
Volume S. number 4 I N F O R M A T I O N PROCESSING LETTERS

A RACE-SAVING TECHNIQUE FOR ASSIGNING ALGOL 68 MULTIPLE VALUES
*
Lambert MEERIENS
katisemallseit Cannes% Piverde Doerhaarestrasn 49, Amsterdam 1005, The Netherlands

Rzetiveel 9 June 191t,

ALGOL 68., ()pliant:a two

I. latteductios

The undghtforward way of elaborating an assigna-
tion d :its in an ALGOL 68 implementation is (1):

• elaborate the destination d and the source s,
yielding a name N and a value V;

• assign fire value V to the Elaine N.
In many cases, the elaboration of s will consist of

the ovation of a copy on the working stack of an al-
ready existing value V. This value is assigned to N by
copying it once more into the memory location(s)
whose address is given by N. In most of these cases,
simple compile-time optimization techniques permit
a translation which does not make the extra copy on
the working stack and instead copies the source directly
Into the memory location(s) of the destination [21.

Such an optimization is of %medal interest if a mut-
dpk value (array)is being sniped, since an extra copy
of a law =Mp h value mi0tt take up more space than
Is available. A multiple value might be copied by setting
up a loop copying the individual elements one by one.
However, a difficulty is encomtered here: the destine-
doe and the source may overlap in memory.

An example: After the declaration [1:3, 1:3) REAL
or, molder the assignation 4,31 :at 41,1, whkh must
astir the first row of* to the third column. Simple-
minded application of the optimization woad result
In code amoundng to
4
1
.
3
1
•
=
4
1
1
.
1
1
,

e(2,31 :giall,21,
et3,31 :grati,31.
• This piper is registered at the Mathernztical Centre as 14 36176.

But this is wrong! The original value of al1,31 is super-
seded before it is assigned to a[3,31. Performing the as-
signments in reverse order would give the correct results
in this case, but it is not difficult to construct examples
where neither the "normal" nor the reverse order will
do. (For example, after the declaration [1:3, 1:3, 1:31
REAL. b, the assignation b [2, : = b1, .214

A technique which can be applied at run time to de-
termine a safe order for assigning the elements is pre-
sented below. The use of this technique may entail
some overhead in execution time. It assumes that the
destination is not "flexible", so that the old value it
refers to occupies the same amount of space as the new
value it is to receive
**
.
2. Preliminaries

October 1916

A multiple value of n dimensions has a descriptor of
the form ((l
1
, a
l
) , 0
2
, U
2
) ,
(1
n
,
u
n
)) ,
w
h
e
r
e
/
I
a
n
d
u
i

are the ith lower and upper bounds. If u
i < 1
,
, f o r a n y

then the descriptor is "flat". This case mugt be treated
as a special cue, because of the so-called ghost element,
but there is no need to make any actual copy. Other-
wise, the multiple value has (u
l — /
1 + 1)
X (u
2 — 1
2
+ 1)

X X (o
n —
i
n
+
1)
e l e
m e
n t
s ,
e
a
c
h
o
f
w
h
i
c
h
i
s
s
e
l
e
c
t
e
d

by a specific "index" (r 1 , . . . ,r
n
) , w h e r e
l < u
i
.

•• is the destination is flexible and the old value occupies less
sluice than the new one, it can be shown that no overlap can
occur. It is not clear how this fact can be ote4. If the old va-
lue takes at least as much space, the technique described here
could be used, In that case there should be a means to release
the exua space.

97

k sw u m : into that eclectics' makes use of a linear
11110
,
00
c d
c u l
a t i
o n
m
e
t
h
o
d
,
s
o
t
l
a
t
t
h
e
a
d
d
r
e
s
s
a
c
o
r
m
-

dOillidbile to an index , r
n
) i s g i v e n
b y
s o m e
f o r m u
l a

4 the AMU

n e+r
i X
d
i •
1
1 •
r
i
X
d
2
+
+
r
n
X
d
n
.

D r It will be assumed that the last subscript
Ana hattst. More precisely, if we take the leadco-
gmplain ordering on the indices, defined by
V
s
,
r
2
,
r
n
)
d
:
(
r
i
p
r
;
,
)
i
f
f
r
i
<
r
i
o
r

r
i
r
;
a
n
d
(
r
2
,
r
n
)
<
(
r
1
,
r
'
n
)
,

Oben mapphsg(r , r
n
) . - • c
+ r
i X
d
i
+

+ t
o
X
r
i
n
i
s
s
t
r
i
c
t
l
y
m
o
n
o
t
o
n
i
c
i
n
c
r
e
a
s
i
n
g
.

iitk property holds, for example, if for each newly
imamd multiple value, d
i d
o t a r e
c h o s e n
t o
s a t i s
f y

d
i
t
)
0
I
m
u
l
d
s
_
1
*
q
u
i
—
1
1
+
I
)
X
d
i
f
o
r
1
=
n
,
n
1
,
.
.
.
,
2
.

his left invariant oy all operations on multiple values
ro i led by ALGOL 68 (slicing, selecting and rowing).
If matrix transportation were added, it would no longer
Wadi Adapting the technique to the case where the
Ant subscript runs fastest should present no problems.

3. The technique

For the assignment to be defined, the multiple va-
lues corresponding to the destination and the source
must have the same descriptor ((1
r u
l) , O
n
, u
n
D .

Let the respective address calculation vectors be
(c, , d
n
)
a n d
(c '
,
d i
,
d
i
,
)
.
T
h
e
f
o
l
l
o
w
-

ing algorithm assigns the elements one by one in a safe
order:

FOR r FROM /
1 T O
u 1
DO

.•
OD;

S
i
m
u
m
b
o
s
t
4
I
N
F
O
R
M
A
T
I
O
N
P
R
O
C
E
S
S
I
N
G
L
E
T
T
E
R
S

FOR r
n -
F R
O M
1
, ,
T
O
u
n

DO INT X=c +r
i X d
i + . . .
+ r
n
X d
n
,

I N T p =e+r
i X
d i
+ . . .
+ r
n
X
d
n
s
;

IF X < p THEN asses (X, p) Fl

FOR r FROM u BY —1 TO1
DO

•••
OD.

FOR r
a
F R
O
M
u
n
B
Y
—
I
T
1
1
i
n

DO I N T A = c + r
i
X c t
i
+ . . . 4 - r
n
X d
n
,

I N T p = e + r
i
X d i + . . ,
+ r
n
X d
n
t
;

IF X > p THEN assign (), p) Fl
OD

October 1976

It can be seen that the algorithm consists of two
nested loops. The first one runs through the indices
in ascending order and performs the assigniatnts of
those individual elements for which the direction of
transport in memory is from high to low; whereas the
second one runs through the indices in descending OP
der and performs the assignments in the opposite direc-
tion.

Remark: The computations involved in the address
calculations can be optimized in an abvious way; they
are here presented as they are only for the sake of
clarity.

4. Correctness proof

Let X(0 and p(i) denote the addresses corresponding
to an index / = (r
i
, r
n
) .
T h e
a l g o r
i t h m
d e f
t n e
s s
l
e
•

quence of statements

assign Nil) , P (
1
1)) ;
assign 042). P (
1
2)) ;
assign (4
1
2
) , P
('
z
)) *

Each index gets its turn, either in the first or in the
second nested loop, depending on whether M /
k
) < p (t
k
)

or X(4) > p(4). Those indices for which X(4)24 p(4)
are left out; in that case the copying is a dummy action.

'Let the indices which get their turn in the lint nested
loop be /
1
, /
i n
(s
o
t h
a t
t
h
o
s
e
g
e
t t
i
n
g
t
h
e
i
r
t
u
m
i
n
t
h
e

second one are I
n s 4
.
1
,
W e
h a v
e

Volume 5, nun ner 4 I N F O R M A T I O N PROCESSING LETTERS

/
1
<
/
2
<
<

X(4) <p(4) for k <m,
X (I
k
) >
g
k
)
f
o
r
k
>
m
,

if A(/) < MO, then / < f
t
,
if p(I)<A/) , then / <

It must be shown that an address which occurs both
as that of a source element and as that of a destination
element is lint used as source and thereafter only as
destination. More formally, we must show:

if O
s
)
=
t
)
f
o
r
s
o
m
e
s
a
n
d
r
,
t
h
e
n
s
<
t
.

We distinguish fon cases:

Case A: s <m and t 4 in. We have g /
s
) = M i d <
I A t
) ,

so I
s
<
I
s
,
a
n
d
t
h
e
r
e
f
o
r
e
s
<

October 1976

Case B: $ 4 m atic!i > m. It inmediate1y follows that
s < r.

Case C: s> m and t 4 m. FiOM Pad= Wd < p(l
t
) ,

we deduce i
s < i
s
.
F r o
m
i t (i
s
)
>
p
(4
) =

we deduce I > I
t
.
C l e a r l y
,
t h i s
i s
i m p o
s s i b
l e ,

so this case cannot arise.
Case D: s> m and t > m. We have p (i
s
) = X a d > p
(4) ,

so i
s
>
4
,
a
n
d
t
h
e
r
e
f
o
r
e
s
<
t
.

References

I I A. van Wijnparden, BJ. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens and
R.G. Fiske! (ads), Revised Report on the Algorithmic Language
ALGOL 68, Acta Informatica 5 (1975) 1-236.

t 21 P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille and
M. Vanbegin, An optimized translation process and its ap-
plication to ALGOL 68, Lecture Notes in Computer Science
38 (Springer Verlag, Berlin etc., 1976).

59

