Reducing hopeful majority

Lambert Meertens

We are given a non-empty bag of (votes on) 'candidates', and are asked to determine if some candidate has the majority.

Several derivations of linear-time algorithms have been given, all of which work in two phases: first find a 'hopeful majority' candidate, and next check if it really has the majority. A 'hopeful majority' candidate is any candidate c in the bag such that if some candidate has the majority, it is c.

I consider here only the problem of finding some hopeful majority candidate. All previous algorithms I have seen basically scan the bag. The purpose of this note is to show that there is a divide-and-rule approach. In a previous note I have given a derivation, mainly based on predicate calculus. Here only the solution is presented.

Let C stand for the type of the candidates, and N for the naturals. The operation $\oplus:(C \times N) \times(C \times N) \rightarrow C \times N$ is defined by:

$$
(c 0, d 0) \oplus(c l, d l)=(c 0, d 0+d l)<c 0=c l>\left((c 0, d 0-d l) \uparrow_{\pi_{2}}(c l, d l-d 0)\right),
$$

where $a<p\rangle b$ stands for if p then a else b fi. We also define $f: C \rightarrow C \times N$:

$$
f \cdot c=(c, 1) .
$$

Now a hopeful majority candidate is determined by $\pi_{2} \cdot h$, where h is the bag homomorphism defined by

$$
h=\oplus / \cdot f_{*} .
$$

However, something funny is going on here. Even under the hot indeterminate interpretation of $\uparrow_{\pi_{2}}$ the operator \oplus is not associative. This can be seen by considering the different ways to compute h on a bag of three distinct candidates. According to the current definitions this would mean that h is not a proper bag homomorphism. Associativity is not required for consistency if we consider the bag splitting itself also as indeterminate. This is already mentioned in the Algorithmics paper, but I had not come across a clear (non-contrived) example before. The definition of the indeterminate bag reduce $\oplus /$ is then that it is the 'thinnest' (most determinate) indeterminate function r satisfying

```
r}\bullet\tau\leadstoc
```

