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Abstract. Call a set of assertions sd complete (with respect to a class of programs .9') if for any p,
a e sof and S e ,g', whenever 1/21.5{q} holds, then all intermediate assertions can be chosen from st
This paper is devoted to the study of the problem which sets of assertions are complete in the above
sense. We prove that any set of recursive assertions containing true and false is not complete. We
prove the completeness for while programs of some more powerful assertions, e.g. the set of
recursively enumerable assertions. Finally, we show that by allowing the use of an 'auxiliary'
coordinate, the set of recursive assertions is complete for while programs.

1. Introduction

Two important methods that are used to establish the partial correctness (correct-
ness without regard to termination) are the inductive assertion method of Floyd [6]
and the axiomatic method of Hoare [10]. These two methods are closely related; in
particular, both use intermediate assertions to express or derive local correctness
properties.

A global correctness property {p}S1q1 will in practice have recursive' assertions p
and q. The precondition p will usually be some simple condition on the input

* This publication is registered as Report IW 92/77 of the Mathematical Centre.
t Present address: The faculty of  Economics, Erasmus University, P.O. Box 1738, Rotterdam,

Netherlands.
1 The word 'recursive' is used in this article in two senses: that of Recursion Theory (meaning 'effectively
computable') and that of Program Schemes (meaning 'applied in its definition'). Which meaning is
intended will be clear from the context; here of course, the first one is implied.
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variables, or even 'true'. Similarly, one may expect that the postcondition q can be
checked effectively by inspection of the output variables. A natural conjecture then is
that all intermediate assertions may also be chosen recursive. This is of relevance,
e.g., in view of proposals for 'assert statements' (see e.g., MD,  where assert B, where
B is a Boolean expression, supposedly signals an error if B evaluates to false. Such a
B should be chosen such that it could have served as intermediate assertion in a
correctness proof for the intended program. Since the value of B must be effectively
computable, this assertion is recursive. The present paper addresses the question
which sets of assertions are sufficiently large to allow the intermediate assertions to
be chosen from them. It will be shown that the set of recursive assertions does not
suffice, so the above conjecture is false.

This question is one particular aspect of the completeness problem for proof
methods, i.e., the problem whether a given method can be used to prove any true
proposition f rom the class to  which i t  pertains. Various results concerning
completeness have been obtained, both for the method of Floyd and that of Hoare.
For Floyd's method we only mention the papers [1], [2], [9] and [11]. Hoare's
method is based on formal deduction systems to derive sentences of the form
1p1S{q}, where S is a program from a given programming language and p and q are
formulas f rom a  given first-order language o f  assertions. Fo r th is method
incompleteness threatens at every turn. We shall briefly review some of the problems
and approaches to suppress 'uninteresting' forms of incompleteness.

To start with, there is the relative weakness of formal deduction systems compared
to the power of computing systems. Even under rather general assumptions any
axiomatizable deduction system H is incomplete. Take, e.g., the language of Peano
arithmetic as assertion language. Since a sentence {true} skip Ip l is true i f  p is true,
we conclude immediately from Godel's first Incompleteness Theorem that H  is
incomplete. Now the language o f  Peano arithmetic is rather powerful, but a
restriction to a simpler assertion language is of no help, as the following diagonaliza-
tion argument shows. Suppose that the class of programs .9 under consideration is
such that every partial recursive function can be computed by a program from .9'.
(Several extremely simple classes of programs with this property have been exhibited
in the literature.) Let H be a formal system to derive asserted statements for 9'. One
can construct a program S E 9' which, for input i = n, generates all proofs in H and
halts if  it finds H { t ru e }  i := n P „ {false}, where P,, stands for the nth program in .9'
according to some enumeration. Such an S diverges for input i = n i f  H 1-/- {true}
i := n ; P„ {false}. S has itself a number, say ns. Now {true} i := ns Pn, {false} holds if
Pn
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complete.
A way to overcome this inherent weakness of the axiomatic method has been

indicated by Cook [4]. Add to the Hoare system an oracle that can supply answers to
questions of the form p ,  i.e., 'is p true?' for all first order formulas p (in some given
structure with some fixed interpretation). This oracle is incorporated in the system by
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p' p ,  fp1S{q),Rule of Consequence: -
›  q ' { p

1
}
S
{ q
1

This rule by itself still leaves room for rather inessential forms of incompleteness.
For example, Wand [15] exhibits a particular structure for which the necessary
intermediate assertions are not first-order definable. This problem had also been
tackled by Cook by defining a notion of 'expressiveness' for the assertion language,
and restricting the question of completeness to structures with expressive assertion
languages. Using as definition for expressiveness of a language L the requirements

(i) fo r any assertion p from L and any program S the strongest postcondition
sp(p, S) is definable in L, and

(ii) the equality predicate is in the language,
Cook succeeded in showing the completeness of a Hoare system for a language of
(essentially) while programs. Gorelick [7] extended this result to a class of programs
with recursive procedures. (Following Clarke [5], to prove these results one could
also replace the above two requirements by the single one that the weakest
precondition be definable.)

Clarke [5] finally reached along this road an incompleteness result: for a pro-
gramming language with global variables, 'static scope' and recursive procedures
with procedure parameters, he proved the incompleteness of any Hoare system, by
using a structure with two elements and an expressive assertion language (in the
sense of Cook).

For the purpose of the present paper we take the standard model of Peano
arithmetic as the underlying structure. As an immediate consequence, the problem
of expressiveness disappears i f  one allows a ll first-order definable assertions.
However, we want to restrict the set of assertions and to ask the question for which
sets one obtains completeness.

It is convenient to consider this problem within a relational framework (see, e.g.,
[2]). We shall view a program as a set of initial and final states, and an assertion as the
set of states 'satisfying' it. This approach corresponds to the method of Floyd, but the
results are readily translated to Hoare's method (assuming an oracle), where the class
of programs under consideration corresponds to while programs.

Throughout the paper, 'V  =41, v
2
,  . 1  s t a n d s  
f o r  a  
fi n i t e ,  
n o n e m p
t y  
s e t  
o f

'variables'. A  state is a (total) mapping Ir-+ X, where X denotes the set of natural
numbers. Letters cr, a r e  used for states. U denotes the set of all states. A
program is a binary relation over the state space 0
?1, i . e .  a  s e t  o f  
p a i r s  o f  
( i n i t i a l  
a n d
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final) states. An assertion is a subset of U. Programs are denoted by S, Si, S2, • • • 1
and assertions by p, q, r

The fact that ̒1( is finite is merely a matter of convenience. With suitably amended
definitions, all theorems remain valid if c
lr i s  i n fi n i t e  
( w h i c h  
i s  
o b v i o u s  
i f  
o n e  
a s s u m
e s

that each particular program uses only a finite number of variables).

Definition 2.1.

1p1S{q} V o -,  TRU E p A crST)--> T E q];

wp(S, q)= {cr :Vr[oSr --0 T E q]};

sp(p, S)=  {r :3cr[cr E p A crSr]Y,
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p * S = 1(o-, r):cr(p ** S)T A T E -
1 p 1The form p S  defines, of course, the meaning of a while loop 'while p do S od'.

Two obvious but important properties of the notions introduced are:

{p}S{ci} ill p g_wp(S, q);

{p}S{q} i f  sp(p, S).g q.

Note that 'wp' is the weakest precondition for partial correctness. Termination is not
implied.

Corollary. I f  p cp ,  1p1S1q1 and q g ' ,  then {p'}S{q'}.

Definition 2.2. Let f be a partial function from X into X. We say that S computes f if
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Throughout the paper, stands for a set of recursive assertions (the 'conditionals')
which is closed under the operations n and a n d  .9' stands for a class of programs
that satisfies the following three properties:
(a) i f  SI, S2 E 9' then S
i
;  S 2  e

(.9' is closed under sequencing);
(b) if  b e gl and S e .9' then b S  e

(9" is closed under repetition over the conditionals);
(c) every unary partial recursive function is computed by some program from

(9
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Finally, „a stands throughout the paper for a set of assertions which contains at least 0
('false') and ( ' t ru e ' ) ,  so that trivial completeness is excluded.

We adopt now the following completeness definition:

Definition 2.3. s i  is complete for (9', ,R) if for all p, q b  a a n d  S, Si, S2 a ..9" the
following three requirements are satisfied:

(i) p n b e
(ii) i f  {p }S
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S 2 1 q
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q
} ;

(iii) i f  {p}b S W. ,  then, for some r a p  r ,  {r fl b}Sirl and r n q .
So, informally speaking, si is complete for (9', )  if for every p,q a ..cf and S a .9' the
truth of I p1S1q1 can be verified using only intermediate assertions from si.

It may seem that we unduly omitted conditional statements from our definition.
Note, however, that if si is complete for (,9', )  and (informally) 0,1 'if b then ,S, else
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3. Incompleteness for recursive assertions

For the result of this section, we rely heavily on a theorem due to Mostowski (see
1
8
1
)
:

Theorem 3.1. There exist two disjoint recursively enumerable subsets X and Y  of X,
such that for no recursive Z both X g Z and Y n z = 0.

Through the remainder of this section X  and Y  will stand for two such sets.

Definition 3.1. For n E X and A c X:

= A v V [ i f  =  th then n else 0];

[A l = {En] : n E A}.

Theorem 3.2. I f  si is a set of recursive assertions, then .szi is incomplete for (.', 03).

Proof. We exhibit the existence of programs S
I
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Let S2 be a program computing f
2
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w e  
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( q t ,  
S i
)  
=

!I w P ( S 2 ,  0), so clearly 0/1S1; S2{0}•
Now assume that 011S1{r} and {r},92{0}. Then ([X] = sp(qt, SI) r  and r n[[11

wic(S 2, 0) n[[111 = 0. The set Z defined by gZ]] = r n LAI satisfies X g Z and Y n Z =
0 and is, by theorem 3.1, not recursive. Consequently, r is not recursive either.

In our opinion, this result shows that assert statements have only limited appli-
cability. I t  might be argued, however, that the notion o f partial correctness —
essential to our proofs i s  not the proper one to consider here, and that the
conditional o f an assert statement should also express termination. Although
termination cannot be dealt with by Floyd's (nor by Hoare's) method, it is not difficult
to show that this suggestion does not even save the assert statement in the simple case
of deterministic programs. For, if {p}S1; S2{(1} holds in the sense of total correctness,
an intermediate r would have to satisfy

sp(p, S
I
) r  
g w
p
( S
2 ,  
.
7
)  
n  
0
)
,

where the addition wp(S2, 0) expresses termination. Now, let Z  be an arbitrary
recursively enumerable, but not recursive, subset of X, and let S
I  a n d  S 2 ,  r e s p e c -tively, compute a total function with range Z and a partial function with domain Z.
Clearly, 19.11.9
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4. More powerful assertions

Having established that the set of recursive assertions has insufficient power for
completeness, we now turn to more powerful classes. It is clearly fruitless to hope for
completeness proofs without additional assumptions about the class of programs.

Definition 4.1. A  program S  is normal i f  (the set which is) S is recursively
enumerable.

Observe that this is a quite normal property for programs indeed; it certainly holds
for all programs corresponding to computational processes.

Lemma 4.1.

(a) I f
S  
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n
o r
m
a l  
p
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o
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a
@
,  
t
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b ** S is a normal program.
(b) I f  S is a normal program and p is recursively enumerable, then

sp(p, S) is recursively enumerable.



(c) I f S  is a normal program and q  is recursively enumerable, then
q) is recursively enumerable.

Proof.

(a) Since b  i s  recursive a n d  S  i s  recursively enumerable, b  * *  S =
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enumerable.
(b) Since p and S are recursively enumerable, sp(p, S)=  :  cr[a  a p A e rg r] } is

recursively enumerable.
(c) Since S and q  are recursively enumerable, wp (S ,  61)= :3 7 [crS7  A 7- e

is recursively enumerable.

Theorem 4.1. I f  g  is a class o f  normal programs and szi = {p :p is recursively
enumerable}, then sd is complete for (.9', A').

Proof. We shall verify each of the three requirements from definition 2.3.
First, if p a a/ and b aR,  then, since b is recursive, p n b is recursively enumerable,

sopnbe.szi.
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Finally, suppose WI )  S f q l  fo r some S  a $0, b  e a n d  p, q a si• T a k e  r  =

sp(p, b ** S). It is easy to verify that r is a proper invariant, i.e., that p c r, fr n  b lSfrl
and r fl b  q .  By (a) and (b) of lemma 4.1, r is recursively enumerable, so  ra g .

Theorem 4.2. I f  g' is a class of normal programs and 4  = i s  recursively
enumerablel, then of is complete for ($', R).

Proof. Left to the reader. (Hint: take wp(S
2
, q )  a n d  w p ( b  
S .  q )  
a s  
i n t e r m e d i a t
e

assertions.)

A natural question is whether the intersection or the union of the sets of assertions
considered in the last two theorems is complete for (9', R). The intersection o f  these
two sets is the set of recursive assertions which is incomplete by the results o f  the
previous section. As we shall see in the next section the union of th e m is  also
incomplete for (9',

5. Arithmetical assertions

Recursive assertions 7 9

Let A be a subset of X" (n > 0). Recall that A is called /
(
0
1
( i t
o
)
)  i f  i t  i s  
r e c u r s i v e .  
A  i s

called + ,  + ,  ) where k 0  if for some B being a HI (E
(
1
)
,) s u b s e t  o f  X "  
4 -  a n d  
a l l
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(TEA *--> 34(a, x)EB1

(a-E A 44 V x[(cr, x)E
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some n. It is well known that a set is X? i f  it is recursively enumerable. This implies
that a set is d2 i f  it is recursive. It is clear now what we mean by saying that a set of
states (i.e. an assertion) or a set of k-tuples of states (k > 0) is ° „  o r
arithmetical.

The following easy facts about I ,  112 or ZI'
3
,
z s e t s  ( s e e  f o r  
t h e m  
e . g .  
[ 1 . 4 ] )  
w i l l  
b e

needed below.

Lemma. Let A, B cXk where k > O.
(a) A  is IT, if  X
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(d) i f  A is t h e n  A is r„„ I r
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°
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m >  
n .

By .4(HNen) we denote, from now on, the set of all 12 (Te
n ) ( 4 2 )  a s s e r t i o n s .  
W e
shall also use the following facts about 4 ,  rP,), or d?, assertions.

Lemma 5.1. Let S be a normal program.
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(c) i f  q ( n  2 )  and S is a deterministic program then wp(S, q)E 12, too.

Proof. (a), (b) By definition. (c) Since S is deterministic, we have for all states a
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a very mild assumption about .9
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Proof. Let A be a I? nonrecursive subset of the even natural numbers and let B be a
IT? nonrecursive subset of the odd natural numbers. Then C =A  UB is a set which is
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neither X? or /1?. Indeed, we have for all x E
X

X E A  4 — > X E C A X  i s  e v e n

EB 4-> xe CA x is odd,

so if  C  were X? then B would be X? and if C were /1? then A would be I n .
Let f  be the following partial recursive function:

f  (.0={lc if . xB
0

divergent otherwise

and le t  S be a program which computes f. Thus S= f(o-, a): cr El
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1 B ] l

We  prove now that
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n EB v3m[[1n11S[mlAi[mIleiA31

4> n e B v e  11AD

<-->neAUB

n E  C,
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so indeed (1) holds.
Fo r any state a-, i f  c r (v
i
)e  C ,  t h e n  
e i t h e r  
o -  
e  
[ [ C 1 ,  
i n  
w h i
c h  
c a
s e  
b
y  
(
1
)  
o
-

wp(S, [[A11), o r o- is not of the form Erd for any n, in  which case V T [  -
-
-
t o r S T ] ,

i.e. o- e wp(S,IAD, as well. This shows that

lo-: cr(v 1
)e  C I  
w p
( S ,  
(
2
)

C  is a E
(
2
) 
s e t ,  
s o  
f o
r  
s
o
m
e  
D  
w
h
i
c
h  
i
s  
H
?

x E C 3 y  [(x, y) E D].

Let p = :  (a(v 1), o
-
( v 2 ) ) E D ) .  
T h e n  
p a
i l ? .

We  show now that

{P}[v2 := 0]; S{EA} (
3
)but for no assertion q U

10[V2 := OHO a n d  ifilS{iA11}. ( 4 )
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sp(P, lv 2 := OD= {r :3cr[cr E p A 041)2 0
1
1 -
1 } =

{T : 3 o
-
R c r
( v 1 ) ,  
4 7
( t 3
2 ) )
E  
D
i  
A  
T
(
V
2
)
=  
0  
A  
N
i
v  
e  
V
L
v  
0  
v
2  
(
v
)  
=  
c
r  
(
v
)
1
1
I  
=

{7- :3x{(7(v
1
), x ) e  
D ]  
A  
T
( V 2
) =  
0
1  
=

r ( v
i
) e  
C  
A  
T
(
V
2
)  
=

Thus, by (
2
) s P ( P
,  
[ v 2  
: =  
O
D  
w p
( S
,  
1 ,
4
1 )
,  
w
h
i
c
h  
m
e
a
n
s  
t
h
a
t  
(
3
)  
h
o
l
d
s
.

Suppose now that for some assertion q (4) holds. Then sp(p, [v2 0 ] )  c i  and
gwp(S,PID), so

sp(p, Ev2 := O])flV q  n g _  wpcs, [ 1 . A r l  j [c ]
i.e. [CI n RX I I .  Since C is not E? or f r,  qJt I? Li H?.

Using lemma 5.1 we can easily extend the results of section 4 to the sets .f
°
,, a n d  . / r ! .

Using lemma 5.1 (a) and following the proof of Theorem 4.1 we obtain that E
u
,,
(n 1 )  is complete for (,9", A) under the assumption that 9' is a class of normal
programs. Also due to lemma 5.1 (b) we obtain that if 9' is a class of normal programs
then f t  (n 1 )  is complete for (.9
9
, g 3 ) .  A s  a  
c o r o l l a r y  
w e  
h a v e :  
i f  
. 9 '  
i s  
a  
c l a s
s  
o f

normal programs then the set of all arithmetical assertions is complete for (9', I f
.9' is a class of deterministic normal programs then due to lemma 5.1 (c) for every
n 2  ° ,  and .4 Li in, are complete for (9', R).

6. Completeness for recursive assertions

From the result of section 3 we learned that recursive assertions are not sufficient
to obtain completeness. This fact is connected with a phenomenon (difficult to define
formally) of loss of information about the program in question. Both the assertion
method and the Hoare axiomatic method are concerned only with the input-output
behaviour of a given program and not with the history of computation resulting from
the execution of S. In this section we show that, by allowing the use of an 'auxiliary'
coordinate, the set of recursive assertions is complete for while programs. This result
is obtained by using that coordinate to provide information for limiting possible
initial states to a finite set.

We extend the domain 'V to cr
- b y  a d d i n g  
a  
f r e s h  
v a r i a b l
e  
u ,  
a n d  
w e  
d e n o
t e ,  
f o
r

o- Ei1  and x E X, the extended state A ei [if v E V then .Ac then o(t) else x] by o-8,z.x and
the extended state space by qt ÷. Programs and assertions on the extended state space
will in general be denoted by letters bearing a superscript +

For pc 6a, we write pt for fa Scx : o
c p ,  x  E
X } .  W e  
d e n o t e  
{ b
t  :  
b  
E  
0 }  
b y
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Definition 6.1. S
+  i s  a  
f a i t h f u
l  
e x t e n
s i o n  
o
f  
S  
i
f

V cr, T V x[crST 4
-
> y
[ c r 8 c x  
S
+  
r & y ]
l .

The relevance of this definition will become clear in the light of the following lemma,
especially part (c).

Lemma 6.1.
(a) I f  St is a faithful extension of S
i a n d  S I
-  i s  a  
f a i t h f u l  
e x t e n s i o
n  
o f  
S 2 ,  
t h e
n  
S t
;  
S I
-  
i s

a faithful extension of Si; S2•
(b) I f  S
-
3
E i s  
a  
f a i
t h f
u l  
e x
t e
n s
i o
n  
o
f  
S
3
,  
t
h
e
n
,  
f
o
r  
a
n
y  
b  
E
R
,  
b
t  
S
-
3
i
-  
i
s  
a  
f
a
i
t
h
f
u
l  
e
x
t
e
n
s
i
o
n

of b * S3.
(C) I
f  
S
+  
i
s  
a  
f
a
i t
h
f
u
l  
e
x
t
e
n
s
i
o
n  
o
f  
S
,  
t
h
e
n  
V  
p
,  
q  
R
p
1
S
{
q
}  
<
•
-
•  
I
p
1
1
S
4  
{
g
i
}
]
.

Proof. The verification of (a) and (b) is straightforward from the definitions of ';' and
'*' and is therefore omitted. As for (c), suppose first {p}Slql, that is, Vcr, T[(cr a
p & (TST)
-
> T  
e  
q ] .  
W
e  
m u
s t  
p r
o
v
e  
{ i
t
} S
+
1 q
t
l ,  
t
h
a
t  
i
s
,  
V
c
r
,  
X
,  
T
,  
y
[
(
c
r
8
c
x  
E  
i
t  
A

cr&x S
4 
T &
y ) -
- >  
7 •
8 4
y  
a  
q
1 .
1 .  
I
f  
c
r
&
x  
a  
p
'  
,  
t
h
e
n  
a  
a  
p
.  
A
l
s
o
,  
i
f  
c
r
&
x  
S
4  
r
8
c
y
,  
t
h
e
n  
c
r
S
T
,

since S
+ i s  
a  
f a i
t h f
u l  
e x
t e
n s
i o
n  
o
f  
S
.  
F
r
o
m  
a
-  
a  
p  
a
n
d  
c
r
S
T  
w
e  
h
a
v
e  
e  
q
,  
a
n
d  
t
h
e
r
e
f
o
r
e

a q
t
.  
N
e
x
t
,  
s
u
p
p
o
s
e  
{
p
t
}
S
+
1
q
t
i
.  
L
e
t  
x  
b
e  
s
o
m
e  
a
r
b
i
t
r
a
r
y  
e
l
e
m
e
n
t  
o
f  
X  
(
e
.
g
.  
0
)
.  
I
f

cr E p, then cr&x a p. Also, if cr
-
S r,  t h e n  
t h e r e  
e x i s t s  
a  
y  
s u c h  
t h a t  
a S c
x  S
+  
r & y
,  
s i n
c e

S
+  
i
s  
a  
f
a
i
t
h
f
u
l  
e
x
t
e
n
s
i
o
n  
o
f  
S
.  
F
r
o
m 
c
r
&
x  
a  
p
t
.  
a
n
d  
c
r
&
x  
S
+  
T
&
y  
w
e  
h
a
v
e  
r
c
k
y  
E  
q
t  
,  
a
n
d

therefore r a q.

Definition 6.2. A  class of programs ($0, @) is w e l l
-
f o u n d e d  i f  S  =  
L r k - 0  4 ,  
w h e r e

f
9
'
0 
i
s 
s
o
m
e 
c
l
a
s
s 
o
f  
r
e
c
u
r
s
i
v
e 
(
i
.
e
.  
A
(
0
)
)  
p
r
o
g
r
a
m
s
,

,9'1,-,1g 9
9
k 
U I S
I ;  
S
2  
:  
S
i  
,  
S
2  
E  
S
O  
L
l  
i
b  
*  
S
3
:  
b  
a  
B
,  
S
3  
E  
9
9
k
1
.

Remark. A  well-founded class of programs consists of normal programs only.

Theorem 6.1. I f  (.9', i s  well-founded, then there exists a class of programs .9
9+ s u c hthat

(i) each S a 9' has a faithful extension S
4  e(ii) i f  i s  the set of recursive assertions from the extended state space of ,9'

+ ,  t h e n  . s z i  i scomplete for (g '
+
' ,Proof. For a state a
- l e t  o  
s t a n d  
f o r  
1  
+ . Y „
o
r o
-
( v )  
a n
d  
f
o
r  
a
n  
e x t
e n
d e
d  
s
t
a
t
e  
a  
l
e
t  
l
a
!

stand for 1 + E „
v
-  ( v ) .Since (.9', g3) is well-founded, we can write 9

9
=  L f
c
;  Y k ,  a s  
i n  
d e fi n i t i o n  
6 . 2 .  
W e

first construct, for S = Yo,

S
t 
=  
{
(
c
r
&
x
,  
r
8
c
(
x  
+  
l
a
-
I
)
:  
a
,  
T  
X 
a
X
,  
U
S
T
}
.
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From this definition it is obvious that S
t  i s  a  f a i t h f u l  
e x t e n s i o n  
o f  
S  
a n d  
t h a t  
S
t  
i s

recursive.
The complete class ,9
)+ i s  t h e n  
d e fi n e d  
b y  
9
9 +  
=  
9
9 -
t
„  w
h e
r e

1
,
9
9
-
0
'  
=  
{
S
t  
S 
E 
Y
o
}
,

= U  -
1
'  ;  
:  
S '
2
"  9
2
;
' ,
-
1 U  
{
b
+  
:  
b
+  
S  
E  
9
1
4
k  
1
.

Clearly, 9 '
+ i s  
c l o s
e d  
u n
d e
r  
s e
q u
e n
c i n
g  
a
n
d  
r e
p e
t i
t i
o n
.  
I
t  
i
s  
t
r
i
v
i
a
l
l
y  
p
r
o
v
e
d  
f
r
o
m  
t
h
i
s

construction of g '
+ ( b y  
i n d u c t i
o n  
o n  
k  
a n
d  
u s i
n g  
l e
m m
a  
6
.
1  
(
a
)  
a
n
d  
(
b
)
)  
t
h
a
t  
i
n
d
e
e
d

each S
E  
h a
s  
a
t  
l e
a s
t  
o
n
e  
f
a
i t
h
f
u
l  
e
x
t
e
n
s
i
o
n  
S
+  
,
9
9
+
.

To establish the second claim consider the least class of programs 5
- s u c h  t h a t(i)
(ii) if  T, T 2  E b
. +  E  g 3
+
,  
t h e n  
T i ;  
T 2  
E  
3 +
,  
b
+  
*
*  
T  
5
-
,  
b
+  
T  
3
-
1

Clearly, g
+ c  
3 1  
T o  
c o n
c l u
d e  
t
h
e  
p
r
o
o
f  
i
t  
i
s  
e
n
o
u
g
h  
t
o  
s
h
o
w  
t
h
a
t  
f
o
r  
a
l
l  
p
+  
a  
s
i  
a
n
d

T e g
-
, 
s p
( p
+
,  
T
)  
i
s  
r
e
c
u
r
s
i
v
e
,  
s
i
n
c
e
,  
a
s  
i
n  
t
h
e  
p
r
o
o
f  
o
f  
t
h
e
o
r
e
m  
4
.
1
,  
t
h
e  
f
o
r
m
s

sp(p
+
,  S
±
)  
a
n
d  
s
p
(
p
+
,  
b
+  
*
*  
S
+
)  
a
l
r
e
a
d
y  
s
u
f
f
i
c
e  
f
o
r  
p
r
o
v
i
d
i
n
g  
t
h
e  
n
e
c
e
s
s
a
r
y  
i
n
t
e
r
-

mediate assertions. A straightforward induction argument shows that for all T  e
and a, a, 13 a 9 i
+
(A) [ a T ( 3  A a 001-01(21<i/31.

Hence, if T, T
i
,  T 2  
E  
9 ' ,  
b
+
E  
a n
d  
P
+  
q l
+ t
h e
n ,  
f
o
r  
a
l
l  
a
,  
E

(i) aTi;  T20 1 ( 3 1  A aTi•Y l '
T 2 0
] ;
(ii) ab ** Ti
3 < - *  
3
n  
< 1 0 I
3
Y o ,  
<  
•  
•  
•  
< 1
1
1
n 1
=  
1
1
3
1  
A  
a  
=  
-
y
o  
A  
y
n  
=  
A

i < n[yTy,+1 A y, E b 1];
(iii) a b
+  
T O  
a
b
+  
*
*
T
i
3  
A  
f
3  
b
+

(iv) s p ( p
+
,  T )  
4 - >  
J a
[ I a
I $ I
A a

a p
+
A
a T
/
3 ]
.

(Note that in (ii), for a b
+  ,  w e  
a l w a y s  
h a v e  
n  
0 ) .  
( i )
,  
( i i
)  
a n
d  
( i i
i )  
t o g
e t h
e r  
i m
p l
y  
t
h
a
t

all T a ,T are recursive. This together with (iv) implies that if p
+ V
+  i s  r e c u r s i v e  
a n d

T a 9' then sp(p
+
, T )  i s  
r e c u r s
i v e ,  
w h i
c h  
c o n
c l u
d e s  
t
h
e  
p r
o o
f .  
O b
s e
r v
e  
t
h
a
t  
t
h
e

property (A) was crucial to  the proof, as this allowed to bound the extential
quantifiers in (i), (ii) and (iv).

7. Translation to Hoare's method

We shall briefly dwell on the question how these results can be translated to
Hoare's method, Within Hoare's framework assertions are formulas, so it is awk-
ward to talk about recursive assertions. A much more suitable class to consider is that
of assertions which contain only bounded quantifiers. Call such formulas BQ
formulas. For the purpose of the subsequent discussion we assume that the assertion
language L is an extension of the language Lp of Peano arithmetic, such that each
symbol of L which is not in Lp can be defined in Lp by a BQ formula.
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Call a formula a X? formula if it is of the form 3z 1
, ,  3 z n  [ 0 ] ,  
w h e r e  4 ,  
i s  a  
B Q

formula. Observe that each BQ formula defines a A
0
) s e t ,  b u t  n o t  
e v e r y  L i g  
s e t  i s

defined by a BQ formula. On the other hand, a set is I? i f  it can be defined by a X?
formula.

Let 9' be the class of while programs and let Y
o  c  Y .  W e  c a l l  
a  c l a s s  
o f  
a s s e r t i o n s  
. . . Q V

complete for Yo if for every p, 1 E 4' and SE 1 = =  1p1S{q} if  1p1S{q} can be proved
in the usual Hoare proof system using only assertions from T h e  latter we denote
by 1-1p1S1q1.

The proof of theorem 3.3 shows that the class A l  of BQ formulas is incomplete for
Y. On the other hand, as theorem 4.1 shows, the class of X? formulas is complete for
9'.

In the translation from Floyd's to Hoare's method, the auxiliary coordinate used in
the last section will appear as an auxiliary variable which preserves some information
on the history of computation. A similar use of auxiliary variables has been made by
Clint [3] to prove the correctness of programs with coroutines and by Owicki [13] for
parallel programs.

A program S' is a faithful extension of a program S if its input-output behaviour on
the variables of S is the same as that of S, but it can in addition use auxiliary variables.
Observe that it is possible to construct the particular class of faithful extensions Y
+corresponding to that defined in the proof of theorem 6.1. The proof of theorem 6.1
shows that A2 is complete for 9 ' .  To get completeness of 11?12 for 9' one has now to
add to Hoare's system the following proof rule which links S
+ w i t h  S .

Rule. Let S
1 E  
b e  
s u c
h  
t h
a t  
a u
x i l
i a r
y  
v a
r i
a b
l e
s  
a
p
p
e
a
r  
i
n  
S
1  
o
n
l
y  
i
n  
a
s
s
i
g
n
m
e
n
t
s

z := t, where z is an auxiliary variable. If S is obtained from S' by deleting from S
1 a l lassignments to auxiliary variables and p and q do not contain auxiliary variables,
then

1p1S'{q}
{p}S{q} •

This rule is also formulated in [13], where it was used in the proof system for
the verification of parallel programs. Observe that by the construction each S
is obtained from S
+ E  , 9 '
+  b y  
d e l e t i
n g  
f r o
m  
S
+  
a l
l  
a s s i
g n m
e n t s  
t
o  
a u
x i l
i a r
y  
v a
r i
a b
l e
s .

The same result can also be obtained by adding to Hoare's system the following
curious rule

{p1S1q1
{pfel zlISIO
, 
w h e r e  
z  
i s  
a n  
a u x
i l i a
r y  
v a r
i a b
l e .

(As usual, p[e / z] stands for the result of substituting e for z in p). Denote the
resulting system by G. The above rule is obviously not sound in the usual technical
sense, but it appears to be sound in the sense that only true sentences of the form
p1S1q1 can be derived in G, provided that p and el do not contain auxiliary variables.
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To prove the last claim, assume for simplicity that only finitely many variables are
used and that z is the only auxiliary variable. Call a sentence IpISIql s e m i
-
v a l i d  i fVCT

7 
T  
V
X
[
C
r
&
X  
E  
p  
A  
c
r
S
T  
-
+  
[  
E

where assertions and programs are identified with their meanings and the notation is
that of the last section.

It is easy to see that the axioms of G are semi-valid and that all proof rules of G
preserve the semi-validity of sentences. So if {p}S{q} can be derived in G, then it is
semi-valid. If, in addition, p and q do not contain the auxiliary variable, then {p}Slcil
is true.

Due to the completeness of 2  for 9 ,  to prove that R9 is complete for .9' with
respect t o  G  i t  i s  now sufficient t o  prove that R 2  4 1 S
-
1 0  i m p l i e s
•  { p ) S l q l .

The proof proceeds by induction on the length of S and only the case of an
assignment statement needs explanation. If S is of the form v := t, then S
+  i s  o f  t h eform z  := s; v  := t. { p } z  s ;  v  t l q l  implies t h a t  f o r  some r
g e  { p ) z  := sir} a n d  a 9 ,  : =  tlql. T h u s  p  -4• r[sl zi a n d
•  I
-
0  
{ r
}
v  
t
l
q
l
.  
B
y  
t
h
e  
n
e
w  
r
u
l
e  
g
3
2  
f
r
[
s  
:
=  
t
{
t
i
}
,  
s
o  
b
y  
t
h
e

consequence rule 032 F
-
G  
{ p l y  : =  
* 1 .

Theorem 3 .3  indicates a  wa y t o  construct a  program S  such  t h a t
•  I true l S I ftds e l  (which implies tha t  {true}Slfaisel i s  t r ue )  b u t
gtR W-ItruelS{false}.

Auxiliary variables have also been used in [1] and [9] to obtain completeness of
Floyd's method for recursive program schemes. The results of these papers indicate
a way to extend the present notion of completeness of a set of assertions from the
class of while programs to the class of recursive program schemes by allowing
assertions from an extended state space. I t  would be interesting to investigate
whether the completeness results proved in this paper can then be extended to the
latter class.

Note added in proof. It was brought to our attention that similar results, in particular
our Theorems 3.2, 4.1 and 5.1, have been proved in: I.A. Lomazova, 0  sloinosti
induktivnyh usloviI dlja verifikacii arifmetieeskih programm (On the complexity of
inductive assertions for the verification of arithmetical programs), in: Materialy
Wsesojuznor Nauenor Studeneeskor Konferencii, Matematika (Novosibirsk State
University, Novosibirsk, 1978) 85-94.

References
[1] K.R . Apt and L.G.L.T. Meertens, Completeness with finite systems of assertions for  recursive

program schemes, Report 1W 84/77, Mathematical Centre, Amsterdam, (1977).
[2] J.W. De Bakker and L.G.L.T. Meertens, On the completeness of the inductive assertion method, J.

Comput. System Sci. 11 (3) (1975) 323-257.
[3] M . Clint, Program proving: coroutines, Acta Informat. 2(1)  (1973) 50-62.



Recursive assertions 8 7

[4] S.A. Cook, Soundness and completeness of  an axiom system for  program verification, SIAM  J.
Comput. 7 (1) (1978) 70-90.

[5] E.M . Clarke, Programming language constructs for which it is impossible to obtain good Hoare-like
axioms, Proc. 4th AC M  Symp. on Principles of Programming Languages, (1977) 10-20.

[6] R.W. Floyd, Assigning meanings to programs, in: J.T. Schwartz, ed., Mathematical Aspects of
Computer Science, Proc. Symp. Applied Math. (American Math. Soc., Providence) Vol. 19 (1967)
19-32.

[7] G.A. Gorelick, A  complete axiomatic system for  proving assertions about recursive and non-
recursive programs, Technical Report 75, University of Toronto (1975).

[8] A.  Grzegorczyk, A. Mostowski and C. Ryll-Nardzewski, The classical and the to-complete arith-
metic, J. Symbolic Logic 23 (1958) 1888-205.

[9] D .  Harel, A. Pnueli and J. Stavi, Completeness issues for inductive assertions and Hoare's method,
Technical Report, Tel-Aviv University (1976).

[10] C.A.R. Hoare, An axiomatic basis for  programming language constructs, C. AC M  12 (1969)
576-580.

[ l l ]  Z . Manna, The correctness of programs, J. Comput. System Sci. 3 (1969) 119-127.
[12] D . Matuszek, The case for  the assert statement, SIGPLAN Notices (1976) 36-37.
[13] S. Owicki, A consistent and complete system for the verification of parallel programs, Proc. 8th ACM

Symp. Theory Comput. (1976) 73-86.
[14] JR .  Shoenfield, Mathematical logic (Addison-Wesley, New York, 1967).
[151 M . Wand, A new incompleteness result for Hoare's system, J. AC M  25 (1) (1978) 168-175.


