
THEO JANSSEN, GERARD KOK AND LAMBERT MEERTENS 

ON RESTRICTIONS ON TRANSFORMATIONAL 

GRAMMARS REDUCING THE GENERATIVE POWER 

ABSTRACT. Various restrictions on transformational grammars have been investigated in 
order to reduce their generative power from recursively enumerable languages to recursive 
languages. 

It will be shown that any restriction on transformational grammars defining a recursively 
enumerable subset of the set of all transformational grammars, is either too weak (in the sense 
that there does not exist a general decision procedure for all languages generated under such a 
restriction) or too strong (in the sense that there exists a recursive language that cannot be 
generated by any transformational grammar thus restricted). In addition, some related prob- 
lems will be discussed. 

1. MOTIVATION 

Chomsky (1965), Ch. I, § 6, states that a theory of linguistic structure should 
aim at descriptive adequacy. To provide for this aim the theory must contain, 
among other things: 

(A) a definition of ‘generative grammar’; 
(B) a method for determining the structural description of a sen- 

tence, given a grammar. 
Requirement (A) can be interpreted as the requirement that we have a 
procedure to decide whether a given text describes a possible generative 
grammar. Chomsky, however, gives a more liberal formulation: 

(A’) the theory must provide for an enumeration G1, G,, . . . of 
possible generative grammars. 

When Chomsky describes how a descriptively adequate theory would 
attempt to account for language learning, it appears that (B) is to be 
interpreted as: 

(B’) a method for determining, given a grammar, whether a given 
sentence can be generated by that grammar, and if so, what 
structural description is assigned to it. 

Thus (B’) implies that: 

(C) the theory provides for a method to decide whether a given 
sentence can be generated by a given grammar. 

This last statement (C) is often formulated as ‘natzmzl languages are recur- 
sive’.’ For arguments concerning (C) see, besides Chomsky (1965), also 
Peters and Ritchie (1973) and Putnam (1961). 

’ A language L is called recursive if there exists an effective procedure to decide whether a 
given sentence belongs to f. or not. 
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Chomsky has introduced transformational grammars to serve as a model 
for the linguistic structure of natural languages. A formal definition can be 
found in Ginsburg and Partee (1969) or Peters and Ritchie (1973); know- 
ledge of the definition, however, is not needed for our purposes. Peters and 
Ritchie (1973) have proved that the generative power of transformational 
grammars is of Chomsky type 0 (recursively enumerable).2 So, in the light of 
requirement (C), it appears that the system of transformational grammars is 
too powerful, since not every transformational grammar is a possible 
grammar for natural language. Hence, the aim of descriptive adequacy is not 
fulfilled. Therefore, the obvious thing to do is to search for a restriction on 
TG (the set of all transformational grammars) that defines a subset RTG of 
TG such that only recursive languages will be generated. 

In accordance with (A’) we require RTG to be recursively enumerable. 
On the other hand, it must be possible to describe every possible natural 
language by a grammar determined by the theory. 

Requirement (C) states that natural languages should be recursive. In 
order to escape the risk of excluding possible natural languages by the 
restriction we suggest: 

03 for every recursive language there is a grammar in RTG. 
In this situation it is interesting to search for the ‘ideal’ restriction: a 
restriction on TG satisfying requirements (A’), (C) and (D). 

Several proposals have been investigated previously. Peters and Ritchie 
(197 1) have investigated restrictions on the base-component of transforma- 
tional grammars. Even drastic restrictions do not reduce their generative 
power. The same authors introduce the cycling function of a transforma- 
tional grammar. The generated language is recursive if and only if this 
function is recursive (i.e. effectively computable). But they define the cycling 
function in a non-effective way; hence, the restriction of having a recursive 
cycling function cannot be checked by an algorithm. In the same article they 
discuss a proposal of Putnam (1961) and show that the generative capacity is 
reduced to that of context-sensitive grammar, thus showing this restriction 
to be too strong. So it appears that the restrictions investigated are not 
recursive themselves, or if they are, that they either reduce too strongly, or 
that they do not reduce the generative capacity at all. 

Since we conjectured that this was not due to a lack of good ideas but to 
mathematical necessity, we investigated the matter and succeeded in show- 
ing that an ideal restriction does not exist. Futhermore the proof suggested 
some interesting new problems, which are also investigated. The problems 

’ A language L is called recursively enumerable if there exists an effective procedure for 
enumerating the sentences of L. 
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under consideration can also be formulated in terms of Recursion Theory 
(the branch of mathematics that studies recursively enumerable sets, recur- 
sive functions, etc.). It turned out, as could be expected, that these problems 
had already been dealt with in this field. 

In fact, the result mentioned above was proved by Dekker (1953). 
Although our result is not new, we hold the opinion that it is useful to present 
our proof because, from our point of view, it is an important result which 
seems not to be known outside the context of Recursion Theory; moreover, 
the proof is not complex. We have formulated it in terms of transformational 
grammars, but it applies analogously for any formal-language-describing 
system. For example, although we deal with grammars only as generative 
systems, the results are equally valid for accepting systems. 

2. PRELIMINARIES 

We suppose that all grammars of TG generate languages over the same 
finite alphabet V (e.g., all symbols on all typewriters in the world). So we 
have an enumeration zl, z2,. . . of all sentences 3 over V, arranged on length, 
and for every length in some ‘alphabetical’ order. In case V is infinite, but 
enumerable, we can prove analogous results. In that case, it suffices to 
encode all symbols in some finite alphabet (e.g., O-l code) and to prove the 
theorems for the encoded languages. The language generated by a grammar 
G will be denoted by L(G). 

3. RESULTS 

3.1. The Ideal Restriction 

THEOREM 1. There exists no subset RTG of TG which satisfies the 
following requirements : 

(A’) R TG is recursively enumerable ; 

0 there is a method to decide whether a given sentence can be 
generated by a given grammar of RTG; 

(D) for every recursive language there is a grammar in RTG. 

Proof. Assume that all three requirements are satisfied. 
Let Zl, z2,. . . be the enumeration of all sentences over V and let 

GI, G2, . . - be an enumeration of the grammars of RTG. 
Let the language H be defined by: 

zi belongs to H if and only if zi does not belong to L(Gi). 

’ In the literature also the terms words or stings are used with the same meaning. 
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Because of the requirement (C), there is a decision procedure to test whether 
zi belongs to L(G,), and, therefore, whether zi belongs to H. So H is 
recursive. Because of requirement (D), there is a grammar in RTG, say G,, 
such that H = L(G,,). 

Now we have the following contradiction for i!h : 

zh belongs to L(Gh) if and only if zh belongs to H, that is, if and 
only if zh does not belong to L(G,). I7 

3.2. A Weaker Restriction 

In the above theorem, (C) implied the existence of a method providing for 
a decision procedure for each language generated by a grammar of RTG. As 
we shall see, the situation changes dramatically if (C) is replaced by the 
weaker requirement: 

cw) none of the languages generated by a grammar of RTG is 
non-recursive.4 

In order to explain the difference between (C) and (C,J, consider 
the language L defined as follows: The decimal expansion of T, 
3.141592653.. ., may be viewed as an infinite string of digits. L contains 
exactly all strings of seven digits occurring in the decimal expansion of T. 
Obviously, L is a recursively enumerable language (with enumeration 
3141592,1415926,4159265,. . .) so there exists a transformational gram- 
mar G generating L. Since no effective procedure is (yet) known to decide 
whether, e.g., 1234567 belongs to L, it is obvious that G could not belong to 
an RTG which has been shown to satisfy (C). However, G might well belong 
to an RTG which has been shown to satisfy (CT,,,): Since all finite languages 
are recursive, a non-recursive language cannot be finite, i.e. it must be 
infinite. But L is certainly not infinite: there are but 10’ strings of seven 
digits, not even considering occurrence in the decimal expansion of rr. 
Consequently, L cannot be non-recursive either. 

The consequence of replacing (C) by (CJ, is that, surprisingly, the 
construction of an RTG satisfying (A’), (C,J and (D) does become possible. 
For Recursion Theory, this case has also been studied by Dekker (1953). We 
give a slightly sharpened version of this theorem, presented in linguistic 
terminology. Unlike Theorem 1, in which TG may be replaced by any 

4 This formulation is preferred to each language generated by a grammar of RTG is recursive, 
since this would be interpreted by constructivists as being equivalent to (C) rather than to (C,,,). 
In view of the fact that the expressions natural languages are recursive and no natural language 
is non-recursive are normally understood to have the same meaning, it should be recommended 
to formulate (C) as natural languages are recursive only if it is clear that this is to be interpreted 
in a constructive way. 
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formal-language-describing system, this theorem applies only to Chomsky- 
type-0 systems such as transformational grammars, Turing machines or Van 
Wijngaarden grammars. Our result is slightly sharper in that it exhibits the 
existence of a recursive restriction, whereas Dekker merely shows the 
existence of a recursively enumerable restriction. 

Only a sketch of the proof is given. 

THEOREM 2. There exists a subset RTG of TG which satisfies the following 
requirements : 

(A”) R TG is recursive ; 
w none of the languages generated by a grammar of R TG is non - 

recursive ; 
0) for every recursive language there is a grammar in RTG. 

Sketch of Proof. Peters and Ritchie (1971) have shown constructively that 
any language enumerated by a Turing machine is generated by some 
transformational grammar which, as it were, simulates that Turing machine. 
We may, therefore, give a construction in terms of machines. The enumera- 
tion zl, z2, . . . of all sentences over V, as introduced in the preliminaries, 
defines an ordering of the sentences over V: z1 < z2 < . . . . An enumerator is 
a Turing machine which enumerates a sequence yl, y2, . . . of sentences over 
V; it is called ascending if y, < y2 < . . . . 

LEMMA 1. For each recursive language, there exists an ascending 
enumerator. 

Proof. Enumerate ‘internally’ all sentences over V in ascending order, but 
emit only the sentences belonging to the language and discard all others 
(which can be tested using the decision procedure for that language). Cl 

LEMMA 2. An infinite language for which an ascending enumerator exists is 
recursive. 

Proof. In order to decide whether a given sentence y belongs to the 
language, enumerate its sentences yl, y,, . . . in ascending order until a yi is 
met such that yi 3 s. The sentence s belongs to the language if and only if 
yi = Se 0 

Note that this method does not work for finite languages, since, if at some 
moment only sentences yi <s have been enumerated, there is no general 
way to tell whether this constitutes the full language or not, so one simply has 
no choice but to wait and see if more is coming. This waiting might continue 
indefinitely. 
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The following transformation turns an arbitrary enumerator into an 
ascending one: Enumerate the sentences, remembering the sentence last 
emitted. If the next sentence is higher in order, it is emitted; otherwise it is 
discarded. Obviously, this construction transforms already ascending 
enumerators into equivalent ones. 

RTG consists of all grammars that can be obtained as follows: Start with 
an arbitrary enumerator, transform it into an ascending enumerator and 
take the grammar which, according to the construction of Peters and Ritchie 
‘simulates’ this ascending enumerator. 

We will show that RTG, thus defined, satisfies (A”), (CJ and (D). 
Asfor (A”). Obviously, RTG is recursively enumerable, since it is possible 

to enumerate all enumerators, applying the transformation and the con- 
struction of Peters and Ritchie to each enumerator. In fact it is possible to 
decide by inspection whether a grammar of TG may be obtained in this way, 
much in the same sense in which it is possible to decide whether a given 
sentence may have been obtained by a transformation which replaces all 
occurrences of ‘s’ in some sentence by ‘f’. 

As for (C,J. Let L be a language generated by a grammar of RTG. 
Suppose that L is non-recursive. Clearly, L cannot be finite. But L is 
enumerated by an ascending enumerator, so by Lemma 2, L cannot be 
infinite either. 

As for (D). For each recursive language, there exists by Lemma 1 an 
ascending enumerator for that language, which may be transformed into an 
equivalent one. Consequently, there is a grammar of RTG for that 
language. Cl 

3.3. Restriction to Infinite Languages 

The crux of Theorem 2 lies in the proof of (C,J. If we know that the 
language described by a given grammar is infinite, we have (by Lemma 2) a 
decision procedure. If the language happens to be finite, however, this 
procedure fails, but in that case the language is recursive because all finite 
languages are. Since there is no procedure for deciding whether such a 
language is finite or not, the theorem, although of some theoretical interest, 
is, in the opinion of the authors, of no practical value. 

Since all ‘interesting’ languages are infinite, one might wonder if in this 
theorem it is essential that finite languages play such an elusive role. This is 
indeed the case, as has been shown (in terms of Recursion Theory) by Van 
Emde Boas and Vitanyi (1975) who proved: 

THEOREM 3. There exists no subset RTG of TG which satisfies the 
following requirements : 
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(A’) RTG is recursively enumerable ; 

0%) for every infinite recursive language, there is a grammar in RTG 
describing that language ; 

03 every language described by a grammar of RTG is infinite. 

Proof. Assume that all three requirements are satisfied. Let G1, GZ, . . . be 
an enumeration of the grammars of RTG. The following enumerator 
enumerates two sequences of sentences x1, x2, . . . and yl, y2, . . . simultane- 
ously, in ascending order: In order to obtain xk, enumerate the sentences of 
L(G,), until a sentence is met which is higher in order than all previously 
emitted sentences; emit this sentence as & (such a sentence must occur in 
the enumeration of L(G,), since L(Gk) is infinite). In order to obtain yk, 
proceed with the enumeration of L(G,) until again a sentence is met which is 
higher in order than all previously emitted sentences; this sentence is 
emittedasyk (sox1<y1<x2<y2...). 

In this way two infinite languages are obtained: X, consisting of the 
sentences xi, x2,. . . and Y, consisting of yl, y2,. . . . By the construction, 
there exists an ascending enumerator for X and for Y, so X and Y are 
infinite recursive languages. Moreover, X and Y are disjoint, i.e., no 
sentence of X belongs to Y and vice versa. By (Di) there is a grammar in 
RTG, say G,., such that X = L(G,). 

Now we have the following contradiction for y, : 

y, belongs to L(G,) = X, but y, also belongs to Y, which is 
impossible by the construction of X and Y. 0 

4. LINGUISTIC CONSEQUENCES 

In the light of the foregoing theorems we see two possibilities for descriptive 
linguistics: 

(1) To describe language in a system which is essentially more powerful 
than is necessary for the description of all recursive languages. Transforma- 
tional grammars are an example of such a system; there are more such 
systems, all with equal power: every general-purpose programming lan- 
guage is one. The justification of the choice for TG as descriptive mechanism 
can then only be its convenience as a tool. 

(2) To postulate a constructive restriction which excludes not only non- 
recursive but also some recursive languages (i.e., a restriction like context- 
free or context-sensitive); such a restriction should be based on a new 
hypothesis concerning the character of natural languages. 
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