
Recurrent Ultracomputers are not log N-Fast
by

Lambert Meertens†

Ultracomputer Research Laboratory
Courant Institute of Mathematical Sciences

715 Broadway, 10th Floor
New York, NY 10003
Ultracomputer Note #2

March, 1979

† Mathematisch Centrum, Amsterdam

ABSTRACT
Ultracomputers are assemblages of processors that are able to operate concurrently and
can exchange data through communication lines in, say, one cycle of operation. For
physical reasons, the fan in/out of the processors must be limited. This imposes restric-
tions on the possible communication schemes. I to have the ultracomputer operate
efficiently as a whole, it is desirable that arbitrary exchanges of information between
the processors can be effected in small number of data shifts.

If a really huge ultracomputer is built, it would be nice if it could be constructed by
coupling smaller ultracomputers, which in turn are assembled from still smaller ultra-
computers, and so on. It will be shown that the latter desire conflicts to a certain extent
with the earlier one.

1. Introduction
Ultracomputers [Schwartz, 1979] are assemblages of processors that are able to operate con-

currently and can exchange data through communication lines in, say, one cycle of operation. For physi-
cal reasons, the fan in/out of the processors must be limited. This imposes restrictions on the possible
communication schemes. In order to have the ultracomputer operate efficiently as a whole, it is desirable
that arbitrary exchanges of information between the processors can be effected in a small number of data
shifts.

If a really huge ultracomputer is built, it would be nice if it could be constructed by coupling smaller
ultracomputers, which in turn are assembled from still smaller ultracomputers, and so on. It will be
shown that the latter desire conflicts to a certain extent with the earlier one.

For the purposes of this note, a paracomputer is a sequence of directed graphs. (Ultracomputers are
paracomputers satisfying a restriction defined below.) Throughout the paper, the sequence GD , D = 0,

1,... stands for a paracomputer. Each GD is a pair <PD,LD>, where PD is the set of nodes (or "processors")

of GD, and LD is a set of edges (or "lines") <p1,p2> ! PD × PD. We define

N D = # P D {(the size of G D)},

"D =
p!P D

max #{ < p 1 , p 2 > !L D # p 1 = p or p 2 = p }

(the maximal fan in/out in GD),

C D = # L D ,

$D = C D / N D .

To exclude uninteresting cases, it is assumed that ND%&. (Here and in the sequel, where limits or orders

of magnitude are concerned, there are always understood to be with respect to D%&.)

For a paracomputer to be an ultracomputer, the following requirement is imposed:

(UC) "D is bounded by some constant ".

Lemma 1. (UC) implies that $D is bounded.

Proof: CD = #LD = #{<p1,p2> ! LD } '

2
1_ _

p!P D

(#{<p1,p2> ! LD # p1= p or p2=p} '
2
1_ _

p!P D

(" D =
2
1_ _ ND " D,

so $D = CD/ND ' 2
1_ _ " D, which by (UC) is bounded.

The order of magnitude of the number of data shifts required to obtain an arbitrary permutation on
PD will determine how "fast" the paracomputer is. In order to express this in terms of the graph model,

we must go through some definitions. The set of basic permutations on GD is defined by

BPD = {):) is a permutation on PD #

)(p) = p or <p,)(p)> ! LD for all p ! PD}.

The permutations PERMD
(d) of shift depth d, d * 0, are inductively defined by:

PERMD
(0) = {)I}, where)I stands for the identity permutation,

PERMD
(n + 1) ={+)#+ ,BPD,),PERMD

(n)} -
k = 0
-

n
PERMD

(k).

(Note that BPD = PERMD
(0) - PERMD

(1).)

The shift depth sdD ()) of a permutation) on PD is defined by

) ! PERMD
(sdD ())) .

This definition may leave sdD()) undefined for a given), in which case we put sdD()) = &.

The maximal shift depth of GD is now

M D =
)

max sd D ()) ,

where) ranges over all permutations on PD. (The treatment of &’s should be obvious.)

A paracomputer is called f(N)-fast if MD = O(f(ND)). For example, the ultracomputer as defined in

Schwartz [1979] has ND = 2D and MD ' 4D-3 for D*1, so it is log N-fast. In fact, it is easily seen to be

strictly log N-fast, meaning that it is log N-fast but not f(N)-fast for any f(N) = o(log N). This is the best
possible since no ultracomputer can improve on log N-fastness. Note that the lower orders of f(N)
correspond to faster operation.
Lemma 2. Let the processors PD of GD be partitioned into two sets S and T.

Let n = min(#S,#T) and c = #(LD . S × T). Then n ' MD.c.

Proof: Let the permutations on PD be extended in the natural way to map subsets of PD on subsets.

Define

Ultracomputer Note 2 Page 2

a()) = #()(S) . T).
We will first show that for + ! BPD , a(+) ' c. For

a(+) = #(/ (S) . T) = #{s ! S # + (s)! T}
= #{s ! S # <s, +(s)> ! LD. S × T} ' #LD . S × T) = c.

Let) be a permutation such that sdD()) = d. It is claimed that a()) ' dc. The claim is easily shown

correct by induction on d (and, in fact, we have just shown it for the case d=l). For sdD()) = 0,) =)I, so

a()) = #()I(S) . T) = #(S . T) = 0.

For sdD()) = 0,) can be written as +)0, where

sdD()0) = sdD()) - l and + ! BPD. Since

)0(S) =)0(S) -)0(S) . T 1 S -)0(S) . T,
)(S) = +)0(S) = +()0(S)) 1 + (S -)0(S) .T) 1 +(S) - +()0(S) . T),

so +)0(S) . T 1 +(S) . T - +()0(S) .) T . T 1 +(S) . T - +()0(S) . T). We have
a ()) = a(+)0)=#(+)0(S) .T)' #(+ (S). T - +()0 (S). T)
' #(+ (S) . T) + #+()0(S) . T) = #(+(S) . T) + #()0(S) . T)
= a(+) + a()0).

Using a(+) ' c, sdD ()0) = sdD ()) - 1 and the inductive hypothesis, it follows that

a()) ' c + (sdD()) - 1)c = sdDc.

Next, choose (arbitrarily) two subsets S0 1 S and T0 1 T, each of size n. Let) be any permutation such
that)(S0) = T0. Then

n = #T0= #()(S0) . T0)' #()(S) . T) = a())
so, since MD is an upper bound of the values of sdD ()),

n ' a()) ' sdD())c ' MDc,

which proves the lemma.
Remark. Although it may not be obvious from the formalism of the proof, the crucial idea is that at any
shift + at most c items from S0 may reach (their destination in) T across the "boundary" between S and T.
It follows that the lemma will also hold if the processors are not forced to give up their current contents in
passing it on to another processor and receiving data from a third. Even an unlimited memory capacity of
the processors will not help; the bottle-neck is not the capacity of the processors but that of the lines.

A recurrent paracomputer is a paracomputer obeying a recurrence relation

G D = < P D 2 i 1 - . . . - P D 2 i n
, LD

+ - L D 2 i 1 - . . . - L D 2 i n
>.

In this scheme the processors P D 2 i k
of constituent paracomputers G D 2 i k

are considered distinct for dif-
ferent values of k, even if ik is the same (by taking copies if necessary), so the unions involved are disjoint

unions. We require, moreover,
n * 2 and 1=il' i2 ' ...' in.

(An additional requirement, which we do not need however, might be that LD
+ 1 P D ×P D is disjoint from

each P D 2 i k
×P D 2 i k

.) We shall write I for in.

Ultracomputer Note 2 Page 3

To get the sequence started, we take GD = <3, 3> for D < 0 and G0 = <{4}, 3>. (4 stands for any

"atom" to label the processor in the point set P0, e.g., the null sequence. For the following considerations

the choice of P0 is immaterial, as long as N0 > 0. Moreover, if N0 = 1, the choice of L0
+ is immaterial.)

For a recurrent paracomputer we have

N D = 0 for D < 0 ;

N 0 = 1 ;

N D =
k = 1
(
n

N D 2 i k
for D > 0.

Obviously, ND is strictly monotone increasing for D * 0. The solution to a recurrence relation of this type

can be written explicitly as

N D =
j = 1
(
I

a j5 j
D,

where the 5 j are the roots of the equation
k = 1
(
n
52 i k = 1. If 5 is the largest of these roots, we have

(1) N D = a5D + O (µD)

for some positive a and some µ such that #µ#< 5. (If there is a multiple root, the general explicit solution
is slightly more complicated. We are concerned with the behavior of ND, however, and it can be shown

that the largest root is larger than 1 and exceeds the other roots in absolute magnitude, and so has multi-
plicity 1.)

Putting C D = # L D and C D = # LD
+ , we also have

C D = 0 for D < 0 ,

C D = C D +
k = 1
(
n

C D 2 i k
for D*0.

This recurrence relation is solved by

(2)C D =
q = 1
(
D

N D 2 q c q.

(If L0
+ 6 3, the summation should start with q = 0.)

To give an example of a recurrent paracomputer, consider

G D = < PD 2 1
(0) - PD 2 1

(1) , LD
+ - LD 2 1

(0) - LD 2 1
(1) >.

The superscripts (0) and (1) serve to distinguish the two copies of GD-1. If p is a processor of PD-1, the

corresponding processors of PD 2 1
(0) and PD 2 1

(1) are written p0 and p1, respectively. LD
+ is then defined as

Ultracomputer Note 2 Page 4

{<p0, p1> # p!PD-1} - {<p1, p0> # p!PD-1}.

So ND = 2D. Since "D= 2D, this recurrent paracomputer is not an ultracomputer. It is easily shown to be

strictly log N-fast. GD is isomorphic to a hypercube (with edges running both ways) of dimension D.

Theorem. Recurrent ultracomputers are not log N-fast.
Proof: By contradiction. Let the sequence GD be a log N-fast recurrent ultracomputer. We have MD =

O(D), so at most a finite number of the values of MD is infinite. If this should be the case, we augment

the corresponding LD
+ to make MD finite. This does not influence property (UC). Now, for some 7>0,

MD<7D.

We can partition PD into two sets, S = P D 2 i 1
and T = P D 2 i 2 - . . . - P D 2 i n

. >From I = max ik,

k=1,...,n, we have min(#S,#T) * ND-I. Each L D 2 i k
contains members of P D 2 i j

×P D 2 i j
only, so members

of S × T contained in LD = LD
+ - L D i - ...- L D 2 i n

are members of LD
+ . Consequently, #(LD . S×T) '

#LD
+ = cD. Application of Lemma 2 yields now

ND-I ' MD cD.

Using MD < 7D and (2), we obtain for $D

$D >
7
1_ _

q = 1
(
D

qN D.

N D 2 q N q2 I__________

Since ND-q Nq-I / ND % 5-I, we are led to rewrite this as

$D >
7
1_ _ 52 I

q = 1
(
D

q
1_ _ +

7
1_ _

q = 1
(
D

q
1_ _ 8#
9 N D

N D 2 q N q2 I__________ 2 5I:#
;

>From (1) it is clear that the sum in the second term has a finite limit, whereas the first term is clearly
unbounded, so $D is unbounded. Together with Lemma 1 this yields a contradiction.

Remark. The possibility is still left open that recurrent ultracomputers might exist that are (log N)1+! -
fast for arbitrarily small ! > 0. Note in fact that (q2 (1 + !) is bounded. A mere existence proof, e.g., by
enumerating combinations, would not be very helpful; for an ultracomputer to be manageable the lines
should definitely exhibit some simple pattern. Note, moreover, that the criterion of boundedness of $D as

applied is relatively weak; for example, if cD is constant, the reasoning in the proof of the theorem fails

completely to reveal that the corresponding ultracomputer is at best N-fast, for no contradiction is

obtained concerning the boundedness of $D for even (log N)1+! -fastness (although the contradiction fol-

lows immediately from the intermediate ND-I ' MDcD). It seems, therefore, entirely plausible that the

result of this note could be drastically sharpened.

Reference

Ultracomputer Note 2 Page 5

J.T. Schwartz, ‘‘Ultracomputers’’, ACM TOPLAS 2 1980, pp. 484-521.

Ultracomputer Note 2 Page 6

