
AB42.4.8 REMARKS ON ABSTRACTO

Leo Geurts
Lambert Meertens

Mathematlsch Centrum, Amsterdam

AB42 p. 56

I. ABSTRACTO LIVES

If an author wants to describe an algorithm, he has to choose a vehicle
to express himself. The "traditional" way is to give a description in some
natural language, such as English. This vehicle has some obvious drawbacks.
The most striking one is that of the sloppyness of natural languages. Hill
[|] gives a convincing (and hilarious) exposition of ambiguities in
ordinary English, quoting many examples from actual texts for instructional
or similar purposes. The problem is often not so much that of syntactical
ambiguities ("You would not recognise little Johnny now. He has grown
another foot.") as that of unintended possible interpretations ("How many
times can you take 6 away from a million? [...] I can do this as many
times as you like."). A precise and unambiguous description may require
lengthy and repetitious phrases. The more precise the description, the more
difficult it is to understand for many, if not most, people. Another
drawback of natural languages is the inadequacy of referencing or grouping
methods (the latter for lack of non-parenthetical parentheses). This tends
to give rise to GOTO-like instructions.

With the advent of modern computing automata, programming languages
have been invented to communicate algorithms to these computers.
Programming languages are almost by definition precise and unambiguous.
Nevertheless, they do not provide an ideal vehicle for presenting
algorithms to human beings. The reason for this is that programming
languages require the specification of many details which are relevant for
the computing equipment but not for the algorithm proper. The primitives of
the programming language are on a much lower level than those of the
algorithm itself.

The evolution of hlgh-level programming languages is one in which the
level of the available primitives increases towards the abstractions that
human beings use when thinking about algorithms. Still, the gap is very,
very large. Unfortunately, recent progress is not yet reflected in any
major, generally known programming language.

However, high-level programming languages have had a direct influence
on the presentation of algorithms in the literature. Many an author now
employs a kind of pidgin ALGOL to express himself. The pidgin
characteristics are all present: (a) the language is primarily a contact
language, used between persons who do not speak each other's language;
although each "speaker" may have his own variant, there is mutual
understandability; (b) there is a limited vocabulary, and the syntax is
stripped down to the bare necessities, with elimination of the grammatical
subtleties that can only be mastered by a regular user; (c) the language is
not frozen but permits adaptation to various universes of discourse. The
main advantages to the author (and his audience) are that there is no need
for a preliminary and boring exposition of the algorithmic notation, that
mathematical notions and notations may freely be employed, and that the
resulting description is sufficiently precise to convey the algorithm

This paper is registered at the Mathematical Centre as IW 97.

AB42 p. 57

without the deleterious burden of irrelevant detail.
This pidgin ALGOL is a language. It is not really a programming, nor a

natural language, but it has characteristics from both. It is not steady,
but evolving. How it will evolve we cannot know. But as any man-made thing,
its evolution can be influenced by our conscious effort. This language on-
its-way may be dubbed Abstracto. (The name "Abstracto" arose from a
misunderstanding. The first author, teaching a course in programming,
remarked that he would first present an algorithm "in abstracto" (Dutch for
"in the abstract") before developing it in ALGOL 60. At the end of the
class, a student expressed his desire to learn more about this Abstracto
programming language.)

Abstracto "77 is a clumsy language, like any pidgin. Only when a pidgin
language becomes a mother tongue, which is not picked up in casual contacts
but is the primary language one learns and uses, can it become the
versatile tool that allows the expression of complicated thoughts in a
natural way.

There are at least two reasons for programming-linguists to study
Abstracto. The first is that we may hope to speed up the evolution of
Abstracto, by proposing and using suitable notations for important
concepts, either derived from existing programming languages, or newly
coined. (An excellent example are Dijkstra's guarded commands.) The second
is that Abstracto may show us how to design better programming languages.

2. THE LANGUAGE OF MATHEMATICS

It is possible to draw a parallel with the language of mathematics.
Only a few centuries ago, the simplest algebraic equation could only be
described in an unbelievably clumsy way. This very clumsiness stood
directly in the way of mathematical progress.

Take, ~or example, Cardan's description of the solution of the cubic
equation x + px = q, as published in his Ars Magna (1545). The following
translation from Latin is as literal as possible, with some explanations
between square brackets that would have been obvious to the mathematically
educated sixteenth-century reader:

RULE
Bring [Raise] the third part of the number [coefficient] of things [the
unknown] [i.e., p] to the cube, to which you add the square of half the
number [coefficient] of the equation [i.e., q], & take the root of the
whole [sum], namely the square one, and this you will [must] sow
[copy], and to one [copy] you join [add] the half of the number
[coefficient] which [half] you have just brought in [multiplied by]
itself, from another [copy] you diminish [subtract] the same half, and
you will have the Binomium with its Apotome [respectively], next, when
the cube root of the Apotome is taken away [subtracted] from the cube
root of its Binomium, the remainder that is left from this, is the
estimation [determined value] of the thing [unknown].

Nowadays, there is a large basic arsenal of mathematical notions and
corresponding notations that may be freely used without further
explanation. Each specialism has, in addition, its own notations.
Nevertheless, each author is free to introduce new notations as the
circumstances require.

Which notations survive in the struggle for life is determined by
several factors, of which the ease of manipulating expressions is probably

AB42 p. S8

the foremost one. Still, several notations may coexist, each with its own
advantages and disadvantages (like Newton's versus Leibnitz's notation for
derivatives). Generally, mathematicians do not bother too much about
syntactical ambiguity and do not even stoop down to indicate operator
priorities, as long as the intended meaning is conveyed to the gentle
reader. (How different from that adversary, the automaton!)

The wildgrowth of notations in new fields can, under circumstances, be
effected beneficially by a ~ore or less authoritative body (possibly one
person). Donald Knuth's_ ,~al [2] for, among others, the use of a Greek
letter theta to denote tn~ .ss of functions of some order, constitutes an
intervention for lack of an ec ablished notation. Such interventions are
not to be confused with st~ ~ization efforts! Only in a frozen field is
it possible to standare~a~. . else we have a case of death by premature
exposure to frost (hopefully of the standard).

It is difficult to characterize what constitutes good notational
practice. Not only is "elegant" vague, but where notation is concerned, it
is just a synonym for "good to use". Some criteria are: conciseness,
similarity to notations for similar concepts, and relative independence of
context. There are, of course, enough dubious notations, such as lim f(x)
a, where the equality sign has a subtly different meaning. (An extremely
bad case in ALGOL 60 is the switch declaration SWITCH s := i], 12, 13.)

3. IN SEARCH OF ABSTRACTO 84

We expect that the introduction of better notations will prove as
important for the development of "algorithmics", as it has been - and still
is - for mathematics. One must, of course, first identify the concepts
before a notation can be developed. It seems unlikely that progress will
come from selecting mind-blowing concepts, if only because it is hard
enough to think about algorithms without having one's mind blown. If the
parallel with mathematics is not deceptive, the important point is the
manipulation of "algorithmic expressions". From a paper by Bird [3],
describing a new technique of program transformation, we quote: "The
manipulations described in the present paper mirror very closely the style
of derivation of mathematical formulas [...] As the length of the
derivations testify, we still lack a convenient shorthand with which to
describe programs, but this will come with a deeper understanding about the
right sequencing mechanisms."

At first sight it may seem attractive to view an algorithm as a
(constructive) solution satisfying a correctness formula

(p) X {q).

One can develop a notation, like Schwarz's generic command p ~ q [4], for a
solution (or the set of solutions) of the correctness formula. There must
be some constraint on the variables that may be altered by the algorithm,
since it is hardly helpful to know that

x = x 0 ^ y - Y0 ~ x = GCD(x0,Y 0)

is solved by

x := x 0 := YO := 3.

AB42 p. 59

If v stands for the alterable variables, and we write q[v := e] for the
result of substituting e for v in q, then p o q can already be expressed in
Abstracto "77 by

v := e {e : p = q[v := el),

where "¢" denotes the (indeterminate) selection operator.
If one interprets p o q at the same time as a formula expressing the

(proved) existence of a solution, some proof rules may be given. For
example, we have a proof rule

p = q Iv := e]

poq

(corresponding to the solution v := e), the proof rule

p oq, q or

por

(corresponding to p o q; q o r), and the proof rule

pl o ql, p2 o q2

plv p2 o ql v q2

(corresponding to IF pl + pl o ql 0 p2 + p2 o q2 FI). By turning a
derivation of p o q upside down, a solution is constructed. Unfortunately,
there is no suitable rule for a solution of the form

DO b -+ p ^ bop OD.

(The rule

p Abop

pop A -~b

does not express termination and allows the derivation of p o p ^ -~b for
arbitrary p and b.)

There are several other courses one may follow to search for more
constructive elements of Abstracto. One is similar to the way high-level
programming language elements originate: consider existing (Abstracto)
programs, and find similar "code sequences" that appear to be the
expression of the same more abstract concept. Just like

LI: IF NOT condition GOTO L2
perform something
GOTO Ll

L2:

AB42 p. 60

may be expressed more clearly by

DO condition ÷ perform something OD,

one might wish to express

vopt := ~;
FOR e E s
DO IF ok| (e)

THEN IF v < vopt
THEN eopt, vopt := e, v
FI WHERE v = fl (e)

ELIF ok2 (e)
THEN IF v < vopt

THEN eopt, vopt := e, v
FI WHERE v = f2 (e)

FI
OD

as

eopt, vopt := FOR e ~ s
OPT okl (e) + f l (e)

0 ok2 (e) + f2 (e)
TPO.

(This is not a serious proposal, but neither is it a mere joke.)
Instead of this bottom-up approach a more analytical consideration of

the human way of thinking about algorithms may prove, in the long run, more
fruitful. In contrast to the process of developing a program, given an
algorithm, it appears that little is known about this subject. Descriptions
of algorithms in natural languages do not provide much insight, presumably
because of the poor expressiveness for algorithmic notions. (One tendency,
however, is very noticeable, and is maybe an indication that is worth
following up: what might be called the "and-so-on" descriptions, and the
"afterthoughts". We surmise that this reflects the emergence of algorithms
as the Jump to the limit of a sequence of approximations.)

Perhaps the best approach is the following. Suppose a textbook has to
be written for an advanced course in algorithmics. Which vehicle should be
chosen to express the algorithms? Clearly, one has the freedom to construct
a new language, not only without the restraint of efficiency
considerations, but without any considerations of implementability
whatsoever.

The following is an attempt to indicate some desiderata for Abstracto
84.

Orthogonallty is a must. For a lingua franca without frozen and formal
description, exceptions are out of the question.

Abstracto 84 has an ALGOL flavor, but is certainly not committed to the
control structures or any other particular construct of any ALGOL
whatsoever.

With the exception of truth values, Abstracto 84 has no predefined
types, but only ways to construct new types from "application oriented"
types. Operations on objects are outside the realm of Abstracto 84 proper,
except such operations as have a generic meaning for a class of types
constructed by means provided by Abstracto 84 (cf. Wilkes [5]).

Although there are variables for objects of any type, these variables

AB42 p.61

are not considered as new objects. There are no pointer values (except when
introduced for a specific application).

Similarly, procedures are not considered as objects which may be
assigned etcetera.

Conditions may contain defining identifiers which are also bound in the
controlled clause selected if the condition succeeds.

4. GLIMPSES OF ABSTRACTO 84

Due to our near-sightedness, it is difficult to discern more than some
outlines of Abstracto 84. Of some prominent features a glimpse may now and
then be caught. It should go without saying that all mathematical notation
remains welcome to Abstracto.

First of all, it is clearly settled, even in this early stage, that
Abstracto is rich in "iterators" (operators or other constructs that
operate on generators in an Alphard-llke sense). For example, one may write
a condition

3 e e s: p(e),

and if this succeeds, then in the scope of the selected clause, if any, e
accesses some element from s satisfying the predicate p. Such constructions
may provide a clear and concise description that is quite close to the
algorithm originally conceived. Also, if it is immaterial for the algorithm
in whlch order elements are selected, it is important that this be
expressed.

The control structures of Abstracto 84 seem to be centered around
guarded command sets (Dijkstra [6]) of the form:

CI ÷ Sl 0 C2 ÷ $2 0 "'" 0 Cn + Sn.

The basic meaning of such a form is: if at least one of the C. holds (where
the evaluation of a condition is supposed to have no side effects), then
some corresponding S is selected (but not yet evaluated). In the
terminology of the A~CGOL 68 Report, a scene is selected, composed from that
S. and an environ whose most recent locale may have been added because of
the declarative form of C..

The meaning of IF ...iFI and DO ... OD may now be defined easily. It
appears, however, that in Abstracto 84 several other control structures may
be defined with the guarded commands at their cores, as suggested by the
FOR ... OPT ... TPO construct in the previous section. The basic simplicity
of the concept, in conjunction with its indeterminacy, should warrant ease
of manipulation.

Many types, specifically those that can be treated satisfactorily by
so-called axiomatlc/algebraic specifications, can be defined in the way
exemplified below:

tree ::= nll I atom (val: item) I pair (left, right: tree).

(We write "::=" to stress the similarity with BNF, although this "syntax"
of objects is more abstract than usual, since the nodes in the "parse tree"
of an object are labelled; in the example, "nil", "atom" and "pair" are
node labels.) This notation is similar to Hoare's notation for recursive

AB42 p .62

data structures [7]; it carries no other information than is relevant from
an abstract algorithmic point of view. There are three nice things about
this way of defining types. In the first place, it is easy to derive in a
straightforward way "axiomatic" specifications in the style of Guttag [8],
but the notation is much more compact. (For the above example, we would
obtain nine lines for the discernible functions and eighteen for the
axioms.) Secondly, this way of defining offers a unification of three
well-known concepts:

records, as in

complex : : - pair (re, im: real);

(disjoint) unions, as in

arithmetical ::= i (val: int) I r (val: real);

PASCAL scalars, as in

color ::~ red I blue I green.

Finally, it is easy to instruct a compiler to handle such definitions.
The only drawback is the inefficiency, reason why such definitions are
maybe Abstracto rather than Concreto.

Objects of a thus defined type can now be subjected to a "conformity
condition", as in

DO t FITS
pair (tl, t2) ÷ t := t2

OD.

In this example, if the condition succeeds, t2 accesses the tree t.right.

5. A POSSIBLE PITFALL

Unless we are very mistaken, program development by successive "program
transformations", i.e., a sequence of manipulations on expressions which
represent algorithms, has a promising future. Each transformation rule is a
theorem. To us, computer maniacs, the perspective is tempting to create a
data base of transformations to be applied mechanically. Since the
applicability of each transformation is also checked mechanically, we have
done away with all bugs (except for those in the original, pure, algorithm,
possibly a problem specification). What vista! Of course, we must invent
for our Abstracto language some syntactic notions to allow expression of
the applicability of transformations.

The last sentence should make it clear already that the pursuit of this
Utopian concept - unless one contents oneself with trivial transformations
that might as well be applied directly by a compiler - spoils the
simplicity of Abstracto. Worse yet, the concept wholly ignores the fact
that in mathematics for none but the simplest theorems the applicability
may be checked by "syntactical" means. If computers would have dated back
to the inception of modern mathematical notation and only mechanizable
transformations would have been studied, the so-called special products
would, presumably, still be among the high-lights of mathematical
knowledge.

To quote once more Bird [3]: "we did not start out, as no mathematician

AB42 p. 63

ever does, with the preconception that such derivations should be described
with a view to immediate mechanization; such a view would severely limit
the many ways in which an algorithm can be simplified and polished."

REFERENCES

[1] Hill, I.D., Wouldn't it be nice if we could write computer programs in
ordinary English - or would it?, Computer Bull. 12 (1972) 306-312.

[2] Knuth, D.E., Big omicron and big omega and big theta, SIGACT News
(]976) 2, 18-24.

[3] Bird, R.S., Improving programs by the introduction of recursion, Comm.
ACM20 (|977) 856-863.

[4] Schwarz, J., Generic commands - a tool for partial correctness
formalisms, Computer J. 20 (1977) 151-155.

[5] Wilkes, M.V., The outer and inner syntax of a programming language,
Computer J. I_! (]968) 260-263.

[6] DiJkstra, E.W., Guarded commands, nondeterminacy and formal derivation
of programs, Comm. ACM 18 (1975) 453-457.

[7] Hoare, C.A.R., Recursive data structures, Stanford University Report
CS-73-400 (1973).

[8] Guttag, J.V., Abstract data types and the development of data
structures, Comm. ACM 20 (1977) 396-404.

