- 
p + ; R ; p * R  u p _ .  (2) p , ( p , R )  = p * R .  (3) Let R , p  = a t R ; p , R  
(representing the repeat statement repeat S until ~p). Prove that R �9 ( P l v  p~) = 

(R * Pl)  * P2,  
As the next step one might expect the introduction of the go-to statement, either 

directly, or in the form of a flow diagram specification of the flow of control. Intuitively 
satisfactory treatment of these is not so easy. Since they are a special case of programs 
with systems of recursive procedures anyway (more about this in Section 4), we do not 
deal with these separately, but wait till after the introduction of recursion in Section 3. 

We now continue our relational treatment of programs with the discussion of a 
number of ways of looking at equivalence and correctness, and their relational repre- 
sentation. 

Equivalence is easy: Two programs P1 and Pe are equivalent iff their associated 
relations are equal. For a possible objection to this definition, compare the remark 
made below when we introduce the relational formulation of termination of programs. 

Unless explicitly stated contrarily, we shall from now on identify programs with 
their associated relations. A possible objection is that, occasionally, we shall need two 
equality relations between programs/ '1  and P2, viz, syntactic identity stating that the 
two symbol strings P1 and P~ are identical, and, second, semantic identity stating 
that the relations (associated with) PI  and P2 coincide (i.e., this is the equivalence 
relation just introduced). Normally, we shall mean the second equality relation, 
and we reserve the symbol " = "  for this. In  the few cases where we want to express 
syntactic equality, we shall do so by using the symbol " ~ . "  
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The currently most-used statement of correctness is the following. A program P 
is correct with respect to the (initial and final) predicates p and q iff 

Vx, y[p(x) ,', xPy ~ q(y)]; (2.1) 

i.e., iff for all initial states satisfying p, if P transforms x into y (note that this implies 
termination of the computation from x to y), then for the final state y, q(y) holds. 

This is the formulation which leads to the inductive assertion method, as proposed 
by Floyd and further developed by Manna and Hoare. Relationally, we write for (2.1), 

p;  P C p ;  q, (2.2) 

or, more precisely, p+ ; P C P;  q+. The + index will be dropped, however, when 
we expect no confusion to arise; also, instead of p_ we will usually write ft. 

We illustrate the form which the inductive assertion method takes by discussion 
of a simple example; viz, the proof of 

p; r �9 P _C r �9 P;  q. (2.3) 

We refer to Fig. 1. 

FIG.  1. 

t P s 

The inductive assertion method for the while statement r * P. 

According to the Floyd technique (which, in essence, was proposed earlier by 
Turing, in [19]; we owe this reference to R. L. London), we try to find an intermediate 
assertion s for which we can prove that 

I pCs ,  
s; r; P C_ r; P; s, 

s; f C_ ~; q; 
(2.4) 

i.e., in order to prove the global fact (2.3), we prove, for suitable s, the local facts (2.4), 
and then infer (2.3). 

The soundness of this technique was shown by Floyd by an argument by induction 
on the number of times the loop is executed. Manna provided the other half by a 
theorem which--for  this special case--amounts to: p; r * P _C r * P;  q if and only if 
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there exists s such that (2.4) holds. This is Manna's  partial correctness theorem 
[11, 12] in its simplest form. To explain his treatment of total correctness, its formula- 
tion has to be refined; we shall return to this at the end of Section 4. As remarked in 
the Introduction, the need for a more complete proof of Manna's theorem, together 
with the desire to generalize it to full recursion, has been the main motivation of 
the present paper (the other one being the investigation of the relationship between 
partial and total correctness). 

Hoare (almost) writes {p} P{q} for (2.1) [9]. Using this notation, he introduces 
various axioms. For example, his while statement axiom essentially states again that 
from (2.4), (2.3) may be inferred. The  situation is somewhat different for Hoare's 
assignment axiom, which has the form of something like {p(f(X)}X : f (X){p(X)};  
i.e., if p(X) is true of the state after performing the assignment, then p(f(X))(the result 
of substituting f ( X )  for X in p(X)) was necessarily true before its execution. This can 
be explained by looking again at (... x . " )X  : - - f ( X ) ( . ' .  x . I(~ "') and noting that 
p(X)*-~p(f(a)) after, and p(f(X))~-~p(f(a)) before the assignment. The reader 
who is of the opinion that this merits fuller treatment has our sympathy, but that 
is not the task we have set ourselves in the present paper. We mention this axiom 
mainly because it has the form of P;  q Cp ;  P:  if q is true after execution of P, then 
necessarily p had to be true before P. This brings us to a somewhat more systematic 
treatment of the variants of (2.1), and the way in which the program and one condition 
together determine (something about) the other condition. 

Before we proceed with this, we make two remarks. 
First, note that both p; p_C P;  q and P;  q Cp ;  P are, like many more correctness 

statements, all special forms of a p_CQ inclusion (e.g., for the first take xQy+--~ 
[p(x) --* q(y)]), so that, if one insists, one may view all correctness as simply the 
inclusion of the relation associated with the program in some other relation. 

The second remark is about termination (cf. [17]). When we take this in the sense of: 
P terminates for initial state x iff there exists y such that xPy, we have no problems: 
We write Vx 3y[xPy], or, equivalently, I C P;  P, and try to prove this for the case 
at hand. However, sometimes we want to be sure that all paths terminate: let P be 
a program which terminates, for all input, in this strong sense. Let Q be the nowhere 
terminating program (L: goto L, say). Let their corresponding relations be R and Q. 
Then, though R u ~2 = R, we object to the conclusion that P u Q = P ( " u "  taken 
as programming construct denoting nondeterministic choice), since the left-hand 
side may, if the second alternative is chosen, end in an unending computation, whereas 
the right-hand side always terminates. A mechanism for dealing with these problems 
in terms of the notion of well-founded relations, has been proposed and exploited by 
Hitchcock and Park [8]; we will not pursue these problems further here. 

Now, back to correctness. We once more consider formula (2.1), 

Vx, y[p(x) ^ xPy ~ q(y)], 
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and observe that it can be written in two other, equivalent, forms: 

'r ^ xPy] -+ q(y)], and Vx[p(x) ~ Vy[xPy --+ q(y)]]. 

This leads us to the introduction of two operations, denoted by "o" and 
respectively: 

DEFINITION 2.1. (p  o P)(x) +-+ 5y[p(y)  A yPx], (P --~ p)(x) +-~ Vy[xPy -+p(y) ] .  

Remark. This definition includes the "extreme" cases p = ~9 and p = I, standing 
for the identically false and the identically true predicate, respectively. From these 
definitions we immediately infer the following lemma. 

LEMMA 2.1. (1) p; P _C P; (p o p),  ( P - +  q); P C P; q. 

(2) For all p, q, i f  p; P C P; q, then p o P C q, and p C_ p - .  q. 

(3) p o P = O { q I p ; P C _ P ; q } , P - - ~ q = O { p I p ; P C _ P ; q } .  

Proof. Parts 1 and 2 follow from the definitions, part 3 from parts 1 and 2. ] 

We will also have occasion to use the operations p o P and P --,- q, for which we have 
p o p  = ('1 {q ]p; P C  P;q}  = ('] {q l p;  p C q; P}, and P---~ q = O { p I P ; p C q ;  P}. 
(Observe that here we used P C Q ,-+/5 _c ~,  (P1 ; P2)'-' = / sz  ;/51, and ~ = p forp C I.) 

The basic properties of the "o" and "--~" operations are collected in Lemmas 2.2 
and 2.3. 

LEMMA 2.2 .  

(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

/'roof. 

. 

(1) f 2 o p = p o f J = Q .  

P ; I o P  = P. 

p o q = p ; q  = p f ~ q .  

P ~ (P1 ; P2) = (P ~ P1) ~ P~.. 

p o (P~ u v2) = (p  o e l )  u (p  o P2). 

I f  PA C_ P2 , then p o P1C p o  P2 . 

I f  pC_q, thenpo  PC_qo P. 

(p u q) o V = (po  P)  u (qo P). 

If~5 is a function, then ( p  f~ q) o P = ( p  o P )  ~ (q o P) .  

The proofs are immediate from the definitions. We prove only parts 2 and 4: 

Vx, y[xP; I o Py ~ xPy ^ (I  o P ) ( y )  +-~ xPs  A 3Z[I(z) ^ zPs] 

xPy ^ ~z[zPy] +-~ xPy]. 
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4. Vx[(p o (P1 ; P2))(x) *-~ 3y[p(y)  ^ YP1 ; Pzx] 

3y, z[p(y)  ^ yPx z ^ zPzx] 

3z[3y[p(y) ^ y e l  z] ^ zP2x] 

3z[(p o P~)(z) A zP2x ] ~ ((p o P1) o n2)(x)]. 

For " -~"  we have similar properties, some of which are mentioned in 

LEMMA 2.3. 

(2) 
(3) 
(4) 

(5) 

Proof. 

(1) P - + I = L  1 - , p : : p .  

I C (Pl ~ P2) i f fp i  C_ P2. 
( P ~  ~2); P : -  s 

(/'1 ; v, ,)  - ~  p : (P l  .... (P2 - ,  p) ) .  

(15 w P2) - - p  -= (Vl  - ~  p )  n (P2 - - - p ) .  

Immediate. I 

When we c o m p a r e p o t 5  == O { q l P ; p C q ; P } ,  and P ~ p  = U { q I q ; P C P ; P } ,  
the question arises as to when these constructs coincide. The answer is given in terms 
of the notions of functionality and totality of P:  P is a function iff 15; p C I, or, 
equivalently, Vx, y, z[xPy ^ xPz  ~ y = z]. P is total iff 1 C p;  15 or, equivalently, 
Vx 3y[xPy]. We then have: 

LEMMA 2.4. (!) I f  P is a function, then p o P C_ p -+ p. 

(2) If, for all p, p o i 5 ~ P --+ p, then P is a function. 

(3) I f  P is total, then p - §  p C p o p.  

(4) If, for all p, P --~ p C_ p o P, then P is total. 

(5) (Conclusion) P is a total function iff Vp[P --~ p = p o P]. 

Proof. Proof. We show only part 2. Its assumption is equivalent to: 

Vp[Vx, y[xPy a p(y)  --+ Vz[xPz - ,  p(z)]]]. 

Let Y0 be some element in the range of P, and let p(y )  ~ y == Yo. Then we see that 
the assumption amounts to: I f  xPy and y = Y0 and xPz, then z = Y0 ; hence, P is 
indeed a function. | 

Since we are working in a relational framework, a relational version of the "o" and 
"--+" operations may be of interest. For "o" this can be given directly, but for " - + "  
we have to use complementation of relations with respect to 1: For p C_ I, fi ==at IIp. 

LEMMA 2.5. (1) p o P -= U; p; P n L (Rememberthat U is the universal relation.) 

(2) P ~ p = - f o P .  

57I/II/3-4 
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Proof. Left to the reader. | 

As the final lemma we need 

LEMMA 2.6. R 1 C R 2 i f f  Yp, q[if p;  R 2 C_ R 2 ; q, then p; R 1 C R 1 ; q]. 

Proof. ~ is obvious. As to ~ :  Choose some fixed Xo, and assume XoRly. Choose, 
furthermore, po(x) ~-~ x - -  x o and qo(Y) ~ xoR2y. Then Po ; R~ C R 2 ; q0 holds; 
hence, Po ; RI C R 1 ; qo follows; i.e., x -~ x o A X R l y  ~ xoR2y. Thus, the assumption 
xoRly  leads to xoR2y. Since x o was arbitrary, the proof is completed. | 

COROLLAaY 2.6. If ,  for  all p and q, R 1 is correct with respect to p and q i f f  R 2 is 
correct with respect to p and q, then R 1 = R 2 . (Compare this with: I f ,  for  all Q, R 1 is 

correct with respect to Q (R 1 C_ Q) i f f  R2 is correct with respect to Q, then R 1 = R 2 .) 

Proof. Direct from Lemma 2.6. | 

As an exercise to conclude this section, we offer to the reader who is insufficiently 
challenged by our elementary lemmas: Let R t =of  ( Io  _~). R; i.e., perform R as 
long as it is defined (e.g., if R is the descendent relation in a tree, R* connects the root 
with all leaves). Prove that R tCtt = R ft. 

3. RELATIONS AND RECURSION 

The relational approach to program semantics is now extended to programs in- 
volving recursion. 

Our treatment of this is not essentially different from, e.g., that of [3], and may be 
skipped by the reader who already knows about procedures taken as minimal fixed 
points and Scott's induction and wants to proceed immediately with the main results 
of our paper in the next section. However, a number of points are stressed differently; 
e.g., the systematic distinction between language and interpretation is kept in the 
background here. Moreover, the main result--procedures as minimal fixed points with 
corresponding induction rule--is  now obtained by exploiting the correspondence 
between systems of recursive procedures and context-free grammars (cf. also [1]). 
This has the advantage, besides the obvious one of clarification of the correspondence, 
that we can rely on a well-known result in formal language theory stating that context- 
free languages are minimal solutions of systems of equations, and, moreover, that 
these solutions are obtained by successive approximations (see, e.g., [7]; this result 
may be seen as an instance of Kleene's first recursion theorem [10]). 

In  a program with recursion we have a system of (mutually recursive) procedure 
declarations, together with what may be called the "main" statement of the program, 
which, normally, contains calls of the declared procedures. Both this statement and 
the statements of the procedure bodies are supposed to have the structure as introduced 
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in the previous section. That  is, they are made up from elementary actions, to which 
the procedure symbols are now added, by means of composition and union (where 
the last construct is used to model conditionals). 

More formally, a (rccursive) program T consists of a set of declarations 

and a statement S; i.e., 7" -= (~ ,  S).  Here " ~ "  stands for "is recursively defined by" 
(in A L G O L  60 we would write procedure Pi ; Si , i = 1, 2,..., n). Observe that .@ 
is a set since the order in which the declarations are given will turn out to be immaterial. 

Often, we want to emphasize that the S ; ,  i =-: 1,..., n, or S, may contain occurrences 
of the P i ,  i = l ..... n, and we write S,  ~- S i (P1,  Pz ..... P,,), S ~ S (P1 ,  P2 .... , P , ) .  
This notation is also used in the customary way for indicating substitution: The  
result of simultaneously substituting, in S, for each Ps ,  the statement S c~, 
j = 1, 2,..., n, is denoted by S ( S  a), S(z~,..., S ' ) ) .  

Before we proceed with a more detailed formulation of the structure of the S i ,  
one comment may be in order. The reader will have noted that our procedures are 
parameterless. Admittedly, this is a restriction which leaves out of consideration some 
interesting (and difficult) problems. However, we are of the opinion that a satisfactory 
treatment of the various ways of parameter passing cannot be given without the 
introduction of (the equivalent of) the A L G O L  68 notions of identity declaration 
and proceduring, an idea which is not pursued in the present paper. In defense of 
the restriction, we can only remark, first, that there is a correspondence (given below) 
between parameterless procedures and the monadic recursive function schemes of, 
e.g., [1], and, second, that it will appear, we hope, that even parameterless procedures 
lead to interesting considerations which, moreover, are needed anyway for a full 
understanding of procedures with parameters. So much for the apology. 

Now we continue with a precise definition of the class of recursive programs. 
We start with the class .~;,"--{A1, A 2 .... } of elementary actions, ~ = {P, P l ,  

/5 ..... q,..., r,...} of Booleans, and ~f : :  {I, 12} of constants. (Remember that 1 denotes 
the identity (dummy) statement and 12 the empty statement.) Let ~ --  .c~ u ~ t_) cg,, 
and ~ (the class of procedure symbols) = {P1, P', .... }. Then the class of statements 
over .~ and .&, denoted by c f (~ ,  ~) ,  is defined by 

(I) .~ u ~ c__ ~(,o~, ~ ) ;  

(2) if S~, Sz E .Y(.~., .~), then (Sa ; Se) and ($1 t.) $2) ~ 5P(9~, .r 

Examples of programs are 

(1) ({P <- ((p; (.4; P)) wp-)}, P), 

(2) ({P~ <-: ((p; P.) ~3fi), P2 <= ((P; (A; /2 ) )  u (ib; Pa))}, P1). 
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Anticipating the analysis given below, the reader may already observe that for 
the P of the first example we have that P = p �9 A, and for the Pi  of the second 
example : Pi  = P * (P * A). Moreover, as corresponding monadic function schemes 
we have 

(1) f (x)  ~ if p(x) then f(a(x)) else x, 

(2) fl(x) ~ if p(x) then fz(x ) else x, 
f2(x) ~ if p(x) then fz(a(x)) else fi(x). 

Clearly, our definition of the class of programs causes some parentheses trouble. 
However, our formal treatment does need their introduction, so that we can later 
prove that we may drop them unambiguously. 

Our task now is to find the relations corresponding to procedures, just as we did 
before for the constructs of sequencing, selection, and simple iteration. As before, 
we assume known how the elementary actions are executed, and now we must analyze 
how a program, for given initial state x = x 0 , determines a sequence of elementary 
actions applied successively to intermediate states x, ,  eventually leading to the final 
state x~ = y. I n  this analysis, the notion of  computation point plays a useful role: 

DEFINITION 3.1. A computation point is a triple (St, x, St), where St is a sequence 
o f  zero or more elementary actions (the empty sequence being identified with the 
identity I), x is some state, and S~ is some statement in 5~'(~, ~) .  

Intuitively, a computation point (S~, x, St) denotes, at each moment of the computa- 
tion, that 

(1) St is the sequence of elementary actions already performed, 

(2) x is the current state, 

(3) S~ is the remainder of the program which still awaits execution. 

Using this notion, the definition of a computation prescribed by a program 
T = (~,  S), when applied to initial state x, follows rather naturally: Begin with 
initial computation point (/, x, S) (S t ~ I :  nothing has yet been executed), define 
the allowed transitions between the computation points in accordance with the 
intended meaning of the various program constructs, and then end with some final 
(S', y, I), with S '  some sequence of elementary actions, y the final state, and Sr ------- I 
indicating that nothing remains to be done. 

So we need to define the allowed transitions between computation points: 

DEFINITION 3.2. Let  ~ be a set of declarations. A computation step is a ~-allowed 
transition between two computation points (St ,  x, S~) and (St', x', S / )  iff one of the 
conditions la, lb, 2a ..... 2e, is satisfied. 
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(la) Sr ~ (R; S / ) ,  for some R e ~ ,  and, moreover, xRx',  and St '==- S~; 
R hold. (Observe that this implies that R ~ ~ ,  and that, if R := p e .~, then xpx', or, 
equivalently, x = x' and p(x) hold.) 

Sr =- R,  for some R e ~ ,  S /  ~ / ,  and, moreover, xRx '  and Sz' = Sz ; R ( lb)  
hold. 

(2a) 

(2b) 

(2c) 

(2d) 

s , .  - ((&,l ; &,~); S r , 3 ) ,  S , . '  --~ (St,1 ; (&,.. ; &3)), 
S t'  ~ S t , x '  = x .  

S r ~ ( S t ,  1 tO S t , 2 )  , S r, ~-  S~.  1 or  S /  =: S~,2,  

S (  ~ -  S z ,  x '  = x .  

s / =  ((&a u &.~); &,.~), s / =  ((&a ; &,3) w (&.~ ; &.~)), 
S (  =-- S z ,  x '  = x .  

S~ 7-: (P; S~.I) , S /  ~ S; Sr.a,  where P ~ S 6-@, 

Sz ~ :-= ~S'~ , X' = X. 

(Observe that the replacement of the procedure identifier P by its body S is the 
usual copy rule of procedure semantics.) 

(2e) Sr~ - :P ,  S r ' ~  S, where P ~  S ~ ,  

S t'  =-2 S l ,  x '  = x .  

EXAMPLE (not bothering for the nmment  about parentheses). A sequence of 
-@-allowed computation steps, where -@ is {P ~ p;  A; P U fi}, is (/, x0, P), 
(/, x0, p; A; P v) if), (I, x 0, p; A; P), (p, x l ,  A; P), (p; A, x2, P),  (p;  A, x2, p; A; P u f f ) ,  
(p; A, x2, p; A; P), (p;  M;p, xs, A; P), (p; A;p;  A,  x4, P), (p; A;p;  A,  x4, p; A; P u f f ) ,  
(p; A; p; A, x4, p), (p; .4; p; A; if, xs ,  I),  where 

(1) p(xo) and p(x2) are true, p(x4) is false; 

(2) x o = x 1 , x iAx2 ,  x 2 = xs ,  xsAx4,  and x 4 = x 5 hold; 

(3) we have omit ted--as  we will do in the sequel-- the identity action in a 
sequence of elementary actions. 

The  definition of the relation to be associated with program T = (-@, S) should 
give no problem: 

DEFINITION 3.3. Let  T = (-@, S) be a program. Then  (x ,y )  ~ T iff there exists 
a sequence of elementary, actions S' ,  and a sequence of .@-allowed computation steps 
from (I, x, S) to (S',  y, I) .  

From now on, we assume the set -@ of declarations fixed, unless otherwise stated, 
and we write x S y  instead of x(..@, S )y .  Also, we understand S 1 C S 2 or S 1 = ,S' 2 with 
reference to this -@. 
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From Definition 3.3, a number  of properties follow rather directly, which is why 
we omit their proofs. 

LEMMA 3.1. (1) ((S 1 ; 32) ; Sa) = (S 1 ; (S 2 ; Sa) ) ( =  S 1 ; S 2 ; Sa, from now on). 

(2) s l  w s~ = s~ w & .  

(3) (($1 W Sz); $3) = ((S~ ; S,)  w ($2 ; $8)) (this will, by convention, be written 
as $1 ; S~ w $2 ; $3). 

(4) Similarly for left-distributivity of ";" over " w " .  

(5) I f  P ~ S c 9 ,  then P = S. (This is the fixed-point property of procedures.) 

(6) xS~ ; Say (according to Definition 3.3) iff 3z[xSlz A zS2y], and xS  1 u S2y 
(according to Definition 3.3) iff xS~y v xS2y (i.e., Definition 3.3 is a consistent 
extension of the definitions of " ; "  and " t3"  of Section 2). 

(7) (Monotonicity.) I f  S~ 1~ C_ S~ 2~, i = 1, 2 ..... n, then 

s(s(~) ..... S(l)~ c_ s(sl~,,. . . ,  s'~,~ 
i n j ~  

(8) I f  (S~ , x, S,.), (S{,  x', St') is a 9-allowed computation step, then St ; S~ 
S[  ; S / .  

(9) S ~- U {S' ] 3x, y such that (I, x, S) ..... (S', y, I)  is a sequence of 9-allowed 
computation steps) 

These  facts being, as we hope, satisfactorily established by the reader, we 
now continue with the refinement of the analysis, leading up to the minimality of 
the fixed points. 

We start with the following two observations. 

1. The  four-tuple (~ ,  ~ ,  9 ,  S) reminds one of a context-free grammar,  with 
~ :  nonterminals; ~ :  terminals; 9 :  productions rules; and S: start symbol. 

2. The  way in which the 9-al lowed computation steps are defined--in particular, 
the procedure-call  step (2d, 2e)--reminds one of the production steps in the derivation 
of a context-free language. 

T o  this we add the following by way of further introduction. Consider a procedure 
P declared by P ~: p; A 1 ; P; A 2 U ft. Suppose we choose p, As ,  and A~ such that 
we have as instances of P, in a self-explanatory notation, P ~ Ix > 0 I x  : =  x - -  1]; 
P; [x : =  x + 1] • [x = 0]. Our assertion that P = Un~0 ((x : =  x - -  1)n; x : =  0; 
(x : =  x - -  1)n) will not be surprising, nor the similarity of this expression with the 
"language" {(x : =  x - -  1)~; x : =  0; (x : =  x + 1) ~ [n ~> 0}. We now make these 
informal observations more precise. 
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Let r be a mapping from statements S in ~ ( ~ ,  ~ )  to subsets of the language 
(~ '  u ~ u ~)* ,  i.e., the set of all finite (possibly empty) sequences of symbols in 
~ ,  ~ or ~ ,  defined as follows (identifying singleton sets with their elements). 

= A, r(p) = p, , (P)  = P. 

; $2) = ~-($1) T(S2) (juxtaposition denoting the usual "product"  of sets of .(s~ 
words). 

. (s~ w &)  = -(Sl) u ,(s~), 

~-(/2) = ~ (the empty set of words), 

r(I)  = e (the empty word). 

For ~ = {Pi ~ Si}r '~ we define r (~ )  = {P~ ~ S~' [ i = 1, 2,..., n and S~' e ~-(S~)}. 
Then  for the program (.~, S) we have as the corresponding grammar (~,  d u ~ ,  ~-(~), 
r(S)). Note that there is a slight generalization involved in that the sets ~@ and ~ t3 
are infinite and that T(S) is, in general, not just an element of ~ (the set of non- 
terminals), but a subset of ( d  U .~ U ~)* .  

EXAMPLE. For the program ({P ~ p;  A; Pwfi},Pt.)A) we have as the corre- 
sponding grammar: ({P}, {p, fi, A}, {P --+ pAP, P -+ fi}, {P, A}). 

The next definition introduces the language associated with a program. 

DEFINITION 3.4. Let  T = (~ ,  S) be a program. Let T(T) ~ (~ ,  d U ~ ,  r(~) ,  
r(S)) be the (generalized) context-free grammar associated with T. Then  

..~(r(T)) = {S" [ S" E ( d  u ~ ) *  and 3S'e r(S) such that S '  ~ S"}, 
~(T} 

where *~,(r) is defined in the usual way as derivation with respect to the grammar ~-(T). 

EXAMPLE. For T = ({P ~ p; A; P U/Y}, P, we have ~q~0-(T)) = {(p/j) if i  [ i >~ 0}. 
So far everything has been rather straightforward. The  next step also seems clear: 

One might at first expect that the set of all elementary actions determined by a program 
on the base of Definition 3.3 would coincide with the language of Definition 3.4. 
There is a slight complication, however. For example, T = ({P ~ p; A 1 u/7;  A2},p; P). 
Then ~-cf(~-(T)) = (ppA~, p~fiA~), but there is no x, y such that (/, x, p;  P),..., 
(p; fi; A s , y, I )  is an allowed sequence of computation steps. 

This is easily taken care of, however, by noting that those sequences of 5r 
which do not occur as possible computations are necessarily equivalent with /2. 
Using, for ~ = ~(~(T)) ,  the notation ~-1(~r for U~(s)~ S (this yields one relation, 
not a set of relations!), we have as 

LEMMA 3.2. r = r-I(..~(r(T))). 
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Proof. Direct from the definitions. | 

Continuing with the last example, ~ ( ~ - ( T ) )  = (ppAt, p~A2). Hence, 

T - a ( o o C # ( T ( T ) ) )  = p; p; A t U p; i f ;  A~ = p; p; A t U f2 = p;  p; A t = T. 

We have now reached the point where we can apply the result of, e.g., [7], which 
states that context-free languages are minimal solutions of a system of equations 
the solutions for which are obtainable by means of successive approximations, starting 
from the empty set. 

Let  ~ = (Pi  ~ Si}in-- t ,  let S ~ S ( P  t ,..., Pn) be an element of 5~(~, ~) ,  and let 
T = (.~, S). By the definition of r, "r(S) ~ - r ( S ) ( P  t , . . . ,  Pn) (i.e., ~'(S) is a set of words, 
each of which may contain occurrences of Pt  .... , Pn). Let 

~-(S)tOl de 

z(S)t~+tl =df ~.(S)(r(St)tsl ..... T(S,)tSI), j = 0, 1,.... 

co 
Then, by [7], -Sa(~'(T)) = [.)j=o ~'(S) [j]. Hence by Lemma 3.2, 

( o )  T = T--I (o~(T(T))  = T - 1  T ( S )  [5] . 

\ 5 = 0  / 

Now let S t~ _d~ ~2, S (5+t) --dr --S(J) . S~)). - -  - -  ~( t ,.... Then it is not difficult to verify that 
S 0) = ~'-t(r(S)[J]), and, moreover, 

S(J) = ~--~(~-(S)tS]) = ~--~ ~ ( s ) t J ]  = T .  
5=0 5=0 

Thus, we have 

T = (~ ,  S) = ~-t ~-(S)tJ] = S(J). 
j = 0  

With reference to ~ once more omitted this yields 

THEOREM 3.1. (The union theorem for  programs with recursive procedures). 

S = ~_) S Ij). 
j = 0  

COROLLARY 3.1. Let  ~ = {Pi ~ Si}t~=a , and let Qi satisfy S i (Q1, . . . ,  Q , )  c_ Qi , 
i = 1, 2,..., n. Then P~ C Q i .  
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oo 
Proof. We use that Pi = Si  (Lemma 3.1.5), and that Si  = Uj=o S~ j). Then 

using induction on j ,  for each i = 1, 2,..., n, 

S!O) = .O _C Qi 

s~ j+,) = s , (s~ (;) ..... s(~ ,)) _c s , ( o l  ,..., 9 , )  _c 9 ,  
oo 

(by monotonicity (Lemma 3.1.7) and the induction hypothesis). Thus, ~Jj=0 S~ ~) _C O~, 
whence Pi C_ Oi , i = 1,..., n, follows. | 

COROLLARY 3.2. (Minimal fixed-point property). Let  ~ be as before. Then 

(/)1 .... , Pn) = 0 { (01  . . . . .  On)  ] s i (o1  , ' " ,  On)  = O i ,  i = l , . . . ,  n}. 

Proof. By Lemma 3.1.5 and Corollary 3.1, the Pi are fixed points of the Si  which 
are included in all fixed points; hence, they are minimal fixed points. | 

The next corollary is an easy consequence of Corollary 3.2, and deals with 
correctness in terms of inclusion (P cO) ;  it is stated for comparison with similar 
results to be given in Section 4, for correctness in terms of assertions (p; P C P; q): 

S " COROLLARY 3.3. Let  ~ = {Pi ~ i}i=1 

(1) (Correctness in terms of  inclusion.) 

Vj = 1,..., n, O~[Pj C Q~ iff  3Ol', .... O, '[S,(Q~',  .... O , ' )  C_ Of ,  i = 1 ..... n, a n d O /  C__ Qj]]. 

(2) (Characterizing recursion in terms of inclusion correctness.) VR1 ,..., Rn, 

[Vj = 1,..., n, Qj[Rj C_ Q~ iff 3QI',..., Qn'[Si(Q~',..., Q , ' )  c_ Q~', i = 1,..., n, and Q/C_ Q~]] 

/ff Yj = 1,..., n [Rj = Pj]]. 

Proof. Part 1 follows from Corollary 3.2, and part 2 from part 1. | 

The next main application of the union theorem is in the proof of Scott's induction 
rule, which plays an important part in Section 4 (and elsewhere in proofs about 
recursion; see, e.g., [2, 3, 13, 15]). 

THEOREM 3.2. (Scott's induction rule). Le t  ~ = {Pi ~ S~}i~ 1 . Let  

Sz -~ Sz(P1 ,..., P , )  and Sr =-- Sr(P~ ,..., P , )  

be two statements satisfying the two conditions: 

(1) s~(~,..., s?) = s,(~,..., ~). 
(2)  I f  S~(X~ ..... X , )  C S r ( X  1 , . . . ,  Xn)  , then S l ( S l ( X  1 ,..., Xn), . . .  , S n ( X  1 ,..., Xn)  ) C 

S r ( S I ( X  1 , . . . ,  Xn),. . . ,  S n ( X  1 ,..., Xn)) .  

Then we have that S ,  ~ S~(P 1 ..... P,,) C Sr(P 1 ,..., P , )  =_ S r . 
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Proof. As before, for $ 6  5 f (~ ,  ~ ) ,  let S (~ = Q, S (j+l) = S(S(lJ),... ,  S~) ) .  By 
condition 1, we see that SI 1) C S(~ 1). Then, using condition 2 (with Y2 for Xi)  , we infer 
that S,(SI(g2,..., [2),..., S,(~, . . . ,  [2)) C_ S,.(Sx(s ..... Y2) ..... S,(~2 ..... Y2)), i.e., that 
S~ ~) _C S~ ). Repeating this argument we obtain that S (j)* _C o r.r j = 0, 1, 2,..., and 

co . 

the desired conclusion S~ = U~=0 S~ J) _C Uj=0 S(} ) = S~ follows by the union 
theorem. 1 

Remark. The induction theorem is easily seen to go through for sets of inclusions 
instead of for just one inclusion S, C S~. 

4. RECURSION AND INDUCTIVE ASSERTIONS 

This section brings the generalization of Manna's  treatment of partial (and total) 
correctness, and an application of the result providing an alternative characterization of 
recursion, using a certain property expressed in terms of inductive assertions instead 
of the minimal fixed point property used in Corollary 3.3. 

The main tool of the section consists in the enrichment of the inductive assertion 
method with an indexing of the assertions in such a way that the index can be considered 
as a trace of the history of the computation. Such rather complex structuring of the 
assertions turns out to be necessary for the only-if part of the theorem: p; P _C p ;  q if 
and only i f  suitable intermediate assertions can be found. 

To  bring out the difficulty, we once more consider formulas (2.3) and (2.4). We saw 
that if ~s[p C s, s; r; S C r; S; s, s; ~_C F; q], then p; r * S C r * S; q, which is easily 
shown once it is seen that r �9 S = (r; S)*; f. Conversely, the proof that if p; r �9 S C 
r .  S; q, then 3s[p C s, s; r; S C r; S; s, s; f C f; q] follows by taking s = p o (r; S)*, 
and applying the properties of Lemma 2.1: 

(1) p z p ( ~ I  zpo ICC_p  o (r; S)*, using the definition o f / ,  Lemma 2.2.3, 
the definition of the * operation, and Lemma 2.2.6, respectively. 

(2) (p o (r; S)*); r; S C r; S ;  (p o (r; S)*), or, by Lemma 2.1, 
(po  (r; S)*) o (r; S) __C_po (r; S)*, or, by Lemma 2.2.4, 
p o ((r; S)*; r; S) _Cp o (r; S)*, or, by Lemma 2.2.6, 
(r; s)*; r; S C (r; S)*, 

and the last inclusion follows from the definition of the * operation. 

(3) (p o (r; s)*);  e_ce; q, 
(p o (r; S)*) o f _C q, 
p o ((r; s )* ;  e) c q, 
p o (r , S)  C_ q; 
p; r * S C r  . S; q, 

and the last inclusion follows by assumption. 

or, by Lemma 2.1, 
or, by Lemma 2.2.4, 
or, by Definition r .  S, 
or, by Lemma 2.1, 
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In  the more general case of flow diagrams, to be dealt with presently in our rephrasing 
of Manna's  theorem, the argument is stated in somewhat more general terms, but not 
essentially differently. However, for the generalization to full recursion, the above- 
mentioned extension with indexed assertions is needed. 

We first give the details of Manna's  approach. Two versions of Manna's  theorem 
on partial correctness are given; first a weaker one, and, at the end of this section, 
a stronger one which is needed for the treatment of total correctness. 

The weak version is first pictorially phrased as follows. A flow diagram P is partially 
correct with respect to the predicates p and q if and only if the following condition is 
satisfied. There exists a selection of points rr i , i = 1,..., n - -  1, in the diagram, such 
that intermediate assertions (p  = P o )  P l , P 2 , ' " , P n - 1 ,  (Pn = q) can be found, 
attached to the points rr i , for which we have that, for all i, j ,  1 ~ i, j ~ n, each Pid 
(part of the program between ~r i and rg) is partially correct with respect to Pi and p j ,  
and, moreover, each part of the program is included in at least one of the Pid �9 

The formalism developed in Sections 2 and 3 allows a less pictorial statement, 
together with a complete proof, of this theorem. We give these as preparation for the 
extension to programs involving full recursion, to which the remainder of the section 
is devoted. 

We use the well-known fact that each flow diagram can be represented by an 
equivalent recursive program scheme such that the system of declarations (more 
precisely, the associated grammar (Section 3)) is regular in form. 

EXAMPLE. Consider Fig. 2. This diagram may be represented by ({P1 ~ A1 ; P2,  

1)2 ~ Pl ; A2 ; Pz k-) fil ; Az  ; P4 , Pa ~ P2 k3 fi2 ;A3 ; P 4 ,  Pa ~ P 3  ; P3 t-)/Sz},/)1)- 

FIG. 2. 

+ 

Example of a flow diagram represented by a set of (regular) procedure declarations. 

Remark. Such translation is (first) mentioned, e.g., in [16]. I t  is not difficult to see 
that the result can be obtained by the following process (only briefly sketched here). 
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1. Consider the flow diagram in a natural way as a finite automaton. 

2. Construct the associated regular grammar.  

3. Translate the grammar  back into a program scheme, essentially by the 
operation T -1 of Section 3. 

Using the representation of flow diagrams by regular schemes, we can now give 
a precise statement of our first version of Manna 's  theorem: 

THEOREM 4.1. (Completeness theorem with regular inductive assertions). Let  p, q 
�9 " A n be two predicates. Le t  ~ = {Pi ~ Ai.x , Px td Ai.~ , P2 tA ... u Ai.~ ; P~ w i.~+x}i=l 

be a regular declaration scheme. The program (~ ,  P1) is partially correct with respect to 
p, q i f  and only i f  there exist Pl , P2 ,..., P~+I such that 

t P -CPl, 

Pa+I _C q, 

and p i ; A i . j C _ A i , j ; p j ,  i = l , . . . , n ,  j = l  ..... n - 7 1 .  (4.1) 

Remarks. (1) The  general form of the ~ can be specialized by taking some of 
the A~.j as I or s 

(2) The  freedom in the choice for the ~ i ,  in P, in the flow diagram formulation 
is found back in the freedom of constructing ~ by, if necessary, considering sub- 
programs of P as elementary Ai.~.. 

Proof. (1) I f  part. Assume (4.1). We shall prove that p i ; P i  C_ P i ;  Pn+l ,  
i = 1,..., n, by an application of Scott 's induction rule. Pl ; Q _C g2; P~+I is clear. Next, 
we verify: I f  p~ ; X i  C_ X i ; P~+I , i : 1,..., n, then Pi ; ( A i , 1  ; X1 k.) " '"  k.) A i .  n ; 

X~ w A~.,+I) C_ (A~,I ; )(1 U "" t3 A~,,  ; X ,  ~3 Ai,~+l) ;p ,+l ,  i = 1 ..... n. This  follows 
from Pi ; Ag.~ ; X j  C_ A~.j ; p~ ; X j  C_ Ai. j  ; Xs  ; P,+a , by (4.1) and the induction 
hypothesis, respectively. We conclude that, indeed, Pi ; Pi C_ Pi ;P~+I �9 Hence, by 
(4.1), p; Pa C_p, ; P a C P ~  ; p,+l_C P1 ;q.  

(2) Only-i fpart .  Assumep;  P1 C P1 ; q. Two constructions for thepj  are possible�9 

(2.1) Let  P ,+I  = a t / ,  and pj = a t  p j  ~ q, j = 1,..., n -71 .  We verify (4.1): 

From p; P1 _C P1 ; q we derive p _C (P1 ~ q) = P l .  Also, 

P n + l  = Pn+l -~  q = I --~ q = q. 

T o  show that Pi ; Ai,j C A,,j ; p~, we have to verify (P, --+ q); A~.j _C Ai.j ; (Pj ~ q), i.e., 

Vx, v[Vz[xPiz  --+ q(z)] t, x A i , j y  --~ Vt[yPj t  --~ q(t)]]. 
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Assume Vz[xPiz ~ q(z)], xAi.~y and yPjt.  Then  xAi.j ; Pit, hence xPit, and q(t) 
follows, proving (4.1). 

(2.2) The  second construction uses the "dual"  system of procedures 

{QJ ~ Q1 ; A15 k.) "'" U Qn ; A,~.~ U Aj}y.+~ a with A 1 : / ,  Aj : g2, j = 2,..., n + 1. 

Example: Referring again to Fig. 2, we have Q1 ~ I ,  Q2 ~ Qt ; A1,  Q3 ~ Q2 ; Pl ; 
A2 u Q, ;P3 ,  Oa ~ Oz ;iYl ; Aa u Q3 ;fiz ; A3,  Q5 ~ Qa ; Pz u Qa ; fla. Note that 
the P~ denote computations from intermediate nodes in the flow diagram to the final 
one, whereas the Q~ denote computations from the initial to intermediate nodes. In  
general, we have for the Q's: Q~ ; P~ c P1, and Qj ;  P~ C Qn+x , j = 1, 2 ..... n -~- 1. 
T a k i n g  j = n + 1 and j = 1 in the first and second inclusions, respectively, and 
using the definitions of Pn+l and Q1, we obtain that/)1 = Qn+l. (The proofs of these 
statements are omitted, since they are special cases of theorems given below.) We 
define pj = p o Qj ,  j = 1, 2,..., n + 1. The  reader will have no difficulty in verifying, 
analogously to construction 1, that these ps indeed satisfy (4.1). We also observe that 
p o Qj _c Pj - ,  q, j = 1,..., n + 1, which again, will be proved later in a more general 
form. | 

After thus having settled the flow diagram case (regular recursive schemes), we 
now face the problem of extending the theorem to recursive schemes in general. 

Without lack of generality we assume that each declaration scheme H is of the form 

{Pi ~ Si 1 I J  S i , 2  (.j  , , ,  Si ,Mi}in=l , (4.2.1) 

with M~ some integer />1, and each S id ,  j = 1 . . . . .  M i , of the form 

Si.~ = A(i , j ,  0); P(i, j ,  1);...; A(i , j ,  Ki.j --  1); P(i, j ,  K~.~); A(i , j ,  K~.j), (4.2.2) 

with A(i , j ,  k) 6 d ,  P( i ,L  k)~{P1 ,-.-, P~}, and Kid some integer ~ 0  (if Ki.i = 0, 
Si.j is just A(i, j, 0)). Specialized forms of the H are again obtained by suitable restric- 
tion of certain of the A(i, j, k) to I or D. Observe that each occurrence of some Pt 
in some Si.j is uniquely identified by the triple (i,j, k) with P(i , j ,  k) = Pz.  

A number  of definitions and notations will be employed: 

1. First we need a name for the set of index triples with respect to (as will from 
now on be tacitly assumed) the declarations H as given in (4.2.1) and (4.2.2): 

y = { ( i , j , k ) [ 1  ~ i ~ n ,  1 ~ j  ~ M i , 1  ~ k <~ Ki.j}. 

2. Each P(i, j ,  k), for (i, j ,  k ) ~  Z, is some element of {P1 ,-.-, P~}- Hence our 
definition of the function h: 27 ~ {I, 2,..., n}: h(i,j, k) = l iff P(i, j ,  k) = P~. 
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3. Suppression of indices will be used below to improve the clarity of the proofs. 
To  begin with, we will use as shorthand for the system 

l Mi )n 
: P i  "<= U Si . j l  , 

j=l ) "=1 

with Si,~ as above, the notation 

P ~ A(0); P(1);...; A ( K  - -  1); P(K) ;  A ( K ) ,  (4.3) 

where both the i- and the j- index have been suppressed. 

An important role will be played in what follows by the idea of using index-triple 
sequences as trace of the history of the computation. We define the following subsets 
of 27* (the set of all  finite sequences of elements of 27, with e denoting the empty 
sequence): 

T =  T l  U T2 t.J "" t . )  T n ,  

where the sets T i ,  i : 1,..., n, satisfy the system of equations 

I Mi Ki,~ 

Ti  ~- {~} U U e ( i , j ,  k) T~(~.~.k) 
5=1 k=l i=l ..... n 

or, alternatively, each T i is the language produced by the grammar 

G i = ({T 1 ,..., T,}, 27, R~, Tr 

with R i consisting of the rules T i --~ e, T i - ~  ( i , j ,  k) Th(i.~,k) , for ( i , j ,  k) e27. 

Each T i consists of those sequences of 27" which satisfy 

(1) The  first triple, if any, has i as its first index. 

(2) Successive triples ( i , j ,  k),  ( i ' , j ' ,  k ' )  are connected by the requirement that 
i '  = h ( i , j ,  k).  

Each element T i e T~ may be viewed as defining a path in the tree of incarnations 
of the procedures with Pi  as root, or, alternatively, ~-i represents the stack of currently 
active procedures, each triple in ~'i representing one procedure call. This interpretation 
explains the requirement that i '  = h ( i , j ,  k) ,  since i '  is the index of that procedure that 
is located in place (i, j, k) of the scheme. 

EXAMPLE. Let ~ be {P1 ~ A1 ;/)1 ; As ; /)2 ; Aa u A 4 ;/)2 ; As , / )2  ~ A6 ; P1 ; 
A 7UAs}. Then  2 7 = { ( 1 , 1 , 1 ) ,  (1 ,1 ,2) ,  (1 ,2 ,1) ,  (2,1,1)}; also, h(1 ,1 ,1)  = 1, 
h(1, 1, 2) = 2, h(l, 2, 1) = 2, h(2, 1, 1) = 1. Possible r e  T are: E, (1, 1, 1), (1, 1, 1) 
(1, 1, 2)(2, 1, 1) or (2, 1, 1)(1, 2, 1)(2, 1, 1), etc. The sequence r a = (1, 1, 1)(1, 1, 2) 
(2, I, 1) represents the calling structure of Fig. 3. 
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FIG. 3. 

PI 

AI ; P1 ; A2;  P2 ;  A3 

AI;PI ; A2 ; P2; A3 

A tree of incarnations of recursive procedures with associated index-triple sequence. 

The  index-triple sequences are exploited in the introduction of the notion of 
companions of the procedures Pi : They  depend on the history of the computation, 
represented by the index sequence ~-, and come in four kinds: left-left: La,'i; left-right: 

o , i .  ~ , i .  L~ , right-left: and right-right:  o,i. R~ , R ,  . Anticipating their precise definition, they 
are intended to have the meaning: For some s ~ 0, let 

rio = (i0, J0, ko) "'" (is, Js ,  k~) e T~. _C T, 

and let i = h(is , j s ,  ks). As we saw above, "rio keeps track of a specific path through 
the tree of incarnations with Pi as root, leading to the inner call of P~. Then  the 
computation prescribed by La~ i is precisely the computation initiated by the outermost 

�9 0 . " " O , i  7 % i  . call of Pi , up to, but not including, thin mner call of Pi �9 Moreover, L~ = L~ , Pi �9 
0 . �9 �9 �9 i 0 �9 i 0 

Furthermore,  R$~ is the computation following after, but not lncludlng,,the tuner call 
of Pi ,  until completion of the outer call of Pi is achieved, and R / "  = Pi ; R " .  

�9 ~ , i  . . . o , i  C �9 . o io  . io  Fxnal!y., L~.,0 , P r ,  R ~ _ P*0" (Compare Fig. 4 and the example following the next 
ctelanltlon.) 

FIG. 4. 

Pi 0 

. . . . . . . . .  P i  . . . . . .  - -  

L~,i~ <:1 
10 l 0 

Left and right companions of Pi in a tree with root P%. 

These notions are now defined precisely, followed by the proofs of their intended 
properties. Let ~ be of the form (4.3)�9 We define two (infinite; see below) systems 
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of procedures ,  one with  p rocedure  symbols  a.i o,i {L, , L ,  }i=x . . . . . . . . .  r ,  and one wi th  the 
t~" Lh'h(i'l'k) and symbols  {R~a'~, Rp,it, ~i=1 ..... , , ~T  �9 As  abbrevia t ion  we use L~a',~ ins tead - - ~ r  , 

s imi lar ly  for the o ther  symbols .  ( I t  should  be no ted  tha t  r(i,j, k) is the  resul t  of 
conca tena t ing  the index- t r ip le  sequence r wi th  the index- t r ip le  (i,j, k), whereas  
h(i,j, k) is the resul t  of app ly ing  the funct ion h to (i,j, k).) 

DEFINITION 4.1 (Companions) .  Fo r  each i : 1, 2 ..... n, r e T: 

(a) (Lef t  companions)  

Lad ̀  ~ I ,  (4.4.1) 

L~:~ ~,~. L ,  , A(0) ,  (4.4.2) 

L,,k+xa'h ~ ~,,kr~ A(k), k = 1, 2 ..... K - -  1, (4.4.3) 

M~ t a ' ~ ' A ( 0 ) '  if K ~ j = 0 ,  L~ ' ~  0 ,L~ , . (4.4.4) 
~=~ (L~~ A(K),  if K,.~ > 0. 

(b) (Right  companions)  

R~ "i ~ I, (4.5.1) 

R~:~ ~ A(k); ~,~ R~.k+l,  k = l ,  2 ... . .  K - -  l ,  (4.5.2) 

R,,K 0'~ ~ A ( K ) ;  R ,  0'', (4.5.3) 

M, I A(0) ;  o,~ R~ , if K i j = 0 ,  
R ~ ' ~  ~ J ' (4.5.4) 

~=~ (A(0) ;  R~a:~, if  K,..~ > 0. 

Remark. T h e  first appearance  of infinite sys tems mer i t s  a commen t :  I t  t u rns  out  
to be a s t ra ight forward  ma t t e r  to general ize all cons idera t ions  of  Sect ion 3 to infinite 
systems,  inc luding  in par t icu lar  the union  and induc t ion  theorems.  Th i s  is worked  
out  in [4], bu t  omi t ted  here,  since no special  difficulties are involved.  

A n  example  of some companions :  Le t  ~ = {P ~ A 1 ; P ;  A 2 ; P ;  A 8 ~3 Ar W e  
have for the left  companions  (res t r ic t ing the  index  s t ruc ture  to a s impler  one, as is 
sufficient in this  example) :  

F o r  r e { 0 ,  l )* :  L~ ~ I ,  La0 ~La,'AI, , La, l ~L~ , ' A 2  , L~ <=L~ ,'AaULa, ", Aa" 
Hence,  e.g., 

L ,  ~ = L ;  ; A a u L ,  a ; A 4 = (Z~l ; A 3 U L a l  ; A,) ;  A n u I ;  A ,  

= L ~  ; A 3 ; A a ~3Lg ; A 2 ; A 4 ; A 3 W A4 
. . . .  k . / ( L g x  ; A3 UL~  ; A4); A 2 ; A 4 ; A 3 U A 4 
. . . .  u .." u L ~  ; A 4 ; A 2 ; A4 ; A8 U A 4 
. . . .  ~3 ... ULa~ ; Ax ; A 4 ; A 2 ; A4 ; A3 U A 4 
= "" w -"  u A~ ; A 4 ; A 2 ; A 4 ; A 3 u A 4.  
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This suggests that L ~, : -  P, which will indeed follow as one of the by-products of the 
first companion theorem: 

THEOREM 4.2 (First companion theorem). 

(a) La~'i; Pi : :  L~ "i, i -= 1,..., n, r e T. 

(b) P i ; R ,  " ' i = R * ,  '~, i - 1 ..... n, ~-ET. 

Proof. We prove only part a, part b being symmetric. Besides the system {La, '~, L~'i}, 
r l " - a , i  f - ~ , i  / (the - we introduce--for the sake of the present proof only-- the system t ~  , ~ ,  j 

denoting an alphabetic variant, and not complementation), defined by: For i ==- 1,..., n, 
r E T ,  

L,a" ~= I, (4.6.1) 

a , h  h i L, '  ; L,.~ ~ A(0), (4.6.2) 

1,,,~+~'h ..~ ~,.kr~ A(k), k = l , 2  ..... K - -  1 , (4.6.3) 

f o.i <= Za.i; P i"  (4.6.4) 

We shall prove that {La, 'i -a,i LO,i ___ s 1 :: - t ~  , - " , / "  J i = l , . . . . ~ ,  r E T  " 

Part  1. __C. By Corollary 3.1 it is sufficient to show that the ]2 satisfy the defining 
inclusions of the L-system. For the L a this is immediate, since (4.4.1)-(4.4.3) are 
identical (apart from the -) to (4.6.1)-(4.6.3). For the s176 the proof runs as follows. 
We have to show: 

IL,a'i', .4(0), if K i ~ =: 0, 
s _D U ' (4.7) t-"'~' �9 A ( K ) ,  i f  Ki,~ > O. j=l Z,~. K , 

I f  Ki.~ = O, then by definition of ~ ,  A(O) --  A( i , j ,  O) :-= Si.j C__ P~. Hence, L,a'*; 
C L ~'i" --  L ~~ . -~'~" Pi D ]2~'~; A ( 0 ) _  ~ , P; by (4.6.4). I f  K,..j :> 0, then L", '~ bv (4.6.4) = L,  , _ 

A(0); P(1);...; P(K);  A ( K )  by (4.6.2) = ]2a,:]; P(I); . . . ;  P(K);  A ( K )  by (4.6.4) = / o ; ] ;  
A(1);...; A ( K )  by (4.6.3) - :  L~, 2,-a'h" P(2);...; A ( K ) : -  . . . .  - L~'h',.r, A ( K ) ,  whence (4.7) 
follows. 

Part 2. ~.  We show that the L satisfy the defining inclusions for the L. For the 
L a this is again direct from the definitions. For the L ~ we must show that L ~,''; P,  C L ~ 
for which we use Scott's induction rule on the PC : It is sufficient to show: I f  

a.~. CLO.fi (L~ , X ~ _  ~ ,~-~ . . . . . . . . .  r ,  

57xlxx/3-5 
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then {L~di; A(0); X(1);...; X(K);  ~,i A ( K )  CLr }i~1 ........ ~r.  I f  K = 0, this follows from 
(4.4.4). I f K  > 0, thenDvi;  A(0); X(1);...; A ( K )  = L,.,1,;~'h" X(1);... ; A ( K )  _C (hypothesis) 

o,h. A(1);...; A ( K ) C  ... C L  ",r This completes the proof of the first companion L1-~1,  - - ,t �9 

theorem. | 

COROLLARY 4.2. L~ 'i = P i ,  R;~j i = P i .  

Proof.  Put ~- = �9 in Theorem 4.2, and use Laj i = R~163 i = I .  | 

The next theorem combines the left and right companions into one construct. 
I t  is, for convenience, phrased for r = r 1 e :/'1, but generalizes directly to indices 
j r  

THEOREM 4.3 (Second companion theorem). 

{La,'~i; P i  ; R$; i C_ P1}i=l . . . . . . . .  ~r~ 

prov ided  that  i f  r~ = �9 then i = 1. 

Proof.  Throughout  the proof we require that if r 1 = �9 then i = 1. We shall prove 
the, by Theorem 4.2 equivalent, inclusions 

~ '  "~ - i =  1 ..... n, r l e t  lp rovided  . . . .  (4.8) 
L "'i" R ~  C P1 \ TI , "r 1 -- 

We prove (4.8) by (infinite) Scott induction by showing that: I f  

x h , h  h ,h  
~'1,1 ; R T I , 1  Q" P 1  , 

X a'h �9 R a'h C/)1 k 1, 2 , . . . , K - -  1, r l , k + l  , ~ ' l , k + l -  , = 

X~ R~'I i C P 1 ,  

then 

I; R2 .~ c_ p~ , 

X ~'i' A(0); R ~'~ C P1 -r 1 ~ rl,l- , 

X ~ " A(k); ~,h ~1,/~ ' R ' l , k + l  _C P1 , k = 1 , . . . ,  K - -  1,  

( X  ~'i" A(O) (3 X "'h �9 R 0'~ C Px . , .~,  7 . ~ ,  A ( K ) ) ;  ~, _ 
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We have (a) I; R~ '1 C (Corollary 4.2) I;/)1 - P1. 

a,h (4.5.4) a,i. Ra,i C/)1 by the first three hypotheses. (b) X~,~'/" A(0); R~I,I_C X~I , ,~ _ , 

(c) and (d) follow similarly by the definitions and hypotheses. | 

The companion constructs are the central tool in our statement and proof of the 
generalized inductive assertion theorem. We use the following system of inclusions, 
with respect to the ~ of (4.3), and using assertions indexed in the same way as the 
indexed procedure letters above: 

p / ;  .a(O) C A(O); r  

p / ;  3(0) c n(o); p'r 

qkr, k ; A ( h )  ~ A ( k ) ;  p h k + l  , 

h . A ( K )  C A ( K ) ;  q~ q~',K , -- " 

k ~ 1,..., K - -  1, I 

K = 0 ,  

K > 0 ,  

Call the system of these four inclusions J ( ~ ,  p~, q~). Then we have 

THEOREM 4.4 (Completeness theorem with generalized inductive assertions). Let 
p, q be two predicates. Let ~ be as in (4.3). (~, Pa) is partially correct with respect to p 
and q iff there exist p~ , q~ such that 

I P and J ( ~ ,  / i . (4.9) 
_Cp~, 

P*x' qr ........ leTx 
l qe C if then 4=1 q, ~rl=E~ 

Proof. Throughout the proof we require that if r I ~ e, then i = 1. 

(1) I f  part. Assume (4.9). We show that P~I ; P /C  P / ;  q~l' Once this has been 
established, the desired result follows from p; P1C pX, ; P1C Px ; ql, C P 1 ; q. By 
Scott's induction rule, it suffices to prove: Ifp~ 1 ; Xi _C X/ ;  qix' then 

i P~I ; A(0); X(1);...; X(K); A(K)C_ a(0); X(1);...; X(K); A(K); q~l" 

Verification of this is direct from the definitions and the assumed inclusions in 

P I, 9;1)- 
(2) Only-if  part. Assume p; P I C - P 1 ; q .  We have, as in Theorem 4.1, two 

possible solutions for the P~I ' q~l " 

First construction: 

p/~ af oL ad i =  1 ..... n, r l ~ T  1 
=p ~-1 ~ 

q/1 df oLO. ~ i =  1 ..... n, r x ~ T  x : P  ~1 ~ 
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Second construction: 

= ~ q, i 1,...,n, r l ~ T  1, 

q i l  d f  o,i , - -R~ --~q, i = 1  ..... n, r1~7"  x. 

We prove only the first solution. 

- -  I (a) p~ = p  oL, a'~ = = p o I - - p ;  hence, p - - p , .  

(b) q~ =-- p oL~ '1 ---p o P1 ; hence, q~ = p o P1C_ q follows. 

(c) Proof of p~, ;A(0)  C A(0); q /  (case K = 0): We have to show that 
p o La~; A(0) ~ A(0); ~-~ oL ~ , which is direct from (4.4.4). 

(d), (e), (f) The  remaining cases follow from the definition of J ( ~ ,  p~l, q,",), 
and (4.4.2), (4.4.3), and (4.4.4), respectively. | 

COROLLARY 4.3. (1) l f  P 1 is partially correct with respect top,  q, then 

{poL~ . iC  a.i ~oLO, iC o,i ,~ _ R , ,  - -~  q ,  r , ,  _ R , ,  - - ~  q } i = l  . . . . . . . .  i ~ r  t 

(2) For each system {p~, ,x~r ~ , qil};=l ....... such that J ( ~ ,  P~I' q$)' we have 

{p~lCRa.i--~ oLo.iC - -  r l  q '  P r l  - -  qrl}i=X . . . . . . . .  l ~ r t  " 

Proof. (1) p oLa~ '~ C R~ '~ --+ q is equivalent with p; L~'~; R~ a'~ CL~'i; Ra/~; q, and 
this follows from Lag'f; R~; i ~_ 1>1 (Theorem 4.3) and the partial correctness of P1 with 
respect to p, q. 

(2) The  technique of this proof is similar to that of the previous ones, which 
is why we omit it. II 

One might wonder whether the complex structure of the assertions used in this 
proof is really needed. The  following remarks show that this is indeed the case. 
Consider as an example the procedure P declared by P ~ At ; P; A 2 ; P; A 3 u A4 �9 
Suppose first that all partial correctness properties of P could be proved using a format 
with only two inductive assertions, as suggested by Fig. 5a. 

FIG. 5a. 

- -  " i ;" 
i 
! 

I 

. , p  

A f in i t e ,  a n d  i n c o m p l e t e ,  s y s t e m  o f  i n t e r m e d i a t e  a s s e r t i o n s .  
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We shall use Io(p, q, Ax_4) as the name for the system of four inclusionsp; A 1 C A 1 ; 
p, q ; A  2_CA2;p,  q ; A a C A  s ; q ,  and p ; A 4 C A  4 ; q .  We now argue as follows. 
Consider the two sets 

M 1 = {S: Vp, q[i f lo(  p, q, Ax_,) thenp ;  S _C S; q]), 

M~ = {S: S _C (A~ u A~ ; As*; Az)*; A~ ; As* }. 

I t  can be verified that 3/1 --  M2 �9 Now let Po, qo be a pair of assertions such that 
Po ; P C P;  qo, but, for some S O E M 2 ,  not Po ; So C_ S O ; qo. Clearly, such Po, q0, So 
always exist. Then, since Mx = 3//2, So ~/141, and we see that Io(Po , qo, A1-4) does 
not hold, since, otherwise, Po ; So _C S O ; qo could be inferred. Thus,  we conclude 
that Po ; P _C P;  qo is a partial correctness property which is not provable with the 
simple structure as in I o . 

Next, let us consider the infinite, but not sufficiently refined, system of inductive 
assertions as suggested by Fig. 5b. We then argue essentially as above, with obvious 
changes in/1//1, and changing M 2 to {S: S _C (] {X: X = A 1 ; (X; A2)*; X;  A a u A~}}. 
The details of this case are left to this reader. 

FIG. 5b. 

\F 

A n  infinite, b u t  still incomplete ,  sys t em of  in termedia te  assert ions.  

We now continue with the application of Theorem 4.4 to obtain an alternative for 
the minimal fixed-point characterization of recursive procedures: 

COROLLARY 4.4. Let  ~ be as before, and let R 1 , . . . ,  R ,  be arbitrary statements. Then 

r 
u 1 ..... n,pr qC~) [pro; R 1 C R ~  ; q(~) i #  

such that t pa)  C P~' 
tq, ~ C_ qm,  

i f f  Vl = 1 ..... n [R~ = Pz]. 

Proof. Follows from Theorem 4.4 and Lemma 2.6. 

, q ~ , } i = a  . . . . .  n ,  ~ e r z  

and t l ,~r~] J ( ~ . P . ~  .q.~)~=l ..... , .  J 

We conclude our paper with a discussion of the notion of total correctness and its 
relationship to partial correctness. 
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P is totally correct with respect to q i f f  Vx 3y[xPy  A q(y)]. To  explain the relation- 
ship with partial correctness, we once more consider the simple while statement r ,  S. 
In  the beginning of this section we saw that r �9 S is partially correct with respect to p 
and q iff there exists s such t ha tp  C s, s; r; S C r; S; s, and s; g C 5; q; i.e., 

Vx, y [ p ( x )  A x r �9 S y --,- q(y)] 

+-> 3s[Vx[p(x) --+ s(x)] A Vy, Z[s(y) A r ( y )  A y S z  -+ s(z)] 
A Vt[s(t) A -nr(t)  --+ q(t)]]. 

We are interested in particular in the case that p is identically true. Suppose we could 
prove, for such p, the following stronger version of (4.10): 

Vx[Vy[x r �9 S y -+ q(y)] 

+-+ 3sis(x) A Vy, z[s (y)  A r ( y )  A y S z  --+ s(z)] 
A Vt[s(t) A -nr(t)  --+ q(t)]]]. (4.11) 

From this we may conclude, by replacing q by -~q, and negating both sides: 

V x [ - & y [ x  r , S y - -+  -~q(y)] 

+-+ -n3s[s(x) ^ Vy, z[s (y)  A r ( y )  A y S z  --+ s(z)] 
A Vt[s(t) A -nr(t)--+ -nq(t)]]]. 

Now observe that ~ V y [ x  r �9 S y -+ -nq(y)] +-+ By[x r �9 S y A q(y)] ; i.e., r * S is totally 
correct in x with respect to q. Thus  we see that if we could prove (4.11), then, writing 
- , B s # ( x ,  s, -nq) for its right-hand side, we could justify the inference of total correct- 
ness of r �9 S in x with respect to q from the proof of -~3sS(x,  s, ~ q ) ,  i.e., from the 
negation of partial correctness (in the refined sense) of r * S in x with respect to (the 
identically true p and)-7 q. This inference seems to be the essence of Manna's  treatment 
of total correctness. 

We therefore will prove an extension of the generalized inductive assertion theorem, 
yielding the equivalent of (4.11) in the general case: 

THEOREM 4.5 (Total correctness). 

Vx [ V y [ x P l y  --> q(Y)] 
L 

rp~(x), 
+-+ Sp$, , q$1 [Vt[q~(t) --~ q(t)], 

Proof. 
by 

1~ 'rl=E , t h e n  ~=i  2 

We give only the --~ part. Choose some fixed xo,  and let p ~ ,  q~1 be defined 

/,~ =d~ {(~o, Xo)) o Z,l~'~, 
i d f  oLO, i 

q-, = {(Xo, Xo)} "1" 
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(Note that {(Xo, Xo) } _C I is indeed an assertion.) We show that 

(1) p~(xo) holds: 

p~(Xo) = ({(Xo, Xo)}o L~;1)(Xo) = ({(Xo, xo)}o I)(xo) = {(Xo, Xo)}(Xo), 

and {(xo, Xo)}(Xo) is clearly satisfied. 

(2) Vt[ql~(t) --~ q(t)], i.e., Vt[({(Xo, x0)}o L~ --~ q(t)], or 

Vt[~y{(xo ,  x0)}(y ) ^ y P l t  -+ q(t)], 

or Vt, y [ y  = x o ^ yP1 t --+ q(t)], or Vt[xoPlt  --+ q(t)], which holds by assumption. 

(3) The  proof that J ( ~ ,  P$1 ' q*~l ) holds is similar to that of Theorem 4.4, and 
is omitted. | 

With this last theorem we hope to have clarified the precise status of the notion 
of total correctness, thus achieving the last goal of our paper. 

5. AN APPLICATION 

After having obtained--in the form of the completeness theorem-- the  main result 
of our paper, we now indicate a way of applying this result in a proof of program 
correctness. We shall prove the correctness of the wellknown recursive solution 
of the Towers of Hanoi problem. A proof based directly on the indexing mechanism 
of Section 4 might be possible, but it would be very awkward. Instead, we reformulate 
Theorem 4.4 in such a way that practical application becomes feasible. We shall not 
do so in full generality, but restrict ourselves to the problem at hand, leaving the 
formulation of the general case to the reader. 

Remember that the Towers of Hanoi puzzle is concerned with the following. 
There  are three piles of disks, with, initially, N disks at pile 1, say, positioned in 
such a way that each disk is smaller than the disk below it. The  problem is to move 
the N disks from pile 1 to pile 3, say, where pile 2 may be used for temporary storage, 
in such a way that the constraint that a disk be smaller than the disk below it is obeyed, 
at each of the three piles, at all intermediate positions (including, of course, the final 
one). 

Let  f ( f rom) ,  v (via), t (to) be three variables with distinct values in {1, 2, 3}, let n 
be an integer 9 0 ,  and let move (n + 1, f ,  t) be the elementary action of moving 
disk n + 1 from pile f to pile t. The  recursive solution of our problem is then given 
by the procedure P declared as follows (the notation, insofar as it is not yet introduced, 
should be self explanatory). 
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P ~ In > 0 In : =  n -  1; (/, v, t ) : =  (f, t, ~)1; 
P; 

[(f, v, t) : =  (f, t, v); move(n + 1,f ,  t); (f, v, t) : =  (v,f ,  t)]; 

P; 

[(f, v, t) : =  (v, f ,  t); n : =  n -[- 1] 

k.) 

In = 0]. 

(5.1) 

Observe that P has the format of 

P ~ A 1 ; P; A s ; P; A~ u A 4. 

For  P in this form, Theorem 4.4 simplifies to 

p; pC_.P; q 
iff 
~{Pa, qa}a~{0,1}* such t h a t p  C_p,, q, C q, and 

Vp, q {pa;Al~_CA1;pao) ( 5 , 2 )  

lq~0 ; A~ _c A~ ;po l l  
t ~: ; A3 C- A3 ; q~ ~ 

; A 4 _C A 4 ; q~ ]~E{0.1}* 

The  generalization of this referred to above is the following. We observe that in 
(5.2) we are concerned with a set q/" = {0, 1}*, and operations f ,  g: ~ --~ ~e" defined 
by f (~ )  = a0, g(a) = ~1. Now the particular structure of "fit', f, and g plays no role 
in the proof  of the if part  of (5.2). In  fact, we readily see that (5.2) can be restated as 

p; PC_P; q 
iff 

such that p C p(%), q(%) C q, 
Vp, q and (5.3) 

p(~r); A~C_A 1 ; p(f(cr))] 
q(f(cr)); Az C A2 ; p(g(cr)) I 
q(g(~)); A3 _C A~ ; q(~) { 

p(~); A,  = A,  ; q(~) 1o~,~ 

This formulation gives us the key to the proof of the correctness of (5.1). First 
we define the structure of the states on which the procedure P of (5.1) operates. 
Each state x is a 5-tuple 

x = (n, f ,  v, t, (d 1 .... , dN)), 
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with n an integer, f ,  v, t as above, and (dl ,... , du) an N-tuple of variables with values 
in {1, 2, 3}. I f  dj has the value i, 1 ~ i ~ 3, this indicates that in state x disk j is 
located at pile i. To  be more specific, let us consider the case in which N = 7 and 
we are at a certain intermediate state x ~ (4, 3, 2, 1, (3, 3, 3, 3, 2, 1, 3)). To  this 
state we then have Fig. 6 as the corresponding picture, and this picture describes 
the situation in which we have to perform the subtask of moving the four disks on 
top of pile 3 to pile 1 (via pile 2). 

& 
1 2 3 

FIG. 6. Intermediate state x = (4, 3, 2, 1, (3, 3, 3, 3, 2, 1, 3)). 

Next, we describe the structure of the parameter a which occurs in the assertions 
p(a), q(a). Each a is a 5-tuple 

= (~, 4,  8,  *, (av+l ..... *N)). 

Its meaning is explained after the definitions of the p(a), q(a), which are as follows. 

I n = v ,  f = 6 ,  v = f l ,  t = ~ ,  l 
1 < ~ j ~ ,  

p(a)(x) ~ d~ = la~, v - E l  <~ j ~ n, 

~, 1 ~ j ~ v ,  . 
q(a)(x) = dj = 3~, v + l ~ j ~ n, 

These definitions are to be interpreted as follows. For state x and parameter a, p(cr)(x) 
and q(a)(x) are true before, resp. after, performing the subtask of moving the n upper- 
most disks from pile f to pile t: p and q differ only in the conditions imposed upon 
the dj ,  1 ~< j ~ v. For these j, if n has current value v, then dj = ~ (current value 
o f f ) ,  before, and dj = r (current value of t), after performing the subtask. All other 
variables are unchanged, and their current values are stored in the parameter a. 

Next we define the functions f and g: 

f (c r )  = (v - -  1, q~, ~',/3, (q~, 3~+a , ' " ,  3N)), 

g ( ' 0  = (~ - -  1, ~,  ~,  ~-, 6-, ~+~ , ' " ,  8~)) .  
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Finally, a 0 is defined as 

% = ( X ,  1 , 2 , 3 , ( ) ) .  

Note that, according to the definition of p, q, and %,  we then have 

p(ao)(X ) = { n  = N , f =  1, v = 2 ,  t = 3 ,  d s = 1 (1 ~< j~<N)} ,  

q(ao)(X ) ={n = N , f =  1, v = 2 ,  t = 3 ,  a s = 3 ( 1  ~< j~<N)} ,  

and our aim is to use (5.3) in order to show that if p(%)(x) holds before execution 
of P, then q(%)(x) holds after its execution, thus establishing the correctness of P. 
We have to verify the four conditions p(a); A 1 C .d 1 ; p(f(cr)),..., p(a); A 4 _C A4 ; q(a), 
with the definitions of the p, q, or, x, A 1 ,..., A 4 filled in. Below we write out the first 
three inclusions, omitting the trivial case of the fourth, and writing {p} S{q} as short- 
hand for p;  S C S; q. 

(1) n = v ,  f = ~ ,  v = f l ,  t = r ,  a s=  3s ' v + l  <~j<~N, '  

In > 0 I n  : =  n - -  1; (f, v, t ) : =  (f, t,v)], 

(2) 

n = v - - 1 ,  f = ( ~ ,  v = r ,  t = f i ,  as= , j = v ,  
[f6 s, v + l  <~j<~N, 

n = v - - 1 ,  f=ck ,  v = r ,  t = f i ,  a s=  , j = v ,  
[t3j, v + l  <~j<~N, 

[(f, v, t) : =  (f, t, v); move(n + 1,f, t); (f, v, t) : =  (v,f, t)], 

n = v - -  l , f  =fi ,  v = ~ , t = r ,  ds= r, j = v ,  
3s, v + l  <~j<~N, 

(3) n = ~ - l , / = ~ , v = , L t = ~ - , d ~ =  ~-, j = , , ,  
~j, ~ , + 1  <~i<~N, 

[(f, v, t) : =  (v,f, t); n : =  n + 11, 

n = v , f = ~ , v = f l ,  t = T ,  ds=  ~ ,  v + l  <~j<~N," 

The reader will have no problem in verifying that inclusions 1-3 are satisfied. Thus, 
we can indeed apply (5.3). Adding to this the observation that the formalism excludes 
both illegal intermediate positions and illegal moves, we have proved the correctness 
of the Towers of Hanoi program. 
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