
1 In t roduct ion

The least-effort cabinet formation

Johan Jeuring
Lambert Meertens

CWI & RUU

This note is motivated by the latest Dutch elections, and the formation of a government
following on these elections. We derive an algorithm which minimizes the effort needed to
form a government (the reader is supposed to be familiar with the Bird—Meertens formal-
ism). This algorithm is an application of a theorem about problems which can be specified
by means of

i d • P iti •segs-
The Dutch House of Representatives consists of 150 seats, occupied by nine parties.

The parties can be ordered from left to right according to their political views.
It is generally acknowledged that a government should be supported by at least 80 seats

from the House of Representatives. Furthermore, if a number of parties form a government,
and there exists a party the political views of which are in between the political views of
the parties forming a government, this party joins the parties in the formation of the
government (this deviates from the current state of affairs in the Netherlands). Forming a
cabinet becomes more difficult when more parties are involved in the negotiations.

The problem we consider is to minimize the effort of forming a cabinet. Suppose we
represent the House of Representatives as a list of natural numbers. The length of the list
is equal to the number of parties in the House, the parties are ordered according to their
political views, and every natural number represents the number of seats a party occupies
in the House. It follows from the above facts that a government is supported by a segment
of the list, the sum of which is at least 80. Since forming a cabinet becomes more difficult
when more parties are involved, we want to find the shortest segment satisfying the above
requirement. The specification of our problem reads

i#1 • sgs 4
1
• s e g
s)

where the predicate sgs (sum greater than seventy—nine) Is defined by

sgs = (> 80
) •
1 4 .

12

2 A promotion theorem
In this section we prove a theorem which gives the conditions under which 1
#
/ • p 4 1 • s e g s
equals the composition of a projection function with a left-reduction.

Using the Segment Decomposition Theorem, see [Bir871, we have

1
4
4
•
p
4
-
s
e
g
s

- S D T
i d • (ild • p 4 tails)*. inits

Note that the part 1
#
/ • (4 /
• p
< 3 -
t a i l s)
*
f r o
m
t h
e
l a
s t
f o r
m u l
a
i
s
a
h o m
o m o
r p h
i s m
.
W
e

abbreviate I
l
d • p
< 3 -
t a i l s
t o
s p
.
T
h
e
f o l
l o
w i
n g
t h
e o
r e
m ,
w
h
i
c
h
i
s
n
o
t
p
r
o
v
e
d
,
g
i
v
e
s
a
s
o
l
u
t
i
o
n

for problems of the form h • inits, where h is a homomorphism of a specific form. We have

Theorem 1 (i n i t s
-
p r o m o t i o n
T h e o r e m
) .
L e t
h
b e
a
h o m o
m o r p
h i s m
a
)
/
•
f
*
w
h
e r
e
f
i
s
a

left-reduction (0-bi). Then
(h • inits, n - (0
-
k e)
1

where e - (i, i), and 0 is defined by

(x, y) 0 a = (x C y 0 a), y 0 a).

In order to apply the in its-promotion Theorem we want to find a left-reduction for
• p 41 -tails. The 'Theory of Lists' developped so far provides lemmas which give a

left-reduction for functions of the form 14
1
/ • p 0 - t a i l s
p r o v i d e d
p
s a t i s fi e s
s o m e
c o n d i t i o
n s .

Therefore, we try to express 4 / • p 4 -tails as 14/ • q 40 -tails for some predicate q. The
following three lemmas contain statements of the form

f = g on A.

By this statement we mean that f d - g d for all d E A. Using this construct, it is possible
to restrict the domain of equality of functions. Let E be the set of lists which satisfy the
predicate p, and let 0 be the set of of lists which satisfy -1 p (clearly as = E U 0). We
have

Lemma I Let p be a predicate such that -I p is postfix-closed, and define q by q = -1 p • ti.
Then

sp = I d • q 43 •tails on E.

We abbreviate 14/•q 4-tails to lg. This lemma is proved using the following two lemmas,
which can be proved using induction.

Lemma 2 Let -
1 p b e
a
p o s t fi r
-
c l o s e d
p r e d
i c a t
e .
T
h
e
n

p 4:3 •talls = []. on a

13

Lemma 3 Let -1 p be a postfiz-closed predicate. Then

Proof. W e prove Lemma 1 by induction. Since -1 p is postfix-closed, -1 p [] holds, and
hence I] is not an element of E, which proves the base case.

For the induction step, assume

p x (s p z = lq x).

If-1 p x * [a] holds, then again tal*x is not an element from E and we are finished. Suppose
p lal -14-x holds. By a straightforward calculation we obtain

sp lai*x = ([a]*x) 1
(s p x) .We distinguish two cases. First, suppose -1 p x holds. Then by Lemma 2 we have

p 4 tails x = I 1,
and hence

([a]-H-x) 1
(s p
x)
=
a a
l
+ x
)
1
4
1
1
.
=
[a
] -
1 4
-
x .

On the other hand, q [al*x = -1 p x also holds, and by applying Lemma 3 we find

Finally, if p x holds, then

aal -41-x) 1
(s p
x)

_ definition of tails, assumption
sp x

- induction hypothesis
lq x-- assumption
lq [a]*x

lq = id on a

lq lal*x - [al*x.

0
The lemmas which give a left-reduction for 14/ • p 4 •tails all require the predicate p to

be prefix-closed. Suppose -
I p i s
p r e fi x -
c l o s e d .
T h e n
w e
h a v
e
f o
r
n o n e
m p t y
x

q ziflal
, - - definition of q

-1 p tl x-H-lal
--1 p is prefix-closed
-1 p tl z
definition of q
q x

o M M . ,
= M P

14

Hence q is prefix-closed on lists of length at least two. Furthermore, q lal = True for all
elements a. Since q [1 is undefined, q is not prefix-closed. We call a predicate p almost
prefix-closed if and only if it holds for all singletons and satisfies

p p x,

for all elements a and all nonempty lists x. The predicate q is almost prefix-closed according
to the discussion above. We have the following variant of the Sliding Tails Lemma (see
IBCJ89]).
Lemma 4 Suppose p is an almost prefix-closed predicate. Then

i d • p i 'tails = (6)
-
I p e) ,where e is some fictitious element to, and the operator et is defined by

(131 a = x * I a l i f p x
-
H
- [a]

(t1 x) 6) a i f p x-11-1a1) Ax011
[a] i f x = w

The equality given in Lemma l holds only for elements in a Hence sp is a left-reduction
for elements in E. Suppose z is an element of e. Then, by Lemma 3, lq z = z. However,
sp z — i t . , as is verified by an easy calculation. We have the following equivalence

(sp z i
t
.)
4 *
(
-
u
p
l
q
z
)
.

We define
s is y z

y otherwise
Note that the operator Is is associative but not commutative. By the above equivalence,
we have

l
i
d
•
(
I
l
d
•
p
i
i
.
t
a
i
l
s
)
*
•
i
n
i
t
s
=
1
*
/
•
O
W
•
q
i
.
t
a
i
l
s
)
*
•
i
n
i
t
s
.

The following theorem is obtained by applying the in its-promotionTheorem and the variant
of the Sliding Tails Lemma.

Theorem 2 Let h be the homomorphism 1#1 • p<t, where -1 p is segment-closed. Let q be
the predicate -1 p • ti. Then

h • segs = • (04001
where i — (w,w), and the operator 0 is defined by

(z , y) 0 a (x
i s (1 /
e i
a) ,
y
a)
,

where the operator ED is defined by
z ED a = z -Cal i f q

(t1 x) a i f (-1 - Wr a p A x # 11
(a] i f z =ttl

15

3 T h e solution
Consider the problem described in the introduction. I t is required to find an efficient
algorithm for

The predicate sgs satisfies
sgs (+ / z) < 80.

Since the list x consists of natural numbers, clearly the predicate -1 sp is segment-closed.
We apply Theorem 2, and obtain

4 / • sP 1 -segs = (0 4) 0 1

where i - (w,w), and the operator 0 is defined by

(x114 0 a = (x E D a)11i ED a)1

where the operator ED is defined by

e a = s ifia l i f + / x-11-[al < 80
(tlx) ED a i f (+/ x-11-1a1 ?, 80) A x
lal i f =

This is a linear-time algorithm computing the least-effort cabinet formation.

Acknowledgements. Maarten Fokkinga and Hans Zantema made useful comments

References

id • sP 'setts.

[BGJ89] M . Bird, J. Gibbons, and G. Jones. Formal derivation of a pattern matching
algorithm. Science of Computer Programming, 1 2 : 9 3
-
1 0 4 , 1 9 8 9 .[Bir871 11.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi o T Discrete Design, pages 5-42, Springer-Verlag, 1987.

16

